The Impact of Carbon Dioxide Concentrations and Low to Adequate Photosynthetic Photon Flux Density on Growth, Physiology and Nutrient Use Efficiency of Juvenile Cacao Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cacao Genotypes
2.2. Plants and Growth Medium
2.3. CO2 and PPFD Treatments
2.4. Determination of Plant Physiological Parameters
2.5. Determination of Plant Growth Parameters
2.6. Determination of Nutrient Uptake Parameters
2.7. Statistical Analysis
3. Results and Discussion
3.1. Growth Traits
3.2. Physiological and Water Use Efficiency Traits
3.3. Nutrient Use Efficiency Traits
3.3.1. Nutrient Concentrations and Uptake
3.3.2. Nutrient Influx (IN) and Transport (TR)
3.3.3. Nutrient Use Efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galyuon, I.K.A.; McDavid, C.R.; Lopez, F.B.; Spence, J.A. The effect of irradiance level on cocoa (Theobroma cacao L): I. Growth and leaf adaptations. Trop. Agric. (Trinidad) 1996, 73, 23–28. [Google Scholar]
- Serrano, P.; Biehl, B. The effect of light luminous stress on the cocoa plant: Fluorometric measurements under experimental (laboratory) conditions and in the field. In Proceedings of the 12th International Cocoa Research Conference, Salvador, Bahia, Brazil, 17–23 November 1996; pp. 581–588. [Google Scholar]
- Mielke, M.S.; De Almeida, A.-A.F.; Gomes, F.P. Photosynthetic traits of five neotropical rainforest tree species: Interactions between light response curves and leaf-to-air vapour pressure deficit. Braz. Arch. Biol. Technol. 2005, 48, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Daymond, A.J.; Tricker, P.J.; Hadley, P. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biol. Plant. 2011, 55, 99–104. [Google Scholar] [CrossRef]
- Cunningham, R.K.; Burridge, J.C. The Growth of Cacao (Theobroma cacao) With and Without Shade: With one Figure in the Text. Ann. Bot. 1960, 24, 458–462. [Google Scholar] [CrossRef]
- Beer, J.; Muschler, R.; Kass, D.; Somarriba, E. Shade management in coffee and cacao plantations. Agrofor. Syst. 1997, 38, 139–164. [Google Scholar] [CrossRef]
- Zuidema, P.A.; Leffelaar, P.A.; Gerritsma, W.; Mommer, L.; Anten, N.P. A physiological production model for cocoa (Theobroma cacao): Model presentation, validation and application. Agric. Syst. 2005, 84, 195–225. [Google Scholar] [CrossRef] [Green Version]
- Gattward, J.N.; Almeida, A.-A.F. Cacao tree responses to variation in water availability. In Cocoa: Cultivation, Research and Innovation; Souza Júnior, J.O., Ed.; EDITUS Pub.: Ilhéus, Brazil, 2018; pp. 59–84. [Google Scholar]
- De Almeida, A.-A.F.; Valle, R.R. Ecophysiology of the cacao tree. Braz. J. Plant Physiol. 2007, 19, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Ahenkorah, Y.; Akrofi, G.S.; Adri, A.K. The end of the first cocoa shade and manurial experiment at the Cocoa Research Institute of Ghana. J. Hortic. Sci. 1974, 49, 43–51. [Google Scholar] [CrossRef]
- Willson, K. Coffee, Cocoa and Tea; CABI Publishing: Wallingford, UK, 1999. [Google Scholar]
- Wood, G.A.R.; Lass, R.A. Cocoa, 4th ed.; Blackwell Science: Oxford, UK, 2001. [Google Scholar]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef] [Green Version]
- Alvim, P.; de Cacao, T. Ecophysiology of Tropical Crops; de Alvim, P.T., Kozlowski, T.T., Eds.; Academy Press: New York, NY, USA, 1977; pp. 279–313. [Google Scholar] [CrossRef]
- Lobão, D.E.; Setenta, W.C.; de Lobão, E.S.P.; Curvelo, K.; Valle, R.R. Cacao cabruca: Sistema agrossilvicultural tropical. In Ciencia, Tecnologia e Manejo do Cacaueiro; Valle, R.R., Ed.; Grafica e Editoria Vital Ltd.: Ilheus, Brazil, 2007; pp. 290–323. [Google Scholar]
- Rice, R.A.; Greenberg, R. Cacao Cultivation and the Conservation of Biological Diversity. Ambio 2000, 29, 167–173. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Bhagwat, S.A.; Buchori, D.; Faust, H.; Hertel, D.; Hölscher, D.; Juhrbandt, J.; Kessler, M.; Perfecto, I.; et al. Multifunctional shade-tree management in tropical agroforestry landscapes—A review. J. Appl. Ecol. 2011, 48, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Sambuichi, R.H.R.; Vidal, D.B.; Piasentin, F.B.; Jardim, J.G.; Viana, T.G.; Menezes, A.A.; Mello, D.L.N.; Ahnert, D.; Baligar, V.C. Cabruca agroforests in southern Bahia, Brazil: Tree component, management practices and tree species conservation. Biodivers. Conserv. 2012, 21, 1055–1077. [Google Scholar] [CrossRef]
- Acheampong, K.; Hadley, P.; Daymond, A.J. Photosynthetic activity and early growth of four cacao genotypes as influenced by different shade regimes under west african dry and wet season conditions. Exp. Agric. 2012, 49, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Saj, S.; Durot, C.; Sakouma, K.M.; Gamo, K.T.; Avana-Tientcheu, M.-L. Contribution of associated trees to long-term species conservation, carbon storage and sustainability: A functional analysis of tree communities in cacao plantations of Central Cameroon. Int. J. Agric. Sustain. 2017, 15, 282–302. [Google Scholar] [CrossRef]
- Jagoret, P.; Ngnogue, H.T.; Malézieux, E.; Michel, I. Trajectories of cocoa agroforests and their drivers over time: Lessons from the Cameroonian experience. Eur. J. Agron. 2018, 101, 183–192. [Google Scholar] [CrossRef]
- Nijmeijer, A.; Lauri, P.-E.; Harmand, J.-M.; Freschet, G.T.; Nieboukaho, J.-D.E.; Fogang, P.K.; Enock, S.; Saj, S. Long-term dynamics of cocoa agroforestry systems established on lands previously occupied by savannah or forests. Agric. Ecosyst. Environ. 2019, 275, 100–111. [Google Scholar] [CrossRef]
- Schroth, G.; Krauss, U.; Gasparotto, L.; Aguilar, J.A.D.; Vohland, K. Pests and diseases in agroforestry systems of the humid tropics. Agrofor. Syst. 2000, 50, 199–241. [Google Scholar] [CrossRef]
- Niether, W.; Armengot, L.; Andres, C.; Schneider, M.; Gerold, G. Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann. For. Sci. 2018, 75, 38. [Google Scholar] [CrossRef] [Green Version]
- Abdulai, I.; Jassogne, L.; Graefe, S.; Asare, R.; Van Asten, P.; Läderach, P.; Vaast, P. Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLoS ONE 2018, 13, e0195777. [Google Scholar] [CrossRef]
- Asare, R.; Markussen, B.; Asare, R.A.; Anim-Kwapong, G.; Ræbild, A. On-farm cocoa yields increase with canopy cover of shade trees in two agro-ecological zones in Ghana. Clim. Dev. 2018, 11, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Raja Harun, R.M.; Kamariah, H.I. The effects of shading regimes on the growth of cocoa Seedlings (Theobroma cacao L.). Pertanika 1983, 6, 1–5. [Google Scholar]
- Okali, D.U.U.; Owusu, J.K. Growth analysis and photosynthetic rates of cocoa (Theobroma cacao L.) seedlings in relation to varying shade and nutrient regimes. Ghana J. Agric. Sci. 1975, 8, 51–67. [Google Scholar]
- Hartemink, A.E. Nutrient Stocks, Nutrient Cycling, and Soil Changes in Cocoa Ecosystems: A Review. Adv. Agron. 2005, 86, 227–253. [Google Scholar] [CrossRef]
- Baligar, V.C.; Bunce, J.A.; Machado, R.C.R.; Elson, M.K. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings. Photosynthetica 2008, 46, 216–221. [Google Scholar] [CrossRef]
- Bastide, P.; Jimmy, I. Gas transfer measurements on young cocoa trees in field and modeling of photosynthetic activity. In Proceedings of the 14th International Cocoa Research Conference, Accra, Ghana, 13–18 October 2003; pp. 195–203. [Google Scholar]
- Hutcheon, W.V. Photosynthesis of cocoa: Photosynthesis in relation to the light and plant nutrient status. In Report Cocoa Res. Inst. Ghana, 1973–1974; 1976; pp. 186–188. [Google Scholar]
- Raja Harun, R.M.; Hardwick, K. The effects of prolonged exposure to different light intensities on the photosynthesis of cocoa leaves. In Proceedings of the 10th International Cocoa Research Conference, Santo Domingo, Dominican Republic, 17–23 May 1987; pp. 205–209. [Google Scholar]
- Miyaji, K.-I.; Da Silva, W.S.; Alvim, P.D.T. Longevity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to position within the canopy and time of emergence. New Phytol. 1997, 135, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Bunce, J.A.; Bailey, B.A.; Machado, R.C.; Pomella, A.W.V. Carbon dioxide and photosynthetic photon flux density effects on growth and mineral uptake of cacao. J. Food Agric. Environ. 2005, 3, 142–147. [Google Scholar] [CrossRef]
- Gommers, C.M.; Visser, E.J.; Onge, K.R.S.; Voesenek, L.A.; Pierik, R. Shade tolerance: When growing tall is not an option. Trends Plant Sci. 2013, 18, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, A.-S.; Fankhauser, C. Plant Strategies for Enhancing Access to Sunlight. Curr. Biol. 2017, 27, R931–R940. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; 151p. [Google Scholar]
- Amthor, J.S. Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Glob. Chang. Biol. 1995, 1, 243–274. [Google Scholar] [CrossRef]
- Galyuon, I.K.A.; McDavid, C.R.; Lopez, F.B.; Spence, J.A. The effect of irradiance level on cocoa (Theobroma cacao L): II. Gas exchange and chlorophyll fluorescence. Trop. Agric. (Trinidad) 1996, 73, 29–33. [Google Scholar]
- Miyaji, K.-I.; Da Silva, W.S.; Alvim, P.D.T. Productivity of leaves of a tropical tree, Theobroma cacao, grown under shading, in relation to leaf age and light conditions within the canopy. New Phytol. 1997, 137, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Wullschleger, S.D.; Gunderson, C.A.; Hanson, P.J.; Wilson, K.B.; Norby, R.J. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration—Interacting variables and perspectives of scale. New Phytol. 2002, 153, 485–496. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants face the Future. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.C.D.S.; Baligar, V.C.; De Almeida, A.-A.F.; Dalmolin, Â.C.; Ahnert, D. Influence of low light intensity and soil flooding on cacao physiology. Sci. Hortic. 2017, 217, 243–257. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica 2017, 56, 911–920. [Google Scholar] [CrossRef] [Green Version]
- Hebbar, K.B.; Apshara, E.; Chandran, K.P.; Prasad, P.V.V. Effect of elevated CO2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.). Int. J. Biometeorol. 2020, 64, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, R.K. Micro-nutrient deficiency in cacao in Ghana. Emp. J. Exp. Agric. 1964, 32, 42–50. [Google Scholar]
- Ahenkorah, Y. Influence of environment on growth and production of the cacao tree: Soils and nutrition. In Proceeding of the 7th International Cocoa Research Conference, Douala, Cameroon, 4–12 November 1979; pp. 167–176. [Google Scholar]
- Cabala-Rosand, P.; Santana, M.B.M.; de Santana, C.J.L. Cacao. In Detecting Mineral Nutrient Deficiencies in Tropical and Temperate Crops; Plucknett, D.L., Sprague, H.B., Eds.; Westview Tropical Agriculture Series; Westview Press: Boulder, CO, USA, 1989; pp. 409–425. [Google Scholar]
- Clark, R.B.; Baligar, V.C. Acidic and alkaline soil constraints in plant mineral nutrition. In Plant Environment Interactions II; Wilkinson, R.E., Ed.; Marcel Dekker Publ.: New York, NY, USA, 2000; pp. 133–177. [Google Scholar]
- Hartemink, A.E. Soil Fertility Decline in the Tropics: With Case Studies on Plantations; CABI Publishing: Wallingford, UK, 2003. [Google Scholar] [CrossRef]
- Yapp, J.H.H.; Hadley, P. Inter-relationships between canopy architecture, light interception, vigor and yield in cocoa: Implications for improving production efficiency. In Proceedings of the International Cocoa Conference: Challenges in the 90′s, Kuala Lumpur, Malaysia, 25–28 September 1991; Malaysian Cocoa Board: Kuala Lumpur, Malaysia, 1994; pp. 332–350. [Google Scholar]
- Motamayor, J.C.; Lachenaud, P.; Mota, J.W.D.S.E.; Loor, R.; Kuhn, D.N.; Brown, J.S.; Schnell, R.J. Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L.). PLoS ONE 2008, 3, e3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daymond, A.J.; Hadley, P.; Machado, R.C.R.; Ng, E. Canopy characteristics of contrasting clones of cacao (theobroma cacao). Exp. Agric. 2002, 38, 359–367. [Google Scholar] [CrossRef]
- Bartley, B.G.D. The Genetic Diversity of Cacao and its Utilization; CABI Publishing: Wallingford, UK, 2005. [Google Scholar]
- Turnbull, C.J.; Hadley, P. International Cocoa Germplasm Database (ICGD); CRA Ltd./ICE Futures Europe/University of Reading: Reading, UK, 2015; Available online: http://www.icgd.reading.ac.uk (accessed on 22 May 2020).
- Ahnert, D.; Eskes, A.B. Developments in cacao breeding programmes in Africa and the Americas. In Achieving Sustainable Cultivation of Cocoa; Umaharan, P., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2018; pp. 1–40. [Google Scholar] [CrossRef]
- USEPA. Method 200.7, Rev. 5.0, Trace Elements in Water, Solids, and Biosolids by Inductively Coupled Plasma-Atomic Emission Spectrometry; USEPA, Office of Science and Technology: Washington, DC, USA, 2001. [Google Scholar]
- Bremner, J.M. Nitrogen Total. In Methods of Soil Analysis, Part 3 Chemical Methods; Sparks, D.L., Ed.; SSSA: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar] [CrossRef]
- De Araújo, R.P.; De Almeida, A.-A.F.; Barroso, J.P.; De Oliveira, R.A.; Gomes, F.P.; Ahnert, D.; Baligar, V. Molecular and morphophysiological responses cocoa leaves with different concentrations of anthocyanin to variations in light levels. Sci. Hortic. 2017, 224, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Elson, M.; He, Z.L.; Li, Y.; Paiva, A.D.Q.; Ahnert, D.; Almeida, A.-A.F.; Fageria, N.K. Ambient and Elevated Carbon Dioxide on Growth, Physiological and Nutrient Uptake Parameters of Perennial Leguminous Cover Crops under Low Light Intensities. Int. J. Plant Soil Sci. 2017, 15, 1–16. [Google Scholar] [CrossRef]
- Baligar, V.C.; Elson, M.K.; He, Z.L.; Li, Y.; Paiva, A.D.Q.; Ahnert, D.; Almeida, A.-A.F. Growth, Physiological and Nutrient Uptake Traits of Crotalaria Cover Crops Influenced by Levels of Carbon Dioxide under Low Light Intensities. Int. J. Plant Soil Sci. 2018, 23, 1–14. [Google Scholar] [CrossRef]
- Hollinger, D.Y. Gas exchange and dry matter allocation responses to elevation of atmospheric CO2 concentration in seedlings of three tree species. Tree Physiol. 1987, 3, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Poorter, H. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 1993, 104, 77–97. [Google Scholar] [CrossRef]
- Bunce, J. Variation in growth stimulation by elevated carbon dioxide in seedlings of some C3 crop and weed species. Glob. Chang. Biol. 1997, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in four northern hardwood tree species. Tree Physiol. 2006, 26, 1589–1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellsworth, D.S.; Thomas, R.; Crous, K.Y.; Palmroth, S.; Ward, E.; Maier, C.; DeLucia, E.; Oren, R. Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. Glob. Chang. Biol. 2011, 18, 223–242. [Google Scholar] [CrossRef]
- Cure, J.D.; Acock, B. Crop responses to carbon dioxide doubling: A literature survey. Agric. For. Meteorol. 1986, 38, 127–145. [Google Scholar] [CrossRef]
- Kimball, B.; Kobayashi, K.; Bindi, M. Responses of Agricultural Crops to Free-Air CO2 Enrichment. Adv. Agron. 2002, 77, 293–368. [Google Scholar] [CrossRef]
- Yan, W.; Zhong, Y.; Shangguan, Z. A meta-analysis of leaf gas exchange and water status responses to drought. Sci. Rep. 2016, 6, 20917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prior, S.A.; Runion, G.B.; Marble, S.C.; Rogers, H.H.; Gilliam, C.H.; Torbert, H.A. A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture. HortScience 2011, 46, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Andres, C.; Trujillo, G.; Alcon, F.; Amurrios, P.; Perez, E.; Weibel, F.; Milz, J. Cocoa and total system yields of organic and conventional agroforestry vs. monoculture systems in a long-term field trial in Bolivia. Exp. Agric. 2016, 53, 351–374. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, E.A.; Long, S.P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2004, 165, 351–372. [Google Scholar] [CrossRef]
- Eamus, D. The interaction of rising CO2 and temperatures with water use efficiency. Plant Cell Environ. 1991, 14, 843–852. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.-M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop. J. 2015, 3, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Laderach, P.; Eitzinger, A.; Martinez, A.; Castro, N. Predicting the Impact of Climate Change on the Cocoa-Growing Regions in Ghana and Cote d’Ivoire; CIAT: Managua, Nicaragua, 2011; Available online: http://www.eenews.net/assets/2011/10/03/document_cw_01.pdf (accessed on 6 November 2020).
- Schroth, G.; Läderach, P.; Martinez-Valle, A.I.; Bunn, C.; Jassogne, L. Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Sci. Total. Environ. 2016, 556, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gateau-Rey, L.; Tanner, E.V.J.; Rapidel, B.; Marelli, J.-P.; Royaert, S. Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 2018, 13, e0200454. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, J. Cacao. In Plant Analysis as a Guide to the Nutrient Requirements of Temperate and Tropical Crops; Martin-Prevel, P., Gagnard, J., Gautier, P., Jones, J.B., Jr., Holmes, M.R.J., Eds.; Lavoisier: New York, NY, USA, 1984; pp. 432–439. [Google Scholar]
- Bhargava, B.S.; Raghupathi, H. Analysis of plant materials for macro and micronutrients. In Methods of Analysis of Soils, Plants, Waters and Fertilisers; Tandon, H.L.S., Ed.; FDCO: New Delhi, India, 1993; pp. 49–82. [Google Scholar]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effects of Elevated CO2 on Nutritional Quality of Vegetables: A Review. Front. Plant Sci. 2018, 9, 924. [Google Scholar] [CrossRef]
- Schaffer, B.; Whiley, A.W.; Searle, C.; Nissen, R.J. Leaf Gas Exchange, Dry Matter Partitioning, and Mineral Element Concentrations in Mango as Influenced by Elevated Atmospheric Carbon Dioxide and Root Restriction. J. Am. Soc. Hortic. Sci. 1997, 122, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Baligar, V.C.; Fageria, N.K.; Paiva, A.Q.; Silveira, A.; Pomella, A.W.V.; Machado, R.C.R. Light Intensity Effects on Growth and Micronutrient Uptake by Tropical Legume Cover Crops. J. Plant Nutr. 2006, 29, 1959–1974. [Google Scholar] [CrossRef]
- Gerloff, G.C.; Gabelman, W.H. Genetic basis of inorganic plant nutrition. In Inorganic Plant Nutrition; Lauchli, A., Bielski, R.L., Eds.; Springer: New York, NY, USA, 1983; pp. 453–480. [Google Scholar]
- Vose, P.B. Effects of genetic factors on nutritional requirements of plants. In Crop Breeding: A Contemporary Basis; Vose, P.B., Blixt, S.G., Eds.; Pergamon Press: Oxford, UK, 1984; pp. 67–114. [Google Scholar] [CrossRef]
- Baligar, V.C.; Duncan, R.R. (Eds.) Crops as Enhancers of Nutrient Use; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient Use Efficiency in Plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | Total Dry Weight (g/plant) | Root Dry Weight (g/plant) | Root/ Shoot Ratio | Stem Height (cm/plant) | Total Root Length (cm/plant) | Leaf Area (cm2/plant) | Specific Leaf Area (cm2 g−1) | RGR (g g−1 d−1) (× 10−2) | NAR (g cm−2 d−1) (× 10−4) |
---|---|---|---|---|---|---|---|---|---|---|
Catongo | ||||||||||
400 | 100 | 7.59 | 0.91 | 0.136 | 34.33 | 3594 | 1712 | 316.8 | 2.899 | 1.287 |
200 | 7.87 | 1.11 | 0.167 | 32.33 | 3642 | 1391 | 266.3 | 2.930 | 1.662 | |
400 | 6.50 | 0.83 | 0.146 | 29.17 | 3342 | 1087 | 243.9 | 2.730 | 1.635 | |
700 | 100 | 12.64 | 2.02 | 0.190 | 41.00 | 4265 | 2063 | 268.7 | 3.696 | 2.290 |
200 | 15.44 | 2.61 | 0.204 | 45.17 | 4787 | 2277 | 246.8 | 3.884 | 2.808 | |
400 | 14.16 | 2.17 | 0.180 | 39.33 | 4566 | 1616 | 207.6 | 3.770 | 3.271 | |
Coca 3370 | ||||||||||
400 | 100 | 7.28 | 1.06 | 0.174 | 30.50 | 2661 | 1499 | 300.1 | 2.884 | 1.414 |
200 | 10.89 | 1.61 | 0.172 | 34.50 | 4257 | 1926 | 264.8 | 3.336 | 1.886 | |
400 | 13.34 | 1.80 | 0.155 | 35.33 | 4104 | 2225 | 245.1 | 3.558 | 2.156 | |
700 | 100 | 12.78 | 1.70 | 0.154 | 38.00 | 4196 | 2396 | 279.9 | 3.318 | 1.827 |
200 | 19.87 | 2.31 | 0.129 | 48.67 | 5045 | 3454 | 267.9 | 3.758 | 2.167 | |
400 | 21.07 | 2.33 | 0.116 | 44.00 | 4938 | 3479 | 244.9 | 3.829 | 2.296 | |
CCN 51 | ||||||||||
400 | 100 | 5.55 | 0.72 | 0.140 | 23.83 | 2072 | 1278 | 344.1 | 2.436 | 1.077 |
200 | 8.04 | 0.94 | 0.130 | 30.50 | 2735 | 1722 | 301.5 | 2.977 | 1.405 | |
400 | 9.32 | 1.19 | 0.137 | 32.00 | 2752 | 1697 | 280.0 | 3.116 | 1.731 | |
700 | 100 | 13.82 | 1.96 | 0.164 | 34.17 | 4205 | 2705 | 300.7 | 3.530 | 1.797 |
200 | 16.68 | 2.13 | 0.149 | 42.33 | 4552 | 3092 | 288.8 | 3.721 | 1.995 | |
400 | 23.60 | 2.46 | 0.118 | 49.33 | 5925 | 3578 | 231.6 | 4.109 | 2.741 | |
Amaz 15 | ||||||||||
400 | 100 | 8.45 | 1.01 | 0.135 | 32.83 | 3006 | 1706 | 284.3 | 3.105 | 1.542 |
200 | 11.66 | 1.53 | 0.149 | 34.00 | 4214 | 2212 | 271.3 | 3.457 | 1.911 | |
400 | 10.50 | 1.21 | 0.128 | 30.33 | 3400 | 1765 | 248.8 | 3.215 | 1.878 | |
700 | 100 | 19.90 | 2.78 | 0.163 | 48.17 | 5682 | 3270 | 262.3 | 4.043 | 2.473 |
200 | 23.84 | 2.97 | 0.141 | 54.50 | 5848 | 3616 | 241.9 | 4.229 | 2.780 | |
400 | 27.58 | 3.99 | 0.168 | 53.67 | 6436 | 3120 | 192.9 | 4.401 | 3.896 | |
LCT EEN 37A | ||||||||||
400 | 100 | 3.51 | 0.42 | 0.145 | 15.50 | 1548 | 740 | 268.4 | 2.101 | 1.022l |
200 | 4.99 | 0.51 | 0.113 | 21.50 | 1875 | 841 | 231.2 | 2.561 | 1.544 | |
400 | 4.25 | 0.43 | 0.127 | 20.33 | 1833 | 708 | 215.1 | 2.287 | 1.426 | |
700 | 100 | 15.64 | 1.73 | 0.124 | 39.50 | 4807 | 3155 | 288.4 | 3.909 | 1.978 |
200 | 16.32 | 2.07 | 0.142 | 39.83 | 4627 | 2481 | 237.4 | 3.923 | 2.594 | |
400 | 18.81 | 2.09 | 0.125 | 44.00 | 5576 | 2731 | 210.9 | 4.099 | 2.858 | |
Na 33 | ||||||||||
400 | 100 | 7.34 | 0.86 | 0.134 | 34.83 | 3008 | 1284 | 256.6 | 2.848 | 1.654 |
200 | 9.20 | 0.95 | 0.113 | 34.33 | 3541 | 1644 | 251.3 | 3.082 | 1.739 | |
400 | 5.77 | 0.63 | 0.114 | 27.17 | 2522 | 925 | 236.3 | 2.515 | 1.575 | |
700 | 100 | 8.95 | 0.85 | 0.103 | 36.00 | 2575 | 1666 | 264.6 | 3.335 | 1.793 |
200 | 21.51 | 2.80 | 0.144 | 53.33 | 5724 | 3009 | 225.9 | 4.292 | 3.058 | |
400 | 24.04 | 2.61 | 0.122 | 54.00 | 6375 | 2852 | 186.6 | 4.431 | 3.753 | |
SCA 6 | ||||||||||
400 | 100 | 6.81 | 0.77 | 0.126 | 28.67 | 2317 | 1418 | 293.2 | 3.207 | 1.560 |
200 | 6.77 | 0.80 | 0.134 | 27.17 | 2457 | 1235 | 257.9 | 3.189 | 1.744 | |
400 | 9.46 | 1.13 | 0.140 | 29.00 | 3327 | 1412 | 221.4 | 3.564 | 2.391 | |
700 | 100 | 14.64 | 1.97 | 0.156 | 44.50 | 4263 | 2297 | 258.4 | 4.085 | 2.624 |
200 | 18.22 | 2.30 | 0.146 | 46.33 | 4169 | 2696 | 237.0 | 4.322 | 2.918 | |
400 | 22.68 | 2.93 | 0.147 | 51.00 | 5899 | 3194 | 222.1 | 4.549 | 3.337 | |
Significance | ||||||||||
Genotype (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
[CO2] (C) | ** | ** | NS | ** | ** | ** | ** | ** | ** | |
PPFD (P) | ** | ** | NS | ** | ** | * | ** | ** | ** |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | SPAD Index | Photosynthesis (µmol CO2 m−2 s−1) | Stomatal Conductance (mmol H2O m−2 s−1) | Internal CO2 (µmol mol−1) | Transpiration (mmol H2O m−2 s−1) | WUETotal (g shoot/g trans.) (×10−3) | WUEInst ¥ (µmol CO2/mmol H2O) | WUEIntr ¥ (µmol CO2/mmol H2O) |
---|---|---|---|---|---|---|---|---|---|
Catongo | |||||||||
400 | 100 | 42.3 | 2.64 | 20.66 | 157.6 | 0.291 | 8.34 | 9.17 | 0.132 |
200 | 42.8 | 1.75 | 15.36 | 158.3 | 0.213 | 6.22 | 8.71 | 0.125 | |
400 | 42.4 | 3.02 | 25.02 | 222.8 | 0.341 | 23.80 | 8.90 | 0.126 | |
700 | 100 | 37.7 | 3.15 | 10.26 | 122.3 | 0.143 | 18.42 | 22.03 | 0.328 |
200 | 42.1 | 4.34 | 16.39 | 192.2 | 0.218 | 10.60 | 20.23 | 0.269 | |
400 | 42.2 | 5.82 | 22.57 | 205.5 | 0.291 | 27.75 | 19.99 | 0.258 | |
Coca 3370 | |||||||||
400 | 100 | 43.8 | 3.21 | 20.19 | 106.4 | 0.284 | 9.53 | 11.51 | 0.163 |
200 | 40.2 | 2.17 | 15.88 | 128.3 | 0.218 | 5.51 | 9.85 | 0.140 | |
400 | 40.2 | 3.27 | 24.96 | 127.1 | 0.321 | 7.34 | 10.02 | 0.133 | |
700 | 100 | 41.9 | 2.63 | 12.07 | 283.1 | 0.170 | 19.77 | 16.18 | 0.233 |
200 | 46.4 | 3.83 | 14.61 | 190.1 | 0.207 | 99.22 | 19.10 | 0.267 | |
400 | 40.0 | 3.46 | 12.66 | 190.8 | 0.175 | 30.54 | 19.87 | 0.274 | |
CCN 51 | |||||||||
400 | 100 | 42.1 | 2.19 | 18.02 | 236.6 | 0.267 | 12.29 | 9.47 | 0.146 |
200 | 42.9 | 1.85 | 12.58 | 132.9 | 0.179 | 5.26 | 9.64 | 0.139 | |
400 | 39.4 | 1.80 | 20.13 | 351.2 | 0.285 | 5.91 | 5.96 | 0.085 | |
700 | 100 | 42.2 | 2.52 | 8.47 | 189.3 | 0.129 | 15.61 | 19.58 | 0.296 |
200 | 45.9 | 4.52 | 14.21 | 135.7 | 0.192 | 18.26 | 22.71 | 0.313 | |
400 | 42.3 | 3.99 | 14.88 | 182.0 | 0.198 | 38.23 | 20.17 | 0.268 | |
Amaz 15 | |||||||||
400 | 100 | 44.4 | 3.14 | 22.26 | 126.6 | 0.299 | 10.87 | 10.78 | 0.149 |
200 | 40.3 | 2.90 | 17.77 | 81.1 | 0.238 | 6.12 | 12.22 | 0.166 | |
400 | 39.5 | 3.44 | 22.41 | 132.3 | 0.308 | 7.33 | 11.19 | 0.154 | |
700 | 100 | 40.7 | 3.74 | 12.44 | 161.5 | 0.171 | 15.20 | 21.94 | 0.306 |
200 | 43.0 | 4.31 | 14.00 | 109.7 | 0.187 | 11.49 | 23.31 | 0.325 | |
400 | 38.7 | 4.25 | 16.57 | 222.2 | 0.216 | 18.20 | 20.15 | 0.270 | |
LCT EEN 37A | |||||||||
400 | 100 | 43.5 | 3.57 | 42.11 | 323.7 | 0.552 | 5.57 | 7.76 | 0.106 |
200 | 44.1 | 1.83 | 11.71 | 127.7 | 0.173 | 15.12 | 10.48 | 0.173 | |
400 | 38.8 | 4.16 | 31.75 | 190.0 | 0.422 | 6.09 | 9.99 | 0.135 | |
700 | 100 | 43.1 | 4.14 | 13.54 | 141.8 | 0.190 | 16.67 | 21.82 | 0.305 |
200 | 43.3 | 2.78 | 11.34 | 213.3 | 0.153 | 11.49 | 17.78 | 0.242 | |
400 | 45.4 | 4.83 | 17.27 | 158.3 | 0.222 | 30.68 | 21.23 | 0.273 | |
Na 33 | |||||||||
400 | 100 | 42.1 | 1.47 | 11.58 | 133.4 | 0.166 | 14.26 | 10.30 | 0.154 |
200 | 38.6 | 2.14 | 13.86 | 109.6 | 0.196 | 5.36 | 10.79 | 0.158 | |
400 | 36.9 | 1.11 | 11.83 | 233.2 | 0.172 | 4.29 | 8.44 | 0.118 | |
700 | 100 | 36.1 | 2.03 | 7.64 | 261.1 | 0.116 | 20.66 | 15.07 | 0.234 |
200 | 42.3 | 1.94 | 7.15 | 142.5 | 0.105 | 8.90 | 20.79 | 0.310 | |
400 | 34.6 | 3.10 | 12.71 | 181.3 | 0.168 | 12.42 | 19.82 | 0.257 | |
SCA 6 | |||||||||
400 | 100 | 44.8 | 1.51 | 10.70 | 153.6 | 0.157 | 9.25 | 9.32 | 0.136 |
200 | 42.6 | 1.77 | 13.65 | 150.2 | 0.194 | 8.32 | 9.08 | 0.130 | |
400 | 43.7 | 2.92 | 26.40 | 177.2 | 0.334 | 6.07 | 8.74 | 0.113 | |
700 | 100 | 43.3 | 1.39 | 4.73 | 235.9 | 0.073 | 18.85 | 19.17 | 0.320 |
200 | 41.7 | 2.41 | 9.35 | 239.7 | 0.132 | 12.83 | 17.48 | 0.249 | |
400 | 36.2 | 2.51 | 11.72 | 246.3 | 0.158 | 29.97 | 16.22 | 0.217 | |
Significance | |||||||||
Genotype (G) | * | ** | ** | NS | ** | NS | NS | NS | |
[CO2] (C) | NS | ** | ** | NS | ** | ** | ** | ** | |
PPFD (P) | ** | * | ** | NS | ** | NS | NS | NS |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
mg g−1 | µg g−1 | ||||||||||
Catongo | |||||||||||
400 | 100 | 27.31 | 4.48 | 15.40 | 15.87 | 6.80 | 34.30 | 24.15 | 61.90 | 77.54 | 40.83 |
200 | 28.92 | 4.26 | 14.53 | 15.79 | 6.77 | 34.83 | 22.47 | 57.63 | 62.91 | 36.75 | |
400 | 31.46 | 5.04 | 15.54 | 15.36 | 6.34 | 32.68 | 24.88 | 95.58 | 55.72 | 51.21 | |
700 | 100 | 25.84 | 4.00 | 15.82 | 14.86 | 6.26 | 28.38 | 18.81 | 25.66 | 63.10 | 33.31 |
200 | 24.15 | 3.65 | 14.03 | 13.81 | 6.57 | 23.86 | 18.14 | 18.00 | 49.46 | 34.98 | |
400 | 26.97 | 3.71 | 12.99 | 12.94 | 5.57 | 24.54 | 17.11 | 19.54 | 44.68 | 36.48 | |
Coca 3370 | |||||||||||
400 | 100 | 27.00 | 3.82 | 14.70 | 14.82 | 8.04 | 30.76 | 21.11 | 56.73 | 110.06 | 58.68 |
200 | 25.46 | 4.02 | 15.02 | 15.13 | 8.35 | 33.51 | 19.90 | 54.62 | 73.60 | 40.85 | |
400 | 28.15 | 3.91 | 12.83 | 14.09 | 7.50 | 29.28 | 21.21 | 72.55 | 63.10 | 41.48 | |
700 | 100 | 26.21 | 4.15 | 12.92 | 13.95 | 7.03 | 24.20 | 17.39 | 18.73 | 67.50 | 41.66 |
200 | 25.15 | 4.45 | 13.22 | 13.71 | 7.89 | 24.32 | 18.87 | 21.72 | 61.34 | 48.28 | |
400 | 24.54 | 3.85 | 11.23 | 11.84 | 6.20 | 19.32 | 17.27 | 34.04 | 36.67 | 46.01 | |
CCN 51 | |||||||||||
400 | 100 | 28.85 | 4.33 | 13.64 | 14.35 | 6.39 | 30.29 | 23.14 | 60.94 | 74.38 | 54.68 |
200 | 27.68 | 4.47 | 14.82 | 15.64 | 7.24 | 30.77 | 22.56 | 44.73 | 66.95 | 47.11 | |
400 | 29.71 | 4.20 | 14.94 | 14.03 | 6.25 | 27.05 | 25.80 | 52.43 | 43.86 | 41.47 | |
700 | 100 | 24.94 | 4.33 | 13.93 | 16.48 | 6.80 | 24.94 | 21.98 | 21.77 | 79.65 | 76.98 |
200 | 24.69 | 3.63 | 12.80 | 13.89 | 6.53 | 20.53 | 17.58 | 26.86 | 54.54 | 50.82 | |
400 | 24.91 | 3.73 | 11.48 | 13.56 | 6.34 | 23.82 | 19.11 | 40.12 | 47.74 | 54.03 | |
Amaz 15 | |||||||||||
400 | 100 | 24.83 | 4.15 | 13.49 | 13.62 | 6.94 | 26.66 | 17.35 | 45.41 | 68.37 | 46.03 |
200 | 25.17 | 4.28 | 14.45 | 15.57 | 7.82 | 31.27 | 19.75 | 43.78 | 61.22 | 49.74 | |
400 | 25.52 | 3.69 | 11.92 | 13.70 | 6.73 | 29.14 | 19.65 | 31.74 | 47.84 | 71.18 | |
700 | 100 | 23.31 | 4.14 | 13.19 | 14.26 | 7.55 | 23.56 | 16.61 | 14.38 | 68.17 | 45.67 |
200 | 22.02 | 3.77 | 11.29 | 12.04 | 6.74 | 19.07 | 14.54 | 20.07 | 47.75 | 43.13 | |
400 | 21.73 | 3.48 | 10.22 | 11.24 | 5.98 | 19.44 | 14.73 | 15.46 | 47.13 | 40.99 | |
LCT EEN 37A | |||||||||||
400 | 100 | 26.70 | 4.57 | 17.73 | 16.84 | 6.76 | 30.61 | 24.52 | 77.09 | 74.45 | 57.56 |
200 | 30.72 | 5.13 | 16.91 | 16.16 | 7.83 | 32.85 | 41.88 | 108.84 | 59.46 | 58.52 | |
400 | 32.58 | 4.75 | 15.98 | 15.25 | 7.43 | 31.79 | 36.45 | 80.44 | 45.79 | 45.27 | |
700 | 100 | 22.39 | 4.06 | 14.27 | 13.66 | 6.41 | 22.39 | 16.83 | 30.97 | 56.90 | 47.76 |
200 | 24.37 | 3.57 | 13.58 | 13.46 | 5.79 | 20.62 | 15.62 | 36.18 | 54.53 | 48.44 | |
400 | 23.39 | 4.14 | 11.46 | 14.54 | 6.62 | 20.47 | 17.68 | 46.68 | 42.68 | 45.84 | |
Na 33 | |||||||||||
400 | 100 | 23.11 | 3.81 | 13.79 | 15.87 | 6.16 | 31.05 | 20.51 | 67.26 | 85.89 | 66.47 |
200 | 26.13 | 3.95 | 13.28 | 17.77 | 6.62 | 34.37 | 22.94 | 83.68 | 64.51 | 61.70 | |
400 | 28.70 | 3.68 | 14.51 | 14.48 | 6.08 | 34.70 | 21.31 | 87.95 | 46.13 | 60.22 | |
700 | 100 | 23.84 | 3.71 | 15.05 | 16.80 | 6.50 | 30.02 | 18.35 | 53.72 | 63.89 | 51.03 |
200 | 22.35 | 3.59 | 11.19 | 14.74 | 5.87 | 17.49 | 17.79 | 44.94 | 51.63 | 49.01 | |
400 | 20.85 | 3.58 | 10.47 | 12.87 | 5.76 | 21.79 | 17.81 | 47.56 | 39.90 | 63.92 | |
SCA 6 | |||||||||||
400 | 100 | 24.71 | 3.40 | 13.51 | 13.69 | 6.28 | 29.44 | 16.05 | 57.65 | 75.17 | 44.33 |
200 | 25.53 | 3.40 | 14.04 | 15.53 | 6.93 | 31.24 | 19.76 | 82.19 | 69.80 | 62.89 | |
400 | 28.23 | 3.65 | 13.02 | 13.91 | 6.53 | 33.44 | 23.59 | 95.41 | 62.92 | 43.49 | |
700 | 100 | 22.08 | 3.30 | 13.55 | 14.41 | 6.33 | 22.29 | 15.78 | 32.26 | 67.81 | 46.56 |
200 | 22.21 | 2.92 | 10.22 | 11.88 | 5.46 | 18.79 | 14.00 | 34.43 | 50.48 | 36.46 | |
400 | 23.31 | 3.60 | 11.44 | 13.36 | 6.19 | 23.67 | 17.57 | 50.73 | 45.28 | 55.06 | |
Significance | |||||||||||
Genotype (G) | ** | ** | ** | ** | ** | * | ** | ** | * | ** | |
[CO2] (C) | ** | ** | ** | ** | ** | ** | ** | ** | ** | NS | |
PPFD (P) | * | NS | ** | ** | * | NS | NS | NS | ** | NS |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
mg/plant | µg/plant | ||||||||||
Catongo | |||||||||||
400 | 100 | 181.9 | 29.68 | 101.9 | 105.4 | 45.18 | 229.1 | 161.1 | 417.9 | 513.7 | 273.3 |
200 | 193.7 | 28.33 | 98.1 | 106.0 | 45.69 | 235.3 | 150.1 | 380.1 | 416.4 | 252.7 | |
400 | 178.4 | 28.59 | 88.0 | 87.1 | 35.96 | 185.3 | 140.9 | 541.6 | 315.6 | 290.3 | |
700 | 100 | 273.8 | 42.21 | 167.2 | 157.5 | 66.29 | 299.2 | 198.9 | 287.3 | 664.8 | 354.4 |
200 | 305.3 | 45.46 | 169.9 | 169.9 | 81.61 | 301.8 | 222.3 | 215.9 | 608.9 | 456.2 | |
400 | 317.7 | 43.79 | 152.9 | 153.4 | 66.65 | 295.7 | 203.5 | 243.8 | 523.8 | 446.5 | |
Coca 3370 | |||||||||||
400 | 100 | 168.6 | 23.64 | 91.5 | 92.8 | 50.79 | 193.5 | 133.2 | 365.3 | 695.8 | 363.9 |
200 | 236.4 | 37.28 | 140.2 | 140.5 | 77.85 | 311.6 | 184.8 | 499.3 | 683.4 | 379.0 | |
400 | 326.9 | 45.56 | 148.2 | 164.7 | 87.26 | 337.9 | 245.5 | 855.8 | 738.7 | 484.3 | |
700 | 100 | 290.4 | 46.02 | 143.8 | 153.7 | 77.97 | 268.9 | 192.3 | 195.4 | 759.5 | 462.4 |
200 | 427.6 | 74.69 | 223.3 | 229.9 | 134.66 | 411.3 | 318.5 | 419.4 | 1055.5 | 840.9 | |
400 | 447.9 | 70.49 | 208.1 | 214.7 | 115.23 | 353.7 | 323.4 | 607.4 | 675.6 | 889.6 | |
CCN 51 | |||||||||||
400 | 100 | 137.8 | 20.65 | 64.2 | 69.0 | 30.70 | 150.6 | 115.1 | 322.4 | 349.0 | 257.9 |
200 | 196.8 | 31.84 | 105.0 | 111.4 | 51.50 | 217.9 | 161.0 | 320.8 | 475.9 | 334.3 | |
400 | 238.3 | 33.56 | 121.7 | 111.7 | 50.47 | 217.1 | 202.1 | 390.3 | 343.9 | 331.2 | |
700 | 100 | 295.5 | 51.38 | 166.1 | 197.0 | 81.72 | 295.0 | 262.4 | 262.6 | 929.6 | 874.9 |
200 | 360.7 | 52.37 | 185.6 | 200.9 | 95.23 | 299.6 | 257.3 | 401.6 | 803.5 | 734.4 | |
400 | 521.5 | 79.71 | 240.4 | 285.4 | 136.42 | 515.1 | 405.8 | 888.1 | 1036.3 | 1150.2 | |
Amaz 15 | |||||||||||
400 | 100 | 184.5 | 30.67 | 100.1 | 100.9 | 51.36 | 195.8 | 128.5 | 342.4 | 504.5 | 342.4 |
200 | 254.8 | 42.82 | 143.8 | 157.2 | 78.54 | 311.4 | 195.6 | 446.2 | 614.6 | 502.8 | |
400 | 234.8 | 34.19 | 109.6 | 126.6 | 62.87 | 243.6 | 179.8 | 320.3 | 444.5 | 705.7 | |
700 | 100 | 399.3 | 71.40 | 226.4 | 245.4 | 130.08 | 406.2 | 286.9 | 247.0 | 1174.0 | 785.6 |
200 | 459.9 | 79.81 | 234.8 | 252.1 | 142.20 | 404.9 | 304.8 | 418.9 | 998.8 | 880.4 | |
400 | 509.1 | 81.96 | 239.9 | 264.1 | 140.27 | 454.1 | 344.7 | 366.8 | 1111.3 | 983.2 | |
LCT EEN 37A | |||||||||||
400 | 100 | 82.1 | 13.38 | 51.5 | 51.2 | 20.41 | 90.4 | 69.5 | 216.3 | 231.3 | 162.5 |
200 | 137.7 | 23.46 | 76.2 | 71.5 | 34.44 | 144.9 | 193.9 | 491.6 | 249.9 | 264.4 | |
400 | 118.9 | 18.20 | 60.2 | 56.7 | 26.58 | 123.8 | 121.0 | 276.5 | 186.0 | 173.9 | |
700 | 100 | 311.9 | 56.55 | 198.8 | 189.9 | 89.18 | 310.3 | 233.7 | 429.1 | 792.1 | 664.2 |
200 | 346.0 | 50.47 | 188.8 | 189.2 | 82.05 | 288.0 | 223.7 | 524.1 | 767.6 | 684.7 | |
400 | 387.4 | 68.72 | 189.4 | 239.2 | 110.06 | 337.8 | 287.8 | 743.6 | 703.7 | 777.9 | |
Na 33 | |||||||||||
400 | 100 | 149.2 | 24.50 | 88.9 | 102.3 | 40.04 | 202.4 | 132.8 | 410.2 | 576.1 | 424.9 |
200 | 213.5 | 32.14 | 108.9 | 146.0 | 54.84 | 282.9 | 183.9 | 650.1 | 541.4 | 495.1 | |
400 | 140.9 | 18.42 | 73.6 | 72.3 | 30.73 | 172.5 | 103.5 | 361.6 | 229.7 | 293.7 | |
700 | 100 | 193.6 | 29.74 | 120.4 | 135.2 | 52.68 | 241.4 | 147.2 | 425.7 | 524.4 | 411.3 |
200 | 411.1 | 66.21 | 207.1 | 269.6 | 109.15 | 326.9 | 321.6 | 773.0 | 974.4 | 920.9 | |
400 | 443.2 | 76.07 | 222.4 | 272.1 | 122.75 | 462.6 | 375.5 | 1005.5 | 842.9 | 1436.6 | |
SCA 6 | |||||||||||
400 | 100 | 149.2 | 20.43 | 81.69 | 82.63 | 37.87 | 177.2 | 96.8 | 348.3 | 454.9 | 266.6 |
200 | 151.2 | 20.28 | 83.63 | 93.33 | 41.69 | 190.1 | 118.1 | 496.9 | 423.0 | 366.7 | |
400 | 232.6 | 30.07 | 108.20 | 114.97 | 54.32 | 280.7 | 188.7 | 707.4 | 515.0 | 355.8 | |
700 | 100 | 279.7 | 41.96 | 171.99 | 183.14 | 80.41 | 282.5 | 201.2 | 407.8 | 864.1 | 593.8 |
200 | 352.3 | 45.76 | 162.28 | 187.20 | 86.23 | 296.9 | 221.0 | 556.5 | 799.7 | 582.1 | |
400 | 453.2 | 70.70 | 224.24 | 261.73 | 122.61 | 465.4 | 342.1 | 1017.3 | 916.0 | 1091.9 | |
Significance | |||||||||||
Genotype (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
[CO2] (C) | ** | ** | ** | ** | ** | ** | ** | NS | ** | ** | |
PPFD (P) | ** | ** | ** | ** | ** | ** | ** | ** | NS | ** |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
pmol cm root−1 s−1 | pmol cm root−1 s−1 (×10−3) | ||||||||||
Catongo | |||||||||||
400 | 100 | 0.98 | 0.07 | 0.19 | 0.21 | 0.14 | 1.62 | 0.19 | 0.61 | 0.73 | 0.31 |
200 | 1.04 | 0.07 | 0.18 | 0.21 | 0.14 | 1.64 | 0.18 | 0.54 | 0.58 | 0.27 | |
400 | 1.00 | 0.07 | 0.17 | 0.18 | 0.12 | 1.36 | 0.18 | 0.82 | 0.46 | 0.34 | |
700 | 100 | 1.53 | 0.10 | 0.34 | 0.32 | 0.22 | 2.19 | 0.25 | 0.42 | 0.97 | 0.41 |
200 | 1.58 | 0.10 | 0.32 | 0.32 | 0.25 | 2.03 | 0.26 | 0.30 | 0.83 | 0.49 | |
400 | 1.69 | 0.10 | 0.29 | 0.29 | 0.20 | 2.03 | 0.24 | 0.33 | 0.72 | 0.49 | |
Coca 3370 | |||||||||||
400 | 100 | 1.19 | 0.07 | 0.23 | 0.24 | 0.21 | 1.84 | 0.22 | 0.69 | 1.33 | 0.56 |
200 | 1.26 | 0.09 | 0.27 | 0.27 | 0.24 | 2.21 | 0.22 | 0.71 | 0.96 | 0.43 | |
400 | 1.80 | 0.11 | 0.29 | 0.32 | 0.28 | 2.45 | 0.30 | 1.20 | 1.05 | 0.56 | |
700 | 100 | 1.62 | 0.11 | 0.29 | 0.31 | 0.25 | 1.99 | 0.24 | 0.29 | 1.11 | 0.55 |
200 | 2.12 | 0.17 | 0.39 | 0.41 | 0.39 | 2.66 | 0.35 | 0.51 | 1.35 | 0.87 | |
400 | 2.29 | 0.16 | 0.37 | 0.39 | 0.34 | 2.35 | 0.36 | 0.82 | 0.89 | 0.93 | |
CCN 51 | |||||||||||
400 | 100 | 1.07 | 0.07 | 0.17 | 0.21 | 0.14 | 1.53 | 0.19 | 0.76 | 0.77 | 0.42 |
200 | 1.37 | 0.09 | 0.26 | 0.28 | 0.21 | 1.99 | 0.24 | 0.58 | 0.89 | 0.49 | |
400 | 1.69 | 0.10 | 0.30 | 0.29 | 0.21 | 1.99 | 0.31 | 0.77 | 0.65 | 0.49 | |
700 | 100 | 1.63 | 0.13 | 0.33 | 0.39 | 0.26 | 2.12 | 0.31 | 0.37 | 1.35 | 1.06 |
200 | 1.89 | 0.12 | 0.35 | 0.38 | 0.29 | 2.04 | 0.29 | 0.53 | 1.09 | 0.82 | |
400 | 2.31 | 0.16 | 0.38 | 0.45 | 0.35 | 2.94 | 0.39 | 1.00 | 1.17 | 1.09 | |
Amaz 15 | |||||||||||
400 | 100 | 1.24 | 0.09 | 0.24 | 0.25 | 0.20 | 1.75 | 0.19 | 0.61 | 0.91 | 0.49 |
200 | 1.38 | 0.11 | 0.28 | 0.31 | 0.25 | 2.25 | 0.24 | 0.63 | 0.88 | 0.59 | |
400 | 1.39 | 0.09 | 0.23 | 0.27 | 0.22 | 1.99 | 0.24 | 0.48 | 0.70 | 0.89 | |
700 | 100 | 1.89 | 0.15 | 0.38 | 0.41 | 0.36 | 2.47 | 0.30 | 0.30 | 1.45 | 0.81 |
200 | 2.13 | 0.16 | 0.39 | 0.42 | 0.38 | 2.41 | 0.31 | 0.50 | 1.20 | 0.89 | |
400 | 2.22 | 0.16 | 0.37 | 0.41 | 0.36 | 2.58 | 0.33 | 0.41 | 1.25 | 0.92 | |
LCT EEN 37A | |||||||||||
400 | 100 | 0.68 | 0.05 | 0.16 | 0.17 | 0.11 | 1.06 | 0.14 | 0.54 | 0.54 | 0.30 |
200 | 1.13 | 0.08 | 0.22 | 0.22 | 0.17 | 1.61 | 0.36 | 1.11 | 0.56 | 0.46 | |
400 | 0.95 | 0.06 | 0.17 | 0.17 | 0.13 | 1.30 | 0.23 | 0.64 | 0.38 | 0.28 | |
700 | 100 | 1.69 | 0.14 | 0.39 | 0.37 | 0.28 | 2.25 | 0.28 | 0.61 | 1.12 | 0.78 |
200 | 1.89 | 0.12 | 0.37 | 0.37 | 0.26 | 2.07 | 0.26 | 0.74 | 1.09 | 0.81 | |
400 | 1.89 | 0.15 | 0.33 | 0.42 | 0.31 | 2.17 | 0.31 | 0.96 | 0.89 | 0.80 | |
Na 33 | |||||||||||
400 | 100 | 0.97 | 0.07 | 0.21 | 0.25 | 0.15 | 1.74 | 0.19 | 0.75 | 0.99 | 0.61 |
200 | 1.29 | 0.09 | 0.23 | 0.32 | 0.19 | 2.24 | 0.25 | 1.08 | 0.84 | 0.65 | |
400 | 1.05 | 0.06 | 0.19 | 0.19 | 0.13 | 1.71 | 0.16 | 0.83 | 0.45 | 0.47 | |
700 | 100 | 1.48 | 0.10 | 0.33 | 0.38 | 0.24 | 2.44 | 0.24 | 0.85 | 1.05 | 0.68 |
200 | 1.88 | 0.14 | 0.34 | 0.44 | 0.29 | 1.93 | 0.32 | 0.91 | 1.15 | 0.89 | |
400 | 1.89 | 0.15 | 0.34 | 0.41 | 0.31 | 2.59 | 0.35 | 1.12 | 0.94 | 1.25 | |
SCA 6 | |||||||||||
400 | 100 | 1.37 | 0.08 | 0.27 | 0.28 | 0.21 | 2.16 | 0.20 | 0.86 | 1.11 | 0.51 |
200 | 1.34 | 0.08 | 0.26 | 0.31 | 0.22 | 2.21 | 0.24 | 1.16 | 1.00 | 0.68 | |
400 | 1.71 | 0.09 | 0.28 | 0.31 | 0.23 | 2.71 | 0.31 | 1.35 | 0.99 | 0.54 | |
700 | 100 | 1.95 | 0.13 | 0.43 | 0.45 | 0.32 | 2.56 | 0.31 | 0.74 | 1.54 | 0.85 |
200 | 2.50 | 0.14 | 0.41 | 0.47 | 0.35 | 2.72 | 0.34 | 1.02 | 1.46 | 0.87 | |
400 | 2.48 | 0.17 | 0.44 | 0.51 | 0.38 | 3.37 | 0.41 | 1.43 | 1.28 | 1.28 | |
Significance | |||||||||||
Genotype (G) | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
[CO2] (C) | ** | ** | ** | ** | ** | ** | ** | NS | ** | ** | |
PPFD (P) | ** | ** | NS | ** | ** | * | ** | * | ** | * |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
pmol g shoot−1 s−1 | |||||||||||
Catongo | |||||||||||
400 | 100 | 699.9 | 50.39 | 138.7 | 150.1 | 102.3 | 1.16 | 0.14 | 0.43 | 0.53 | 0.22 |
200 | 743.1 | 47.54 | 130.4 | 149.3 | 101.9 | 1.17 | 0.13 | 0.39 | 0.42 | 0.19 | |
400 | 768.4 | 53.95 | 131.6 | 138.1 | 89.7 | 1.04 | 0.13 | 0.63 | 0.35 | 0.26 | |
700 | 100 | 826.2 | 56.80 | 180.9 | 170.9 | 116.6 | 1.18 | 0.13 | 0.22 | 0.52 | 0.22 |
200 | 803.2 | 53.77 | 165.1 | 163.9 | 127.1 | 1.03 | 0.13 | 0.15 | 0.42 | 0.25 | |
400 | 879.2 | 53.47 | 149.9 | 151.3 | 105.5 | 1.04 | 0.12 | 0.17 | 0.37 | 0.25 | |
Coca 3370 | |||||||||||
400 | 100 | 681.6 | 41.64 | 131.5 | 138.6 | 121.0 | 1.04 | 0.12 | 0.39 | 0.75 | 0.32 |
200 | 738.5 | 51.64 | 156.0 | 159.7 | 143.1 | 1.29 | 0.13 | 0.42 | 0.56 | 0.25 | |
400 | 879.2 | 54.02 | 141.3 | 158.3 | 136.6 | 1.19 | 0.15 | 0.59 | 0.51 | 0.27 | |
700 | 100 | 751.5 | 53.14 | 131.9 | 146.1 | 118.2 | 0.91 | 0.11 | 0.14 | 0.51 | 0.25 |
200 | 811.1 | 64.40 | 152.0 | 158.9 | 149.1 | 1.03 | 0.13 | 0.19 | 0.52 | 0.33 | |
400 | 810.3 | 57.00 | 132.3 | 140.4 | 119.7 | 0.83 | 0.13 | 0.29 | 0.31 | 0.33 | |
CCN 51 | |||||||||||
400 | 100 | 633.6 | 39.88 | 101.4 | 121.1 | 84.2 | 0.88 | 0.11 | 0.39 | 0.45 | 0.25 |
200 | 742.5 | 52.45 | 139.9 | 155.2 | 115.2 | 1.07 | 0.13 | 0.32 | 0.48 | 0.26 | |
400 | 831.8 | 51.00 | 147.8 | 142.9 | 102.5 | 0.97 | 0.15 | 0.38 | 0.32 | 0.24 | |
700 | 100 | 785.9 | 61.00 | 157.4 | 188.7 | 126.0 | 1.02 | 0.15 | 0.18 | 0.66 | 0.52 |
200 | 822.1 | 53.56 | 151.8 | 166.1 | 127.0 | 0.88 | 0.13 | 0.23 | 0.47 | 0.36 | |
400 | 915.3 | 61.56 | 150.2 | 177.8 | 136.2 | 1.14 | 0.15 | 0.38 | 0.45 | 0.43 | |
Amaz 15 | |||||||||||
400 | 100 | 684.5 | 51.47 | 134.6 | 138.2 | 113.5 | 0.97 | 0.11 | 0.33 | 0.51 | 0.27 |
200 | 767.8 | 58.74 | 158.7 | 172.5 | 140.5 | 1.26 | 0.13 | 0.35 | 0.49 | 0.33 | |
400 | 726.7 | 46.86 | 121.6 | 143.3 | 113.9 | 1.07 | 0.13 | 0.25 | 0.36 | 0.46 | |
700 | 100 | 804.0 | 64.18 | 163.2 | 176.4 | 152.7 | 1.06 | 0.13 | 0.13 | 0.61 | 0.34 |
200 | 797.4 | 61.40 | 145.9 | 155.6 | 142.8 | 0.90 | 0.12 | 0.19 | 0.45 | 0.33 | |
400 | 812.0 | 58.31 | 136.2 | 149.5 | 129.9 | 0.94 | 0.12 | 0.15 | 0.46 | 0.33 | |
LCT EEN 37A | |||||||||||
400 | 100 | 490.2 | 35.11 | 118.7 | 124.9 | 77.0 | 0.78 | 0.10 | 0.41 | 0.39 | 0.22 |
200 | 709.6 | 52.33 | 140.6 | 139.7 | 107.9 | 1.01 | 0.23 | 0.69 | 0.36 | 0.29 | |
400 | 662.5 | 41.56 | 116.6 | 119.5 | 90.2 | 0.89 | 0.16 | 0.44 | 0.25 | 0.19 | |
700 | 100 | 766.7 | 62.42 | 175.8 | 168.4 | 128.8 | 1.01 | 0.13 | 0.27 | 0.51 | 0.35 |
200 | 835.5 | 54.32 | 165.6 | 165.3 | 115.8 | 0.92 | 0.12 | 0.32 | 0.48 | 0.36 | |
400 | 838.2 | 66.65 | 146.2 | 186.3 | 138.9 | 0.96 | 0.14 | 0.43 | 0.39 | 0.35 | |
Na 33 | |||||||||||
400 | 100 | 573.3 | 41.70 | 121.1 | 146.7 | 90.7 | 1.03 | 0.11 | 0.44 | 0.58 | 0.36 |
200 | 710.4 | 47.35 | 126.9 | 176.8 | 105.8 | 1.24 | 0.14 | 0.59 | 0.46 | 0.36 | |
400 | 640.1 | 35.01 | 113.5 | 120.4 | 79.8 | 1.04 | 0.10 | 0.50 | 0.27 | 0.28 | |
700 | 100 | 699.8 | 48.00 | 158.0 | 178.5 | 112.3 | 1.16 | 0.12 | 0.41 | 0.49 | 0.32 |
200 | 824.9 | 59.38 | 147.3 | 193.2 | 126.3 | 0.84 | 0.14 | 0.42 | 0.49 | 0.39 | |
400 | 798.3 | 61.61 | 142.8 | 174.5 | 128.3 | 1.09 | 0.15 | 0.46 | 0.39 | 0.53 | |
SCA 6 | |||||||||||
400 | 100 | 685.0 | 40.64 | 133.0 | 139.4 | 102.5 | 1.08 | 0.10 | 0.42 | 0.55 | 0.25 |
200 | 702.6 | 40.37 | 137.5 | 157.9 | 113.1 | 1.14 | 0.12 | 0.61 | 0.51 | 0.37 | |
400 | 869.7 | 49.20 | 141.9 | 154.5 | 117.4 | 1.36 | 0.16 | 0.75 | 0.50 | 0.28 | |
700 | 100 | 786.6 | 52.28 | 172.2 | 183.2 | 131.1 | 1.03 | 0.12 | 0.29 | 0.63 | 0.35 |
200 | 837.1 | 48.70 | 136.3 | 158.5 | 119.0 | 0.91 | 0.12 | 0.33 | 0.49 | 0.29 | |
400 | 921.4 | 63.86 | 161.0 | 186.9 | 142.1 | 1.22 | 0.15 | 0.51 | 0.46 | 0.47 | |
Significance | |||||||||||
Genotype (G) | ** | * | NS | NS | ** | * | NS | ** | ** | ** | |
[CO2] (C) | ** | ** | ** | ** | ** | * | NS | ** | NS | ** | |
PPFD (P) | ** | * | * | * | ** | NS | ** | NS | ** | NS |
CO2 (µmol mol−1) | PPFD (µmol m−2 s−1) | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
mg shoot mg element−1 | mg shoot mg element−1 (×104) | ||||||||||
Catongo | |||||||||||
400 | 100 | 36.64 | 225.8 | 65.68 | 63.39 | 147.6 | 2.92 | 4.17 | 1.66 | 1.30 | 2.48 |
200 | 34.70 | 237.9 | 69.06 | 64.09 | 148.4 | 2.92 | 4.48 | 1.93 | 1.65 | 2.76 | |
400 | 31.90 | 199.4 | 65.34 | 65.25 | 157.8 | 3.09 | 4.06 | 1.16 | 1.82 | 1.96 | |
700 | 100 | 38.72 | 251.6 | 63.67 | 67.89 | 161.8 | 3.60 | 5.39 | 5.61 | 1.62 | 3.02 |
200 | 41.53 | 278.1 | 75.12 | 74.38 | 154.9 | 4.20 | 5.68 | 5.95 | 2.07 | 2.87 | |
400 | 37.31 | 272.1 | 77.24 | 78.29 | 181.1 | 4.10 | 5.88 | 7.15 | 2.25 | 2.79 | |
Coca 3370 | |||||||||||
400 | 100 | 37.12 | 268.3 | 68.02 | 67.67 | 125.8 | 3.27 | 4.78 | 1.96 | 0.93 | 1.70 |
200 | 39.28 | 249.4 | 67.24 | 66.21 | 120.8 | 3.01 | 5.03 | 1.99 | 1.36 | 2.45 | |
400 | 35.69 | 259.7 | 77.94 | 72.05 | 134.2 | 3.43 | 4.72 | 1.50 | 1.63 | 2.45 | |
700 | 100 | 38.28 | 241.4 | 77.91 | 72.07 | 142.4 | 4.15 | 5.75 | 1.22 | 1.56 | 2.42 |
200 | 40.30 | 231.3 | 77.07 | 74.78 | 128.0 | 4.20 | 5.39 | 5.52 | 1.64 | 2.10 | |
400 | 41.19 | 261.8 | 89.69 | 86.28 | 162.7 | 5.22 | 5.79 | 3.04 | 2.74 | 2.20 | |
CCN 51 | |||||||||||
400 | 100 | 34.69 | 231.5 | 73.65 | 69.91 | 157.3 | 3.36 | 4.54 | 3.88 | 1.36 | 1.84 |
200 | 36.23 | 228.9 | 67.75 | 64.22 | 138.4 | 3.30 | 4.46 | 2.31 | 1.49 | 2.13 | |
400 | 33.92 | 242.6 | 66.93 | 72.79 | 160.5 | 3.72 | 4.12 | 2.53 | 2.39 | 2.44 | |
700 | 100 | 40.10 | 231.9 | 72.30 | 60.80 | 147.9 | 4.02 | 4.61 | 5.90 | 1.28 | 1.38 |
200 | 40.63 | 276.5 | 78.26 | 72.04 | 153.4 | 4.89 | 5.69 | 3.77 | 1.84 | 1.99 | |
400 | 40.44 | 268.5 | 87.37 | 74.67 | 159.6 | 4.37 | 5.27 | 2.58 | 2.13 | 1.86 | |
Amaz 15 | |||||||||||
400 | 100 | 40.30 | 245.1 | 74.18 | 73.78 | 145.2 | 3.86 | 5.79 | 2.31 | 1.48 | 2.17 |
200 | 39.77 | 237.0 | 70.65 | 64.27 | 128.7 | 3.27 | 5.23 | 2.42 | 1.66 | 2.35 | |
400 | 39.24 | 274.6 | 83.95 | 73.26 | 148.7 | 3.62 | 5.10 | 3.41 | 2.09 | 1.52 | |
700 | 100 | 43.18 | 248.5 | 75.97 | 71.01 | 135.0 | 4.43 | 6.23 | 6.98 | 1.49 | 2.33 |
200 | 45.43 | 267.4 | 88.61 | 83.42 | 149.5 | 5.30 | 6.88 | 5.51 | 2.09 | 2.49 | |
400 | 46.58 | 287.7 | 98.15 | 89.34 | 168.2 | 5.31 | 6.84 | 6.51 | 2.12 | 2.60 | |
LCT EEN 37A | |||||||||||
400 | 100 | 37.48 | 225.5 | 57.68 | 59.53 | 148.9 | 3.29 | 4.22 | 1.54 | 1.38 | 1.80 |
200 | 32.55 | 196.9 | 59.22 | 62.49 | 128.6 | 3.06 | 2.54 | 0.97 | 1.79 | 1.71 | |
400 | 31.56 | 214.4 | 62.76 | 67.34 | 144.8 | 3.16 | 3.48 | 3.51 | 2.26 | 2.21 | |
700 | 100 | 44.72 | 247.3 | 70.29 | 73.32 | 156.3 | 4.56 | 5.96 | 3.29 | 1.76 | 2.09 |
200 | 41.04 | 281.4 | 74.51 | 74.78 | 173.1 | 4.89 | 6.41 | 3.23 | 1.84 | 2.12 | |
400 | 42.89 | 242.1 | 87.86 | 69.45 | 151.2 | 4.92 | 5.79 | 2.33 | 2.36 | 2.21 | |
Na 33 | |||||||||||
400 | 100 | 43.36 | 263.8 | 72.64 | 63.22 | 162.9 | 3.23 | 4.89 | 1.83 | 1.25 | 1.55 |
200 | 38.37 | 255.8 | 75.40 | 56.95 | 151.3 | 2.95 | 4.45 | 1.30 | 1.58 | 1.70 | |
400 | 35.51 | 275.2 | 69.11 | 71.28 | 164.9 | 2.96 | 4.88 | 1.71 | 2.24 | 1.76 | |
700 | 100 | 41.99 | 275.1 | 67.63 | 59.79 | 154.1 | 3.38 | 5.54 | 2.05 | 1.61 | 1.98 |
200 | 45.18 | 280.3 | 89.83 | 69.01 | 170.6 | 5.73 | 5.82 | 3.18 | 1.94 | 2.04 | |
400 | 48.19 | 285.7 | 96.05 | 78.54 | 174.4 | 4.65 | 5.71 | 2.28 | 2.59 | 1.98 | |
SCA 6 | |||||||||||
400 | 100 | 40.55 | 298.8 | 74.55 | 73.21 | 159.9 | 3.44 | 6.26 | 1.79 | 1.33 | 2.30 |
200 | 39.39 | 294.3 | 71.30 | 64.75 | 145.4 | 3.26 | 5.08 | 1.23 | 1.49 | 1.83 | |
400 | 35.60 | 276.7 | 76.83 | 72.10 | 153.3 | 3.00 | 4.55 | 2.02 | 1.61 | 2.39 | |
700 | 100 | 45.30 | 306.8 | 74.11 | 69.89 | 158.7 | 4.49 | 6.47 | 3.56 | 1.49 | 2.22 |
200 | 45.17 | 351.9 | 98.11 | 84.87 | 184.6 | 5.44 | 7.22 | 3.15 | 1.99 | 2.79 | |
400 | 43.38 | 280.3 | 87.71 | 75.36 | 163.1 | 4.33 | 5.73 | 2.04 | 2.25 | 1.83 | |
Significance | |||||||||||
Genotype (G) | ** | ** | ** | ** | ** | ** | ** | * | NS | ** | |
[CO2] (C) | ** | ** | ** | ** | ** | ** | ** | ** | ** | * | |
PPFD (P) | NS | NS | ** | ** | ** | * | NS | NS | ** | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baligar, V.C.; Elson, M.K.; Almeida, A.-A.F.; de Araujo, Q.R.; Ahnert, D.; He, Z. The Impact of Carbon Dioxide Concentrations and Low to Adequate Photosynthetic Photon Flux Density on Growth, Physiology and Nutrient Use Efficiency of Juvenile Cacao Genotypes. Agronomy 2021, 11, 397. https://doi.org/10.3390/agronomy11020397
Baligar VC, Elson MK, Almeida A-AF, de Araujo QR, Ahnert D, He Z. The Impact of Carbon Dioxide Concentrations and Low to Adequate Photosynthetic Photon Flux Density on Growth, Physiology and Nutrient Use Efficiency of Juvenile Cacao Genotypes. Agronomy. 2021; 11(2):397. https://doi.org/10.3390/agronomy11020397
Chicago/Turabian StyleBaligar, Virupax C., Marshall K. Elson, Alex-Alan F. Almeida, Quintino R. de Araujo, Dario Ahnert, and Zhenli He. 2021. "The Impact of Carbon Dioxide Concentrations and Low to Adequate Photosynthetic Photon Flux Density on Growth, Physiology and Nutrient Use Efficiency of Juvenile Cacao Genotypes" Agronomy 11, no. 2: 397. https://doi.org/10.3390/agronomy11020397
APA StyleBaligar, V. C., Elson, M. K., Almeida, A. -A. F., de Araujo, Q. R., Ahnert, D., & He, Z. (2021). The Impact of Carbon Dioxide Concentrations and Low to Adequate Photosynthetic Photon Flux Density on Growth, Physiology and Nutrient Use Efficiency of Juvenile Cacao Genotypes. Agronomy, 11(2), 397. https://doi.org/10.3390/agronomy11020397