Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling, Preparation, and Selected Physico-Chemical Analyses
2.2. Clinoptilolite Zeolite Characterization
2.3. Determination of Nitrogen, Phosphorus, and Potassium Adsorption and Desorption
2.4. Nitrogen, Phosphorus, and Potassium Adsorption Isotherms
2.5. Soil pH Buffering Capacity Determination
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Nutrient Concentrations in Equilibrated Samples
3.2. Adsorption Isotherm of Nitrogen, Phosphorus, and Potassium
3.3. Nitrogen, Phosphorus, and Potassium Adsorption Isotherms
3.4. Nitrogen, Phosphorus, and Potassium Desorbed by Soil Only, Clinoptilolite Zeolite Only, and Soil with Different Amounts of Clinoptilolite Zeolite
3.5. pH Buffering Capacity of Clinoptilolite Zeolite
4. Discussion
4.1. Nitrogen, Phosphorus, and Potassium in Equilibrium Solution
4.2. Nitrogen, Phosphorus, and Potassium Adsorption Isotherms
4.3. Nitrogen, Phosphorus, and Potassium Desorption
4.4. Clinoptilolite Zeolite and Bekenu Series Soil Buffering Capacity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Daković, A.; Tomašević-Čanović, M.; Rottinghaus, E.G.; Matijašević, S.; Sekulić, Z. Fumonisin B1 adsorption to octadecyldimetylbenzyl ammonium-modified clinoptilolite-rich zeolitic tuff. Microporous Mesoporous Mater. 2007, 105, 285–290. [Google Scholar] [CrossRef]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma 2017, 306, 152–159. [Google Scholar] [CrossRef]
- Ashman, M.R.; Puri, G. Essential Soil Science: A Clear and Concise Introduction to Soil Science; Blackwell Science Ltd.: England, UK, 2002. [Google Scholar]
- Latifah, O.; Ahmed, O.H.; Majid, N.M.A. Enhancing nitrogen availability, ammonium adsorption-desorption, and soil pH buffering capacity using composted paddy husk. Eurasian Soil Sci. 2017, 50, 1–11. [Google Scholar] [CrossRef]
- Jin, N.; Meng, C.X.; Hou, J. Preparation and characterization of merlinoite for potassium extraction from seawater. J. India Eng. Chem. 2014, 20, 1227–1230. [Google Scholar] [CrossRef]
- Li, Z.; Anghel, I.; Bowman, R. Sorption of oxyanions by surfactant-modified zeolite. J. Dispers. Sci. Techol. 1998, 19, 843–857. [Google Scholar] [CrossRef]
- Haggerty, G.M.; Bowman, R.S. Sorption of chromate and other inorganic anions by organo zeolite. Environ. Sci. Techol. 1994, 28, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Li, Z. Influence of solution pH and ionic strength on chromate uptake by surfactant-modified zeolite. J. Environ. Eng. 2004, 130, 205–208. [Google Scholar] [CrossRef]
- Li, Z.; Beachner, R.; McManama, Z.; Hanlie, H. Sorption of arsenic by surfactant-modified zeolite and kaolinite. Microporous Mesoporous Mater. 2007, 105, 291–297. [Google Scholar] [CrossRef]
- Okeola, F.O.; Odebunmi, E.O. Freundlich and Langmuir Isotherms parameters for adsorption of methylene blue by activated carbon derived from agro wastes. Adv. Nat. Appl. Sci. 2010, 4, 281–288. [Google Scholar]
- Dada, A.; Olalekan, A.; Olatunya, A.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin—Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. J. Appl. Chem. 2012, 3, 38–45. [Google Scholar]
- Dada, A.O.; Ojediran, J.O.; Olalekan, A.P. Sorption of Pb2+ from aqueous solution unto modified rice husk: Isotherms studies. Adv. Phys. Chem. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Kwiatkowska-Malina, J.; Malina, G.; Kasela, T. Removal of lead and benzene from groundwater by zeolite and brown coal: Isotherm and kinetic studies. In Proceedings of the 4th International Conference on Environmental Pollution and Remediation, Prague, Czech Republic, 11–13 August 2014; pp. 1–7. [Google Scholar]
- Ahmed, M.F.; Kennedy, I.R.; Choudhury, T.M.; Kecskes, M.L.; Deaker, R. Phosphorus adsorption in some Australian soils and influence of bacteria on the desorption of phosphorus. Commun. Soil Sci. Plant Anal. 2008, 39, 1269–1294. [Google Scholar] [CrossRef]
- Bloom, A.J.; Frensch, J.; Taylor, A.R. Influence of inorganic nitrogen and pH on the elongation of maize seminal roots. Ann. Bot. 2006, 97, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jusop, S.; Ishak, C.F. Weathered Tropical Soils the Ultisols and Oxisols; Universiti Putra Malaysia Press: Serdang, Malaysia, 2010. [Google Scholar]
- Ahmed, O.H.; Husni, A.; Ahmad, H.N.M.; Jalloh, M.B.; Rahim, A.A.; Majid, N.M.A. Enhancing the urea-N use efficiency in maize (Zea mays) cultivation on acid soils using urea amended with zeolite and TSP. Am. J. Appl. Sci. 2009, 6, 829–833. [Google Scholar] [CrossRef] [Green Version]
- Peres-Caballero, R.; Gil, J.; Gondalez, J.L. The effect of adding zeolite to soils in order to improve the N-K nutrition of olive trees. Am. J. Aric. Biol. Sci. 2008, 2, 321–324. [Google Scholar]
- Inglezakis, V.J.; Loizidou, M.D.; Grigoropoulou, H.P. Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+, and Cu2+ on natural clinoptilolite. Water Res. 2002, 36, 2784–2792. [Google Scholar] [CrossRef]
- Gruener, J.E.; Ming, D.W.; Henderson, K.E.; Galindo, C. Common ion effects in zeoponic substrates: Wheat plant growth experiment. Microporous Mesoporous Mater. 2003, 61, 223–230. [Google Scholar] [CrossRef]
- McGilloway, R.L.; Weaver, R.W.; Ming, D.W.; Gruener, J.E. Nitrification in a Zeoponic substrate. Plant Soil 2003, 256, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Rehakova, M.S.; Cuvanova, M.; Dzivak, J.; Gaval’ovác, J. Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Curr. Opin. Solid State Mater. Sci. 2004, 8, 397–404. [Google Scholar] [CrossRef]
- Palanivell, P.; Ahmed, O.H.; Latifah, O.; Majid, N.M.A. Adsorption and desorption of nitrogen, phosphorus, potassium, and soil buffering capacity following application of chicken litter biochar to an acid soil. Appl. Sci. 2020, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.H. Soil Sampling, Preparation, and Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Murphy, J.; Riley, R.I. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen-inorganic forms. In Method of Soil Analysis: Part 2; Page, A.G., Keeney, D.R., Baker, D.E., Miller, R.H., Rhoades, J.D., Eds.; Agronomy Monograph: Madison, WI, USA, 1962. [Google Scholar]
- Paramananthan, S. Soil of Malaysia: Their Characteristics and Identification, Malaysia; Academy of Sciences Malaysia: Kuala Lumpur, Malaysia, 2000; Volume 1, pp. 11–125. ISBN 9839445065.
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis: Part 2; Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.F., Dinauer, R.C., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Ming, D.W.; Dixon, J.B. Clinoptilolite in South Texas soils. Soil Sci. Soc. Am. J. 1986, 50, 1618–1622. [Google Scholar] [CrossRef]
- Kithome, M.; Paul, J.W.; Lavkulich, L.M.; Bomke, A.A. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilolite. Soil Sci. Soc. Am. J. 1998, 62, 622–629. [Google Scholar] [CrossRef]
- Chowdhury, S.; Misra, R.; Kushwaha, P.; Das, P. Optimum sorption isotherm by linear and nonlinear methods for safranin onto alkali-treated rice husk. Bioremediat. J. 2011, 15, 77–89. [Google Scholar] [CrossRef]
- Salarirad, M.M.; Behnamfard, A. Modeling of equilibrium data for free cyanide adsorption onto activated carbon by linear and non-linear regression methods. In Proceedings of the 2011 International Conference on Environment and Industrial Innovation (IPCBEE), Singapore, 26–28 February 2011; Volume 12, pp. 79–84. [Google Scholar]
- Rowell, D.L. Soil Science: Methods and Applications; Longman Scientific & Technical: Essex, UK, 1994. [Google Scholar]
- Xu, R.; Zhao, A.; Yuan, J.; Jiang, J. pH buffering capacity of acid soils from tropical and subtropical regions of China as influenced by incorporation of crop straw biochars. J. Soils Sedim. 2012, 12, 494–502. [Google Scholar] [CrossRef]
- Kissel, D.E.; Sonon, L.S.; Cabrera, M.L. Rapid measurement of soil pH buffering capacity. Soil Sci. Soc. Am. J. 2012, 76, 694–699. [Google Scholar] [CrossRef]
- Castello, R.C.; Sullivan, D.M. Determining the pH buffering capacity of compost via titration with dilute sulphuric acid. Waste Biomass Valor 2014, 5, 505–513. [Google Scholar] [CrossRef]
- SAS. SAS/STAT Software; SAS Institute: Cary, NY, USA, 2008. [Google Scholar]
- Jelena, M.; Susanne, E.; Tore, K.; Vesna, R.; Nevenka, R. The use in grass production of clinoptilolite as an ammonia adsorbent and a nitrogen carrier. J. Serb. Chem. Soc. 2015, 80, 1203–1214. [Google Scholar]
- Tang, H.; Xiaoyi Xu, X.; Wang, B.; Lv, C.; Shi, D. Removal of ammonium from swine wastewater using synthesized zeolite from fly ash. Sustainability 2020, 12, 3423. [Google Scholar] [CrossRef] [Green Version]
- Onyango, M.S.; Masukume, M.; Ochieng, A.; Otieno, F. Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Water SA 2010, 36, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Kiurski, J.; Adamovic, S.; Oros, I.; Krstic, J.; Kovacevic, I. Adsorption feasibility in the Cr (total) ions removal from waste printing developer. Global NEST J. 2012, 14, 18–23. [Google Scholar]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Ali, W.; Hussain, M.; Ali, M.; Mubushar, M.; Tabassam, A.R.M.; Mohsin, M.; Nasir, A. Evaluation of Freundlich and Langmuir isotherm for potassium adsorption phenomena. Int. J. Agric. Crop Sci. 2013, 6, 1048–1054. [Google Scholar]
- Mehdi, S.M.; Sajjad, N.; Sarfraz, M.; Khalid, B.Y.; Hussan, G.; Sadiq, M. Response of wheat to different phosphatic fertilizer in varying textured salt affected soils. Pak. J. Appl. Sci. 2003, 3, 474–480. [Google Scholar] [CrossRef]
- Fu, K.; Li, Z.; Xia, Q.; Zhong, T. Change and improving of ammonium exchange capacity onto zeolite in seawater. In Proceedings of the 2nd International Conference on Environmental Engineering and Applications, Shanghai, China, 19–21 August 2011; IACSIT Press: Singapore, 2011. [Google Scholar]
Property | Current Study | Range * (0–36 cm) |
---|---|---|
pH | 4.41 | 4.6–4.9 |
EC (µS cm−1) | 53.90 | NA |
Bulk density (Mg m−3) | 1.16 | NA |
Total organic carbon (%) | 1.43 | 0.57–2.51 |
Organic matter (%) | 2.47 | NA |
Total N (%) | 0.08 | 0.04–0.17 |
Exchangeable NH4+ (mg kg−1) | 21.02 | NA |
Available NO3− (mg kg−1) | 7.01 | NA |
Available P (mg kg−1) | 4.85 | NA |
---------------------------------------------------------(cmol (+) kg−1) -------------------------------------------------- | ||
Cation exchange capacity | 11.97 | 3.86–8.46 |
Exchangeable K+ | 0.10 | 0.05–0.19 |
Exchangeable Ca2+ | 0.25 | NA |
Exchangeable Mg2+ | 0.34 | NA |
Exchangeable Na+ | 0.22 | NA |
Exchangeable Fe2+ | 0.19 | NA |
Exchangeable Cu2+ | Trace | NA |
Exchangeable Zn2+ | 0.01 | NA |
Exchangeable Mn2+ | 0.02 | NA |
Total titratable acidity | 0.86 | NA |
Exchangeable H+ | 0.22 | NA |
Exchangeable Al3+ | 0.64 | NA |
Sand (%) | 71.04 | 72–76 |
Silt (%) | 14.58 | 8–9 |
Clay (%) | 14.38 | 16–19 |
Texture (USDA) | Sandy loam | Sandy loam |
Property | Clinoptilolite Zeolite (%) |
---|---|
Total N | 0.22 |
Total P | 0.01 |
Total K | 0.37 |
Total Ca | 0.67 |
Total Mg | 0.10 |
Total Na | 0.76 |
Total Fe | 0.11 |
Total Zn | 15 |
Total Mn | 17 |
Total Cu | 125 |
Isotherm | Nonlinear Form | Linear Form | Plot | Variables |
---|---|---|---|---|
Langmuir−1 | ||||
Langmuir−2 | ||||
Langmuir−3 | ||||
Langmuir−4 | ||||
Freundlich | ||||
Temkin |
Treatment | Nitrogen Left in the Equilibrated Samples (µg mL−1) Ce | |||||
---|---|---|---|---|---|---|
0 | 500 | 1000 | 2000 | 3000 | 4000 | |
Added N (µg) | ||||||
Soil | 23.35 F a (±2.14) | 62.11 E a (±1.62) | 95.74 D a (±1.62) | 174.19 C a (±0.81) | 240.04 B a (±2.14) | 294.21 A b (±1.40) |
CZ | 6.54 F c (±0.81) | 14.94 E e (±1.62) | 28.95 D d (±1.62) | 50.44 C d (2.81) | 77.99 B e (±2.14) | 107.88 A e (±1.40) |
CZ1 | 24.75 F a (±1.62) | 49.51 E b (0.81) | 84.06 D b (±1.40) | 139.17 C b (±1.62) | 212.02 B b (±1.62) | 298.41 A a (±1.40) |
CZ2 | 19.15 F b (±1.62) | 44.36 E c (±2.14) | 70.98 D c (±0.81) | 135.43 C b (±0.81) | 205.48 B c (±0.81) | 270.86 A c (±1.62) |
CZ3 | 16.34 F b (±0.81) | 40.16 E d (±0.81) | 71.45 D c (±1.40) | 126.56 C c (±0.81) | 177.46 B d (±1.62) | 248.45 A d (±0.81) |
Treatment | Phosphorus Left in the Equilibrated Samples (µg mL−1) Ce | |||||
---|---|---|---|---|---|---|
0 | 675 | 1250 | 2500 | 3750 | 5000 | |
Added P (µg) | ||||||
Soil | 0.06 F a (±0.03) | 16.76 E c (±1.26) | 55.10 D c (±1.34) | 147.46 C b (±1.13) | 236.17 B b (±2.86) | 333.38 A b (±6.22) |
CZ | 0.02 F b (±0.00) | 41.03 E a (±0.95) | 89.00 D a (±2.87) | 174.29 C a (±2.24) | 269.67 B a (±5.27) | 365.13 A a (±7.45) |
CZ1 | 0.02 F b (±0.01) | 18.50 E bc (±0.25) | 58.32 D bc (±1.55) | 148.69 C b (±1.48) | 239.13 B b (±5.00) | 334.88 A b (±4.71) |
CZ2 | 0.04 F ab (±0.01) | 18.95 E b (±0.30) | 58.59 D bc (±1.80) | 147.88 C b (±1.80) | 243.75 B b (±1.96) | 339.80 A b (±1.51) |
CZ3 | 0.02 F b (±0.00) | 19.87 E b (±0.73) | 60.81 D b (±1.41) | 151.29 C b (±1.99) | 242.29 B b (±1.48) | 341.04 A b (±2.15) |
Treatment | Potassium Left in the Equilibrated Samples (µg mL−1) Ce | |||||
---|---|---|---|---|---|---|
0 | 500 | 1000 | 2000 | 3000 | 4000 | |
Added K (µg) | ||||||
Soil | 3.92 F a (±0.08) | 45.37 E a (±0.31) | 85.80 D a (±1.23) | 109.20 C a (±0.30) | 268.87 B a (±1.33) | 362.80 A a (±2.09) |
CZ | 3.14 F b (±0.08) | 4.80 E e (±0.10) | 6.67 D e (±0.08) | 8.53 C e (±0.18) | 20.47 B e (±0.25) | 29.10 A e (±0.17) |
CZ1 | 3.30 F b (±0.23) | 18.70 E b (±0.30) | 40.80 D b (±0.89) | 57.83 C b (±0.38) | 179.07 B b (±1.10) | 262.47 A b (±1.33) |
CZ2 | 3.12 F b (±0.08) | 12.67 E c (±0.15) | 26.87 D c (±0.38) | 37.00 C c (±0.17) | 133.67 B c (±0.31) | 193.53 A c (±1.53) |
CZ3 | 3.15 F b (±0.10) | 10.00 E d (±0.10) | 20.73 D d (±0.15) | 26.97 C d (±0.38) | 101.60 B d (±0.53) | 149.93 A d (±0.76) |
Treatment | Regression Equation | R2 Value |
---|---|---|
------------------------------------------- N -------------------------------------- | ||
Soil | y = 28.128 + 0.067x | 0.9954 ** |
CZ | y = 3.435 + 0.025x | 0.9941 ** |
CZ1 | y = 16.314 + 0.068x | 0.9906 ** |
CZ2 | y = 12.681 + 0.064x | 0.9973 ** |
CZ3 | y = 13.183 + 0.057x | 0.9965 ** |
-------------------------------------------- P ------------------------------------- | ||
Soil | y = −19.377 + 0.069x | 0.9902 ** |
CZ | y = −3.877 + 0.073x | 0.9993 ** |
CZ1 | y = −18.033 + 0.069x | 0.9917 ** |
CZ2 | y = −18.798 + 0.070x | 0.9910 ** |
CZ3 | y = −17.605 + 0.070x | 0.9921 ** |
-------------------------------------------- K ------------------------------------- | ||
Soil | y = -9.004 + 0.089x | 0.9456 ** |
CZ | y = 0.811 + 0.006x | 0.9079 ** |
CZ1 | y = −19.646 + 0.065x | 0.9105 ** |
CZ2 | y = −16.243 + 0.048x | 0.8916 ** |
CZ3 | y = −12.414 + 0.037x | 0.8817 ** |
Treatment | Adsorbed N (µg g−1) qe | ||||
---|---|---|---|---|---|
500 | 1000 | 2000 | 3000 | 4000 | |
Added N (µg) | |||||
Soil | 112.39 E c (±16.18) | 276.15 D d (±16.18) | 491.59 C d (±8.09) | 833.12 B d (±21.40) | 1291.40 A d (±14.01) |
CZ | 415.96 E a (±16.18) | 775.86 D a (±16.18) | 1561.04 C a (±28.02) | 2285.51 B a (±21.40) | 2986.63 A a (±14.01) |
CZ1 | 252.48 E b (±8.09) | 406.90 D c (±14.01) | 855.84 C bc (±16.18) | 1127.32 B c (±16.18) | 1263.37 A d (±14.01) |
CZ2 | 247.85 E b (±21.40) | 481.66 D b (±8.09) | 837.20 C c (±8.09) | 1136.70 B c (±8.09) | 1482.90 A c (±16.18) |
CZ3 | 261.88 E b (±8.09) | 448.99 D b (±14.01) | 897.93 C b (±8.09) | 1388.90 B b (±16.18) | 1679.06 A b (±8.09) |
Treatment | Adsorbed Phosphorus (µg g−1) qe | ||||
---|---|---|---|---|---|
625 | 1250 | 2500 | 3750 | 5000 | |
Added P (µg) | |||||
Soil | 416.31 C a (±15.79) | 562.00 B a (±16.81) | 675.52 B a (±14.18) | 798.68 A a (±35.78) | 833.56 A a (±77.75) |
CZ | 112.40 B c (±11.86) | 137.75 B c (±35.86) | 321.61 A b (±27.96) | 379.42 A b (±65.85) | 436.19 A b (±93.08) |
CZ1 | 394.00 D ab (±3.15) | 521.22 C ab (±19.42) | 641.66 B a (±18.47) | 761.19 A a (±62.56) | 814.32 A a (±58.94) |
CZ2 | 388.63 D b (±3.79) | 518.14 C ab (±22.47) | 652.06 B a (±22.49) | 703.63 AB a (±24.56) | 753.10 A a (±18.84) |
CZ3 | 376.92 D b (±9.03) | 490.11 C b (±17.54) | 609.10 B a (±24.83) | 721.60 A a (±18.51) | 737.23 A a (±26.90) |
Treatment | Adsorbed Potassium (µg g−1) qe | ||||
---|---|---|---|---|---|
500 | 1000 | 2000 | 3000 | 4000 | |
Added K (µg) | |||||
Soil | 85.53 E e (±3.06) | 181.20 D e (±12.29) | 947.20 A e (±3.00) | 350.53 C e (±13.32) | 411.20 B e (±20.88) |
CZ | 483.30 E a (±1.00) | 964.63 D a (±0.76) | 1945.97 C a (±1.76) | 2826.63 B a (±2.52) | 3740.30 A a (±1.73) |
CZ1 | 346.00 E d (±3.00) | 625.00 D d (±8.89) | 1454.67 A d (±3.79) | 1242.33 C d (±11.02) | 1408.33 B d (±13.32) |
CZ2 | 404.53 E c (±1.53) | 762.53 D c (±3.79) | 1661.20 C c (±1.73) | 1694.53 B c (±3.06) | 2095.87 A c (±15.28) |
CZ3 | 431.50 E b (±1.00) | 824.17 D b (±1.53) | 1761.83 C b (±3.79) | 2015.50 B b (±2.59) | 2532.17 A b (±7.57) |
Treatment | Regression Equation | R2 Value |
---|---|---|
------------------------------------------------------------- N -------------------------------------------------- | ||
Soil | y = -83.035 + 0.326x | 0.9746 ** |
CZ | y = 53.933 + 0.739x | 0.9994 ** |
CZ1 | y = 146.621 + 0.302x | 0.9507 ** |
CZ2 | y = 112.365 + 0.345x | 0.9954 ** |
CZ3 | y = 54.958 + 0.419x | 0.9915 ** |
------------------------------------------------------------- P -------------------------------------------------- | ||
Soil | y = 409.661 + 0.093x | 0.9154 ** |
CZ | y = 70.878 + 0.079x | 0.9219 ** |
CZ1 | y = 379.546 + 0.094x | 0.9397 ** |
CZ2 | y = 396.420 + 0.079x | 0.8676 ** |
CZ3 | y = 370.058 + 0.083x | 0.8987 ** |
------------------------------------------------------------ K -------------------------------------------------- | ||
Soil | y = 224.575 + 0.081x | 0.1726 ns |
CZ | y = 40.336 + 0.929x | 0.9994 ** |
CZ1 | y = 398.747 + 0.294x | 0.6096 ns |
CZ2 | y = 336.429 + 0.470x | 0.8704 * |
CZ3 | y = 270.473 + 0.592x | 0.9438 ** |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
--------------------------------------------Langmuir−1--------------------------------------------------- | |||
Soil | y = 0.101 − 0.0002x | 0.7476 * | 2.71 × 10−3 |
CZ | y = 0.016 − 0.00001x | −0.0357 ns | 1.82 × 10−4 |
CZ1 | y = 0.062 − 0.00003x | −0.0035 ns | 2.45 × 10−3 |
CZ2 | y = 0.054 − 0.00002x | −0.0349 ns | 1.39 × 10−3 |
CZ3 | y = 0.052 − 0.00005x | 0.5247 ns | 7.89 × 10−4 |
--------------------------------------------Langmuir−2--------------------------------------------------- | |||
Soil | y = –0.00023 + 0.111x | 0.9720 ** | 4.17 × 10−5 |
CZ | y = –0.00002 + 0.017x | 0.9980 ** | 3.90 × 10−5 |
CZ1 | y = –0.00009 + 0.069x | 0.9903 ** | 2.55 × 10−5 |
CZ2 | y = –0.00007 + 0.060x | 0.9782 ** | 2.66 × 10−5 |
CZ3 | y = –0.00007 + 0.055x | 0.9980 ** | 6.75 × 10−6 |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
-------------------------------------------------Langmuir−4----------------------------------------------- | |||
Soil | y = 10.154 + 0.0015x | 0.8848 * | 0.273 |
CZ | y = 62.131 + 0.0008x | −0.0013 ns | 0.761 |
CZ1 | y = 16.109 + 0.0006x | 0.0704 ns | 0.696 |
CZ2 | y = 18.565 + 0.0004x | −0.0224 ns | 0.457 |
CZ3 | y = 19.107 + 0.0009x | 0.5794 ns | 0.291 |
-------------------------------------------------Freundlich------------------------------------------------ | |||
Soil | y = 0.414 + 1.337x | 0.9932 ** | 9.45 × 10−4 |
CZ | y = 1.734 + 1.048x | 0.9953 ** | 5.14 × 10−4 |
CZ1 | y = 1.019 + 1.109x | 0.9832 ** | 1.77 × 10−3 |
CZ2 | y = 1.141 + 1.074x | 0.9896 ** | 1.22 × 10−3 |
CZ3 | y = 1.072 + 1.131x | 0.9957 ** | 4.54 × 10−4 |
---------------------------------------------------Temkin-------------------------------------------------- | |||
Soil | y = −11411 + 2820.63x | 0.8989 ** | 870.84 |
CZ | y = −7985 + 3071.78x | 0.9302 ** | 1356.40 |
CZ1 | y = −9620 + 2569.88x | 0.9665 ** | 393.00 |
CZ2 | y = −9153 + 2530.55x | 0.9508 ** | 330.51 |
CZ3 | y = −9765 + 2723.95x | 0.9320 ** | 951.02 |
--------------------------------------------Langmuir−3--------------------------------------------------- | |||
Soil | y = −5825.393 + 596.686x | 0.8848 * | 5726 |
CZ | y = −16184.00 + 305.264x | −0.0013 ns | 5224 |
CZ1 | y = −5783.607 + 483.720x | 0.0704 ns | 3549 |
CZ2 | y = −7957.093 + 549.928x | −0.0224 ns | 3586 |
CZ3 | y = −13020.00 + 731.534x | 0.5794 ns | 1418 |
Treatment | Freundlich | |
---|---|---|
KF (µg g−1) | ||
Soil | 2.594 | 1.337 |
CZ | 54.200 | 1.048 |
CZ1 | 10.447 | 1.109 |
CZ2 | 13.836 | 1.074 |
CZ3 | 11.803 | 1.131 |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
---------------------------------------------------Langmuir−1------------------------------------------- | |||
Soil | y = 0.021 + 0.0001x | 0.8371 * | 4.30 × 10−3 |
CZ | y = 0.058 + 0.00003x | 0.5481 ns | 4.51 × 10−4 |
CZ1 | y = 0.023 + 0.0001x | 0.8315 * | 3.90 × 10−3 |
CZ2 | y = 0.023 + 0.0001x | 0.8553 * | 3.46 × 10−3 |
CZ3 | y = 0.025 + 0.0001x | 0.8347 * | 3.64 × 10−3 |
---------------------------------------------------Langmuir−2------------------------------------------- | |||
Soil | y = 0.0002 + 0.013x | 0.9362 ** | 5.63 × 10−5 |
CZ | y = 0.0001 + 0.054x | 0.9939 ** | 7.49 × 10−6 |
CZ1 | y = 0.0002 + 0.015x | 0.9410 ** | 5.36 × 10−5 |
CZ2 | y = 0.0002 + 0.016x | 0.9467 ** | 4.81 × 10−5 |
CZ3 | y = 0.0002 + 0.017x | 0.9447 ** | 5.09 × 10−5 |
---------------------------------------------------Langmuir−3------------------------------------------- | |||
Soil | y = 5948.693 − 87.142x | 0.5825 ns | 1685 |
CZ1 | y = 6219.856 − 103.925x | 0.5878 ns | 1729 |
CZ2 | y = 6257.001 − 108.028x | 0.6224 ns | 1668 |
CZ3 | y = 6364.248 − 116.858x | 0.5996 ns | 1750 |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
---------------------------------------------------Langmuir−4------------------------------------------- | |||
Soil | y = 56.484 − 0.008x | 0.5825 ns | 14.057 |
CZ | y = 17.418 − 0.0005x | 0.4944 ns | 0.131 |
CZ1 | y = 50.176 − 0.007x | 0.5878 ns | 10.155 |
CZ2 | y = 49.458 − 0.007x | 0.6224 ns | 9.032 |
CZ3 | y = 46.207 − 0.006x | 0.5996 ns | 7.974 |
----------------------------------------------------Freundlich------------------------------------------- | |||
Soil | y = 2.289 + 0.574x | 0.9868 ** | 1.07 × 10−3 |
CZ | y = 1.360 + 0.927x | 0.9975 ** | 2.97 × 10−4 |
CZ1 | y = 2.221 + 0.600x | 0.9882 ** | 9.97 × 10−4 |
CZ2 | y = 2.216 + 0.600x | 0.9914 ** | 7.18 × 10−4 |
CZ3 | y = 2.176 + 0.615x | 0.9894 ** | 9.09 × 10−4 |
-----------------------------------------------------Temkin---------------------------------------------- | |||
Soil | y = −3779.082 + 1527.953x | 0.8630 * | 853 |
CZ | y = −7605.247 + 2113.290x | 0.9059 ** | 1266 |
CZ1 | y = −4122.104 + 1583.930x | 0.8666 * | 885 |
CZ2 | y = −4112.305 + 1572.963x | 0.8777 * | 794 |
CZ3 | y = −4304.231 + 1603.415x | 0.8724 * | 871 |
Treatment | Langmuir | Freundlich | |||
---|---|---|---|---|---|
KL (µg g−1) | qm | MBC (µg g−1) | KF (µg g−1) | ||
Soil | 0.015 | 5000 | 75 | nd | nd |
CZ | 0.002 | 10,000 | 20 | nd | nd |
CZ1 | 0.013 | 5000 | 65 | nd | nd |
CZ2 | 0.013 | 5000 | 65 | nd | nd |
CZ3 | 0.012 | 5000 | 60 | nd | nd |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
--------------------------------------------Langmuir−1---------------------------------------------- | |||
Soil | y = 0.060 + 0.00006x | −0.1017 ns | 0.018 |
CZ | y = 0.004 − 0.000001x | −0.3330 ns | 1.06 × 10−3 |
CZ1 | y = 0.017 + 0.0001x | 0.8537 * | 3.34 × 10−3 |
CZ2 | y = 0.011 + 0.0001x | 0.8681 * | 2.28 × 10−3 |
CZ3 | y = 0.008 + 0.0001x | 0.8479 * | 1.84 × 10−3 |
--------------------------------------------Langmuir−2---------------------------------------------- | |||
Soil | y = −0.00008 + 0.078x | 0.9072 ** | 2.44 × 10−4 |
CZ | y = −0.00011 + 0.005x | 0.8190 * | 2.68 × 10−4 |
CZ1 | y = 0.00008 + 0.020x | 0.9533 ** | 6.57 × 10−5 |
CZ2 | y = 0.00007 + 0.013x | 0.9469 ** | 7.35 × 10−5 |
CZ3 | y = 0.00005 + 0.010x | 0.9349 ** | 8.74 × 10−5 |
--------------------------------------------Langmuir−3---------------------------------------------- | |||
Soil | y = 2765.355 − 4.025x | −0.3332 ns | 5328 |
CZ | y = 2851.258 + 3.109x | −0.3183 ns | 6845 |
CZ1 | y = 6361.361 − 104.068x | 0.2767 ns | 928 |
CZ2 | y = 6205.703 − 65.332x | 0.3004 ns | 4020 |
CZ3 | y = 6019.559 − 44.594x | 0.1712 ns | 4119 |
Treatment | Regression Equation | R2 | χ2 |
---|---|---|---|
------------------------------------------------Langmuir−4------------------------------------------------- | |||
Soil | y = 16.050 − 0.00002x | −0.3332 ns | 3.687 |
CZ | y = 261.133 + 0.004x | −0.3183 ns | 105.637 |
CZ1 | y = 46.108 − 0.004x | 0.2767 ns | 9.595 |
CZ2 | y = 71.396 − 0.007x | 0.3004 ns | 17.375 |
CZ3 | y = 92.676 − 0.008x | 0.1712 ns | 28.994 |
------------------------------------------------Freundlich--------------------------------------------------- | |||
Soil | y = 1.362 + 0.911x | 0.7972 * | 0.025 |
CZ | y = 2.436 + 1.028x | 0.8367 * | 0.020 |
CZ1 | y = 2.171 + 0.664x | 0.8455 * | 0.015 |
CZ2 | y = 2.349 + 0.643x | 0.8360 * | 0.017 |
CZ3 | y = 2.423 + 0.657x | 0.8291 * | 0.018 |
------------------------------------------------Temkin------------------------------------------------------- | |||
Soil | y = −6074.48 + 1752.61x | 0.8527 * | 513.40 |
CZ | y = −4445.60 + 3557.64x | 0.9573 * | 293.35 |
CZ1 | y = −4042.13 + 1668.18x | 0.9085 * | 354.72 |
CZ2 | y = −3630.82 + 1799.48x | 0.9101 * | 399.18 |
CZ3 | y = −3522.93 + 1953.97x | 0.9130 * | 441.91 |
Treatment | Langmuir | Freundlich | |||
---|---|---|---|---|---|
KL (µg g−1) | qm | MBC (µg g−1) | KF (µg g−1) | ||
Soil | nd | nd | nd | 23.01 | 0.911 |
CZ | nd | nd | nd | 272.90 | 1.028 |
CZ1 | 0.0040 | 12,500 | 50.00 | nd | nd |
CZ2 | 0.0538 | 14,286 | 768.59 | nd | nd |
CZ3 | 0.0500 | 20,000 | 1000.00 | nd | nd |
Treatment | Regression Equation | R2 Value |
---|---|---|
------------------------------------------------------------------- N ----------------------------------------- | ||
Soil | y = 9.576 + 0.0034x | 0.9758 ** |
CZ | y = 4.514 + 0.0276x | 0.9995 ** |
CZ1 | y = 13.725 + 0.0070x | 0.9781 ** |
CZ2 | y = 16.388 + 0.0093x | 0.9888 ** |
CZ3 | y = 17.402 + 0.0122x | 0.9621 ** |
------------------------------------------------------------------- P ------------------------------------------ | ||
Soil | y = 0.217 + 0.0037x | 0.9678 ** |
CZ | y = 0.964 + 0.0043x | 0.9855 ** |
CZ1 | y = −0.400 + 0.0041x | 0.9994 ** |
CZ2 | y = −0.069 + 0.0036x | 0.9987 ** |
CZ3 | y = −0.187 + 0.0038x | 0.9964 ** |
------------------------------------------------------------------- K ----------------------------------------- | ||
Soil | y = 4.100 + 0.0045x | 0.9559 ** |
CZ | y = 2.457 + 0.0014x | 0.9333 ** |
CZ1 | y = 3.691 + 0.0043x | 0.9719 ** |
CZ2 | y = 2.633 + 0.0039x | 0.9536 ** |
CZ3 | y = 2.943 + 0.0031x | 0.9506 ** |
Treatment | Initial pH | pH Buffering Capacity (mmol H+ kg−1 pH−1 Sample) |
---|---|---|
Soil | 4.52 (±0.02) | 17.86 |
CZ | 7.87 (±0.03) | 27.03 |
CZ1 | 4.80 (±0.04) | 18.18 |
CZ2 | 4.96 (±0.04) | 18.52 |
CZ3 | 5.14 (±0.02) | 18.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palanivell, P.; Ahmed, O.H.; Omar, L.; Abdul Majid, N.M. Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite. Agronomy 2021, 11, 379. https://doi.org/10.3390/agronomy11020379
Palanivell P, Ahmed OH, Omar L, Abdul Majid NM. Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite. Agronomy. 2021; 11(2):379. https://doi.org/10.3390/agronomy11020379
Chicago/Turabian StylePalanivell, Perumal, Osumanu Haruna Ahmed, Latifah Omar, and Nik Muhamad Abdul Majid. 2021. "Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite" Agronomy 11, no. 2: 379. https://doi.org/10.3390/agronomy11020379
APA StylePalanivell, P., Ahmed, O. H., Omar, L., & Abdul Majid, N. M. (2021). Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite. Agronomy, 11(2), 379. https://doi.org/10.3390/agronomy11020379