Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Cropping System
2.2. Sustainable Agrobiotechnological Interventions (SAIs)
2.3. Measurement of Soil Physicochemical and Biological Properties
2.4. Monitoring Microbial and Soil Respiration
2.5. Soil Enzyme Analysis
2.6. Statistical Analysis
3. Results
3.1. Site-Specific Factors
3.2. Crop Species-Specific Factors
3.3. Sustainable Agrobiotechnological Intervention (SAI)-Based Response
3.4. Soil Microbial Biomass and Soil Enzymes Response
4. Discussion
4.1. Role of Site-Specific Factors in Spatiotemporal Variations in Microbial and Soil Respiration
4.2. Impact of Crop Species on Microbial and Soil Respiration
4.3. Sustainable Agrobiotechnological Interventions (SAIs) Response to Soil Quality, and Microbial and Soil Respiration
4.4. Soil MBC, MBN, and Soil Enzymes’ Response to Microbial and Soil Respiration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, K.A.; Ball, T.; Conen, F.; Dobbie, K.E.; Massheder, J.M.; Rey, A. Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 2003, 54, 779–791. [Google Scholar] [CrossRef] [Green Version]
- Abhilash, P.C.; Dubey, R.K. Integrating aboveground-belowground responses to climate change. Curr. Sci. 2014, 106, 1637–1638. [Google Scholar]
- Abhilash, P.C.; Dubey, R.K. Root system engineering: Prospects and promises. Trends Plant Sci. 2015, 20, 408–409. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon sequestration impacts on global Climate Change and Food Security. Sustainability 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Bond-Lamberty, B.; Thomson, A.M. Temperature-associated increases in the global soil respiration record. Nat. Cell Biol. 2010, 464, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.; Bailey, V.L.; Chen, M.; Gough, C.M.; Vargas, R. Globally rising soil heterotrophic respiration over recent decades. Nat. Cell Biol. 2018, 560, 80–83. [Google Scholar] [CrossRef]
- INCCA. India: Greenhouse Gas Emissions 2007; Indian Network for Climate Change Assessment (INCCA) the Ministry of Environment & Forests Government of India: New Delhi, India, 2010; p. 63.
- Dubey, P.K.; Singh, G.S.; Abhilash, P.C. Agriculture in a changing climate. J. Clean. Prod. 2016, 113, 1046–1047. [Google Scholar] [CrossRef]
- Dubey, R.K.; Tripathi, V.; Abhilash, P.C. Book review: Principles of plant-microbe interactions: Microbes for sustainable agriculture. Front Plant Sci. 2015, 6, 986. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.K.; Tripathi, V.; Edrisi, S.A.; Bakshi, M.; Dubey, P.K.; Singh, A.; Verma, J.P.; Singh, A.; Sarma, B.K.; Rakshit, A.; et al. Role of plant growth promoting microorganisms in sustainable agriculture and environmental remediation. In Advances in PGPR Research; Singh, H.B., Sharma, B., Kesawani, C., Eds.; CABI Press: Boston, MA, USA, 2017. [Google Scholar]
- Dubey, R.K.; Tripathi, V.; Prabha, R.; Chaurasia, R.; Singh, D.P.; Rao, C.S.; El-Keblawy, A.; Abhilash, P.C. Unravelling the Soil Microbiome; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Sarkar, D.; Kar, S.K.; Chattopadhyay, A.; Shikha; Rakshit, A.; Tripathi, V.K.; Dubey, P.K.; Abhilash, P.C. Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecol. Indic. 2020, 115, 106412. [Google Scholar] [CrossRef]
- Melero, S.; López-Garrido, R.; Madejón, E.; Murillo, J.M.; Vanderlinden, K.; Ordóñez, R.; Moreno, F.; Ordóñez-Fernández, R. Long-term effects of conservation tillage on organic fractions in two soils in southwest of Spain. Agric. Ecosyst. Environ. 2009, 133, 68–74. [Google Scholar] [CrossRef]
- Neogi, S.; Bhattacharyya, P.; Roy, K.S.; Panda, B.B.; Nayak, A.K.; Rao, K.S.; Manna, M.C. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice–maize–cowpea cropping system. Environ. Monit. Assess. 2014, 186, 4223–4236. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Chaplot, V. What crop type for atmospheric carbon sequestration: Results from a global data analysis. Agric. Ecosyst. Environ. 2017, 243, 34–46. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Dubey, R.K.; Tripathi, V.; Gupta, V.K.; Singh, H.B. Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends Biotechnol. 2016, 34, 847–850. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Tripathi, V.; Edrisi, S.A.; Dubey, R.K.; Bakshi, M.; Dubey, P.K.; Singh, H.B.; Ebbs, S.D. Sustainability of crop production from polluted lands. Energy Ecol. Environ. 2016, 1, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.K.; Tripathi, V.; Dubey, P.K.; Singh, H.B.; Abhilash, P.C. Exploring rhizospheric interactions for agricultural sustainability: The need of integrative research on multi-trophic interactions. J. Clean. Prod. 2016, 115, 362–365. [Google Scholar] [CrossRef]
- Krauss, M.; Ruser, R.; Müller, T.; Hansen, S.; Mäder, P.; Gattinger, A. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley—winter wheat cropping sequence. Agric. Ecosyst. Environ. 2017, 239, 324–333. [Google Scholar] [CrossRef]
- Weng, Z.; Van Zwieten, L.; Singh, B.P.; Tavakkoli, E.; Joseph, S.; Macdonald, L.M.; Rose, T.J.; Rose, M.T.; Kimber, S.W.L.; Morris, S.; et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nat. Clim. Chang. 2017, 7, 371–376. [Google Scholar] [CrossRef]
- Yang, X.; Meng, J.; Lan, Y.; Chen, W.; Yang, T.; Yuan, J.; Liu, S.; Han, J. Effects of maize stover and its biochar on soil CO 2 emissions and labile organic carbon fractions in Northeast China. Agric. Ecosyst. Environ. 2017, 240, 24–31. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, D.; Wang, P.; Liu, X.; Cheng, K.; Li, L.; Zheng, J.; Zhang, X.; Zheng, J.; Crowley, D.; et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A meta-analysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Li, S.; Chen, S.; Ren, T.; Yang, Z.; Zhao, H.; Liang, Y.; Han, X. Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Sci. Rep. 2016, 6, 19990. [Google Scholar] [CrossRef] [Green Version]
- Dubey, P.K.; Singh, G.S.; Abhilash, P.C. Adaptive Agricultural Practices: Building Resilience under Changing Climate; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 978−3-030−15518-6. [Google Scholar]
- Roldán, A.; García, M.D.M.A.; Alguacil, M.; Caravaca, F. Changes in soil enzyme activity, fertility, aggregation and C sequestration mediated by conservation tillage practices and water regime in a maize field. Appl. Soil Ecol. 2005, 30, 11–20. [Google Scholar] [CrossRef]
- Nan, W.; Yue, S.; Li, S.; Huang, H.; Shen, Y. The factors related to carbon dioxide effluxes and production in the soil profiles of rain-fed maize fields. Agric. Ecosyst. Environ. 2016, 216, 177–187. [Google Scholar] [CrossRef]
- Gao, B.; Ju, X.; Su, F.; Gao, F.; Cao, Q.; Oenema, O. Comparison of soil respiration in typical conventional and new alternative cereal cropping systems on the North China Plain. PLoS ONE 2013, 8, 80887. [Google Scholar] [CrossRef]
- Shukla, S.K.; Yadav, R.L.; Awasthi, S.K.; Gaur, A. Soil microbial biomass nitrogen, in situ respiration and crop yield influenced by deep tillage, moisture regimes and N nutrition in Sugarcane-based system in subtropical India. Sugar Tech 2016, 19, 125–135. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathak, H.; Jain, N.; Singh, P.; Singh, A. Global warming potential of manure amended soils under rice–wheat system in the Indo-Gangetic plains. Atmos. Environ. 2005, 39, 6976–6984. [Google Scholar] [CrossRef]
- Ghosh, S.; Wilson, B.C.D.; Ghoshal, S.K.; Senapati, N.; Mandal, B. Organic amendments influence soil quality and carbon sequestration in the Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 2012, 156, 134–141. [Google Scholar] [CrossRef]
- Pathak, H.; Byjesh, K.; Chakrabarti, B.; Aggarwal, P.K. Potential and cost of carbon sequestration in Indian agriculture: Es-timates from long-term field experiments. Field Crops Res. 2011, 12, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.K.; Dubey, P.K.; Abhilash, P.C. Sustainable soil amendments for improving the soil quality, yield and nutrient content of Brassica juncea (L.) grown in different agroecological zones of eastern Uttar Pradesh, India. Soil Tillage Res. 2019, 195, 104418. [Google Scholar] [CrossRef]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy Soil Science Society of America Madison: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of organic soil constituents. Soil Sci. 1947, 63, 251–263. [Google Scholar] [CrossRef]
- Bremner, J.; Mulvaney, C. Nitrogen-Total. In Sorghum: State of the Art and Future Perspectives; Wiley: Hoboken, NJ, USA, 2015; pp. 595–624. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; Government Printing Office: Washington, DC, USA, 1954.
- Vance, E.; Brookes, P.; Jenkinson, D. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Rong, Y.; Maa, L.; Johnson, D.A.; Yuanc, F. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China. Agric. Ecosyst. Environ. 2015, 213, 142–150. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Singh, H.B.; Abhilash, P.C. Sustainable agronomic practices for enhancing the soil quality and yield of Cicer arietinum L. under diverse agroecosystems. J. Environ. Manag. 2020, 262, 110284. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Wright, S.; Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 1998, 198, 97–107. [Google Scholar] [CrossRef]
- Liu, Y.-R.; Delgado-Baquerizo, M.; Wang, J.-T.; Hu, H.-W.; Yang, Z.; He, J.-Z. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 2018, 118, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Pries, C.E.H.; Castanha, C.; Porras, R.C.; Torn, M.S. The whole-soil carbon flux in response to warming. Science 2017, 355, 1420–1423. [Google Scholar] [CrossRef] [Green Version]
- Lohila, A.; Aurela, M.; Regina, K.; Laurila, T. Soil and total ecosystem respiration in agricultural fields: Effect of soil and crop type. Plant Soil 2003, 251, 303–317. [Google Scholar] [CrossRef]
- Grand, S.; Rubin, A.; Verrecchia, E.P.; Vittoz, P. Variation in soil respiration across soil and vegetation types in an Alpine valley. PLoS ONE 2016, 11, e0163968. [Google Scholar] [CrossRef] [Green Version]
- Salazar, A.; Sulman, B.N.; Dukes, J.S. Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biol. Biochem. 2018, 116, 237–244. [Google Scholar] [CrossRef]
- Kukumägi, M.; Ostonen, I.; Kupper, P.; Truu, M.; Tulva, I.; Varik, M.; Aosaar, J.; Sober, J.; Löhmus, K. The effects of elevated atmospheric humidity on soil respiration components in a young silver birch forest. Agric. For. Meteorol. 2014, 194, 167–174. [Google Scholar] [CrossRef]
- Wang, X.; Ren, T. Spatial and temporal variability of soil respiration between soybean crop rows as aeasured continuously over a growing season. Sustainability 2017, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Ling, Y.; Zhu, Y.; Yaoxiang, G.E.; Lin, X.; Jla, W. The temporal and spatial variation of soil respiration in pepper (Capsicum annuum L.), eggplant (Solanum melongena L.) and maize (Zea mays L.) agro-ecosystems in Northwest of China. Aust. J. Crop Sci. 2012, 6, 1565–1571. [Google Scholar]
- Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 2015, 12, 4121–4132. [Google Scholar] [CrossRef] [Green Version]
- Srinivasarao, C.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Kundu, S.S.; Vittal, K.P.R.; Patel, J.J.; Patel, M.M. Long-term manuring and fertilizer effects on depletion of soil organic carbon stocks under pearl millet-cluster bean-castor rotation in western india. Land Degrad. Dev. 2011, 25, 173–183. [Google Scholar] [CrossRef]
- Bilandžija, D.; Željka, Z.; Kisić, I. Influence of tillage practices and crop type on soil CO2 emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.; Dubey, R.; Singh, H.B.; Singh, N.; Abhilash, P.C. Is Vigna radiata (L.) R. Wilczek a suitable crop for lindane contaminated site? Ecol. Engineering. 2014, 73, 219–223. [Google Scholar] [CrossRef]
- Zhu, Z.; Ge, T.; Liu, S.; Hu, Y.; Ye, R.; Xiao, M.; Tong, C.; Kuzyakov, Y.; Wu, J. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 2018, 116, 369–377. [Google Scholar] [CrossRef]
- Innes, L.; Hobbs, P.J.; Bardgett, R.D. The impacts of individual plant species on rhizosphere microbial communities in soils of different fertility. Biol. Fertil. Soils 2004, 40, 7–13. [Google Scholar] [CrossRef]
- Orio, A.G.A.; Brücher, E.; Ducasse, D.A. Switching between monocot and dicot crops in rotation schemes of Argentinean productive fields results in an increment of arbuscular mycorrhizal fungi diversity. Appl. Soil Ecol. 2016, 98, 121–131. [Google Scholar] [CrossRef]
- Truong, T.H.H.; Marschner, P. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma 2018, 319, 167–174. [Google Scholar] [CrossRef]
- Hao, Q.; Jiang, C. Contribution of root respiration to soil respiration in a rape (Brassica campestris L.) field in Southwest China. Plant, Soil Environ. 2014, 60, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Abujabhah, I.S.; Bound, S.A.; Doyle, R.; Bowman, J.P. Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl. Soil Ecol. 2016, 98, 243–253. [Google Scholar] [CrossRef]
- Cavagnaro, T.R. Impacts of compost application on the formation and functioning of arbuscular mycorrhizas. Soil Biol. Biochem. 2014, 78, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Morales-Romero, D.; Campo, J.; Alvarez, H.G.; Freaner, F.M. Soil carbon, nitrogen and phosphorus changes from conversion of thorn scrub to buffelgrass pasture in northwestern Mexico. Agric. Ecosyst. Environ. 2015, 199, 231–237. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Wu, Q.S. Effects of soil tillage and planting grass on arbuscular mycorrhizal fungal propagules and soil properties in citrus orchards in southeast China. Soil Tillage Res. 2016, 155, 54–61. [Google Scholar] [CrossRef]
- Bowles, T.M.; Acosta-Martínez, V.; Calderón, F.; Jackson, L.E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 2014, 68, 252–262. [Google Scholar] [CrossRef]
- Wright, A.L.; Hons, F.M.; Matocha, J.E., Jr. Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Appl Soil Ecol. 2005, 29, 85–92. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Grandy, A.S.; Frey, S.D.; Diefendorf, A.F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 2015, 91, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Tejada, M.; Hernandez, M.T.; Garcia, C. Application of two organic amendments on soil restoration: Effects on the soil biological properties. J. Environ. Qual. 2006, 35, 1010–1017. [Google Scholar] [CrossRef]
- Mayor Ángeles, G.; Goirán, S.B.; Vallejo, V.R.; Bautista, S. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands. Sci. Total. Environ. 2016, 573, 1209–1216. [Google Scholar] [CrossRef]
- Borie, F.; Rubio, R.; Rouanet, J.; Morales, A.; Borie, G.; Rojas, C. Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res. 2006, 88, 253–261. [Google Scholar] [CrossRef]
- Abhilash, P.C. Restoring the unrestored: Strategies for restorung global land duing the UN Decade on Ecosystem Restoration (UN-DER). Land 2021, 2, 201. [Google Scholar] [CrossRef]
Variables | ES1-Varanasi (V) | ES2-Sultanpur (S) | ES3-Gorakhpur (G) |
---|---|---|---|
(Agro-climatic zones) (Plain) | Agro-climatic zone IV Eastern Gangetic Plain | Agro-climatic zone V Central Plain | Agro-climatic zone IV North-Eastern Plain |
Mean monsoon soil temperature (MMT in °C) | 26.1 b | 25.8 c | 28.2 a |
Mean winter soil temperature (MWT in °C) | 18.3 c | 17.5 b | 20.6 a |
Annual mean rainfall (mm) | 1084 | 950 | 1607 |
Mean relative humidity (%) | 76 | 58 | 80 |
Altitude amsl (m) | 83.0 | 105 | 82 |
Soil types | Sandy fine loam | Sandy loam | Fine silty |
Sand | 48.9% | 61.3% | 55.1% |
Silt | 33.7% | 22.7% | 25.6% |
Clay | 17.4% | 16.0% | 19.3% |
pH (1/4: soil/H2O) | 7.63 ±0.07 b | 8.57 ± 0.03 a | 7.24 ± 0.05 c |
Electrical conductivity (dS m−1) | 0.167 ± 0.02 b | 0.163 ± 0.04 b | 0.178 ± 0.01 a |
Moisture content (%) | 5.01 ± 0.37 b | 4.02 ± 0.19 c | 6.13 ± 0.72 a |
Bulk density (Mg m−3) | 1.28 ± 0.05 b | 1.45 ± 0.04 a | 1.19 ± 0.01 c |
Total organic carbon (g kg−1) | 3.93 ± 0.09 a | 3.11 ± 0.08 b | 4.03 ± 0.11 a |
Microbial biomass carbon (µg g−1) | 141.67 ± 0.64 b | 138.90 ± 6.51 c | 147.66 ± 6.73 a |
S. No. | Treatments | Details of the Treatments |
---|---|---|
1. | Control (RT) | Control with reduced tillage having no biochar or arbuscular mycorrhizal fungus amendment (Control + RT) |
2. | AMF (RT) | Arbuscular mycorrhizal fungi amendment with reduced tillage (AMF + RT) |
3. | Biochar (RT) | Biochar amendment with reduced tillage (Biochar + RT) |
4. | AMF + biochar (RT) | Arbuscular mycorrhizal fungus amended with biochar under reduced tillage (AMF + biochar + RT) |
Varanasi (ES1) | Sultanpur (ES2) | Gorakhpur (ES3) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2013 | 2014 | 2013 | 2014 | 2013 | 2014 | |||||||
BD (g cm−3) | ||||||||||||
Vigna mungo | ||||||||||||
CT | 1.25 ± 0.06 c | 4.11 ± 0.21 d | 1.26 ± 0.02 bc | 4.15 ± 0.06 d | 1.41 ± 0.05 c | 4.12 ± 0.06 c | 1.41 ± 0.03 c | 4.13 ± 1.13 c | 1.19 ± 0.05 b | 4.14 ± 0.15 d | 1.19 ± 0.02 c | 4.21 ± 0.06 d |
T1 | 1.26 ± 0.06 bc | 5.18 ± 0.17 c | 1.27 ± 0.00 b | 5.26 ± 0.21 c | 1.42 ± 0.02 b | 5.11 ± 0.21 b | 1.43 ± 0.03 b | 5.14 ± 0.11 b | 1.20 ± 0.08 ab | 5.21 ± 0.82 c | 1.21 ± 0.04 b | 5.25 ± 0.03 b |
T2 | 1.26 ± 0.04 bc | 6.89 ± 0.17 ab | 1.25 ± 0.06 c | 6.94 ± 0.33 a | 1.43 ± 0.09 ab | 6.81 ± 0.33 a | 1.44 ± 0.01 b | 6.84 ± 0.19 ab | 1.20 ± 0.09 ab | 6.90 ± 0.28 ab | 1.20 ± 0.03 b | 6.91 ± 0.09 ab |
T3 | 1.26 ± 0.07 bc | 6.94 ± 0.63 a | 1.28 ± 0.01 ab | 6.98 ± 0.31 a | 1.44 ± 0.07 a | 6.85 ± 0.31 a | 1.45 ± 0.04 ab | 6.88 ± 0.09 a | 1.20 ± 0.03 ab | 6.96 ± 0.15 a | 1.21 ± 0.03 ab | 6.99 ± 0.05 a |
Brassica juncea | ||||||||||||
CT | 1.26 ± 0.04 bc | 4.09 ± 0.09 d | 1.26 ± 0.03 bc | 4.14 ± 0.68 d | 1.41 ± 0.07 b | 4.12 ± 0.02 c | 1.41 ± 0.02 c | 4.13 ± 0.43 c | 1.19 ± 0.09 b | 4.11 ± 0.07 d | 1.19 ± 0.02 c | 4.19 ± 0.02 d |
T1 | 1.27 ± 0.09 b | 5.02 ± 0.09 c | 1.28 ± 0.03 ab | 5.04 ± 0.39 cd | 1.43 ± 0.02 ab | 5.31 ± 0.14 b | 1.44 ± 0.04 b | 5.14 ± 0.61 b | 1.20 ± 0.08 ab | 5.09 ± 0.66 c | 1.21 ± 0.04 ab | 5.22 ± 0.04 c |
T2 | 1.27 ± 0.03 b | 6.32 ± 0.46 ab | 1.28 ± 0.07 ab | 6.38 ± 0.26 b | 1.43 ± 0.03 ab | 6.79 ± 0.43 ab | 1.44 ± 0.03 b | 6.82 ± 0.09 ab | 1.21 ± 0.06 a | 6.37 ± 0.11 b | 1.21 ± 0.04 ab | 6.39 ± 0.04 bc |
T3 | 1.27 ± 0.09 b | 6.91 ± 0.17 a | 1.28 ± 0.07 ab | 6.93 ± 2.18 a | 1.44 ± 0.01 a | 6.82 ± 0.41 a | 1.45 ± 0.03 ab | 6.85 ± 0.14 a | 1.21 ± 0.08 a | 6.94 ± 0.09 a | 1.22 ± 0.6 a | 6.54 ± 0.6 b |
Zea mays | ||||||||||||
CT | 1.27 ± 0.00 b | 4.02 ± 0.03 d | 1.27 ± 0.02 b | 4.13 ± 0.22 d | 1.41 ± 0.02 c | 4.11 ± 0.07 c | 1.41 ± 0.07 c | 4.14 ± 1.19 c | 1.19 ± 0.07 b | 4.18 ± 0.03 d | 1.19 ± 0.02 c | 4.19 ± 0.01 d |
T1 | 1.27 ± 0.08 b | 5.00 ± 0.05 c | 1.28 ± 0.00 ab | 5.02 ± 0.03 cd | 1.43 ± 0.07 ab | 5.12 ± 0.00 b | 1.44 ± 0.05 b | 5.13 ± 1.10 b | 1.20 ± 0.01 ab | 5.06 ± 0.11 c | 1.21 ± 0.00 ab | 5.19 ± 0.05 c |
T2 | 1.27 ± 0.07 b | 6.01 ± 0.06 b | 1.28 ± 0.06 ab | 6.24 ± 0.96 b | 1.44 ± 0.03 a | 6.77 ± 0.01 ab | 1.45 ± 0.07 ab | 6.80 ± 1.21 ab | 1.21 ± 0.07 a | 6.10 ± 0.13 bc | 1.21 ± 0.06 ab | 6.22 ± 0.01 bc |
T3 | 1.28 ± 0.05 a | 6.82 ± 0.49 ab | 1.29 ± 0.01 a | 6.87 ± 0.53 ab | 1.44 ± 0.04 a | 6.80 ± 0.58 a | 1.46 ± 0.04 a | 6.82 ± 1.89 ab | 1.21 ± 0.01 a | 6.91 ± 0.17 ab | 1.22 ± 0.01 a | 6.49 ± 0.02 b |
Individual and Interaction Results | Moisture Content (%) | Total Organic Carbon (g kg−1) | Total Nitrogen (g kg−1) | C:N Ratio | Microbial Respiration (mg CO2 m−2 hrs−1) | Soil Respiration (mg CO2 m−2 hrs−1) |
---|---|---|---|---|---|---|
Individual factor results | ||||||
p-value | <0.03 | <0.01 | <0.03 | <0.01 | <0.01 | <0.01 |
Control | 6.31 d | 4.17 d | 0.42 d | 8.37 d | 111.64 a | 125.89 a |
AMF (RT) | 7.32 b | 5.16 c | 0.51 c | 10.11 b | 88.17 c | 103.77 c |
Biochar (RT) | 8.11 a | 6.82 b | 0.58 a | 8.96 c | 104.01 b | 120.13 b |
AMF + Biochar (RT) | 7.96 c | 6.99 a | 0.56 b | 12.96 a | 77.89 d | 91.46 d |
Experimental site (ES) | ||||||
p-value | <0.05 | <0.04 | <0.05 | <0.03 | <0.03 | <0.01 |
ES1-Varanasi (V) | 5.00 b | 3.92 a | 0.40 a | 8.09 b | 94.52 b | 121.37 b |
ES2-Sultanpur (S) | 4.09 c | 3.18 b | 0.37 b | 7.01 c | 88.43 c | 116.38 c |
ES3-Gorakhpur (G) | 6.23 a | 4.01 a | 0.42 a | 8.53 a | 101.02 a | 132.60 a |
Crop species (CS) | ||||||
p-value | 0.74 | 0.04 | 0.03 | 0.05 | 0.04 | 0.01 |
Vigna mungo | 6.30 a | 4.31 a | 0.53 a | 7.88 b | 119.28 a | 167.02 a |
Brassica juncea | 6.28 b | 4.18 b | 0.49 b | 8.91 b | 113.96 b | 151.95 b |
Zea mays | 6.23 b | 4.09 c | 0.43 b | 9.18 a | 110.20 c | 138.39 c |
Years (Y) | ||||||
p-value | 0.05 | 0.04 | 0.57 | 0.95 | 0.02 | 0.04 |
2013 | 4.98 b | 5.27 b | 0.43 a | 8.02 a | 109.84 b | 131.92 a |
2014 | 5.03 a | 6.01 a | 0.47 a | 8.09 a | 117.31 a | 133.74 a |
Interaction results (p-value) | ||||||
SAIs × ES | 0.0382 * | 0.0301 * | 0.6143 ns | 0.5106 ns | 0.0203 ** | 0.0324 * |
SAIs × CS | 0.0291 ** | <0.0112 ** | 0.0274 ** | 0.0351 * | 0.0006 *** | 0.0159 ** |
SAIs × Y | <0.0226 ** | 0.0035 *** | <0.0371 * | 0.0475 * | 0.0121 ** | <0.0248 ** |
ES × CS | ns | ns | ns | ns | ns | ns |
ES × Y | ns | ns | ns | ns | ns | ns |
CS × Y | ns | 0.0489 * | 0.0371 * | ns | 0.0485 * | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Rao, C.S.; Abhilash, P.C. Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India. Agronomy 2021, 11, 402. https://doi.org/10.3390/agronomy11020402
Dubey RK, Dubey PK, Chaurasia R, Rao CS, Abhilash PC. Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India. Agronomy. 2021; 11(2):402. https://doi.org/10.3390/agronomy11020402
Chicago/Turabian StyleDubey, Rama Kant, Pradeep Kumar Dubey, Rajan Chaurasia, Ch Srinivasa Rao, and Purushothaman Chirakkuzhyil Abhilash. 2021. "Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India" Agronomy 11, no. 2: 402. https://doi.org/10.3390/agronomy11020402
APA StyleDubey, R. K., Dubey, P. K., Chaurasia, R., Rao, C. S., & Abhilash, P. C. (2021). Impact of Integrated Agronomic Practices on Soil Fertility and Respiration on the Indo-Gangetic Plain of North India. Agronomy, 11(2), 402. https://doi.org/10.3390/agronomy11020402