The Water Needs of Grapevines in Central Poland
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bokwa, A.; Klimek, M. Warunki klimatyczne Pogórza Wielickiego dla potrzeb uprawy winorośli [Climate conditions of the Wieliczka Foothills for the purposes of viticulture]. In Człowiek i Rolnictwo [Man and Agriculture]; Zborowski, A., Górka, Z., Eds.; IGiGP UJ: Kraków, Poland, 2009; pp. 103–111. [Google Scholar]
- Kopeć, B. Uwarunkowania termiczne wegetacji winorośli na obszarze południowo-wschodniej Polski [Thermal conditions of grape’s vegetation in south-eastern Poland]. Infrastruct. Ecol. Rural Areas 2009, 4, 251–262. [Google Scholar]
- Myśliwiec, R. Uprawa Winorośli [Viticulture]; PWRiL: Warszawa, Poland, 2013. [Google Scholar]
- Adamczewska-Sowińska, K.; Bąbelewski, P.; Chohura, P.; Czaplicka-Pędzich, M.; Gudarowska, E.; Krężel, J.; Mazurek, J.; Sosna, I.; Szewczuk, A. Agrotechniczne Aspekty Uprawy Winorośli [Agrotechnical Aspects of Viticulture]; Druk-24h: Wrocław, Poland, 2016. [Google Scholar]
- Koźmiński, C.; Michalska, B. Atlas Klimatycznego Ryzyka Uprawy Roślin w Polsce [Atlas of Climatic Risk to Crop Cultivation in Poland]; USz: Szczecin, Poland, 2001; pp. 17–18. [Google Scholar]
- Szymanowski, M.; Smaza, M. Zmiana zasobów klimatycznych a możliwości uprawy winorośli na Dolnym Śląsku [Change of climatic resources and possibilities of viticulture in Lower Silesia]. In Proceedings of the XXXII National Congress of Agrometeorologists and Climatologists, Kołobrzeg, Poland, 13–15 September 2007; pp. 69–70. [Google Scholar]
- Łabędzki, L. Foreseen climate changes and irrigation development in Poland. Infrastruct. Ecol. Rural Areas 2009, 3, 7–18. [Google Scholar]
- Łabędzki, L. Expected development of irrigation in Poland in the context of climate change. J. Water Land Dev. 2009, 13, 17–29. [Google Scholar] [CrossRef]
- Lisek, J. Winorośl w Uprawie Przydomowej i Towarowej [Vines in Home and Commercial Cultivation]; Hortpress: Warszawa, Poland, 2011. [Google Scholar]
- Kapłan, M. Możliwości uprawy winorośli w Polsce [Possibilities of viticulture in Poland]. Nauk. Przyr. 2013, 2, 4–12. [Google Scholar]
- Bąk, B.; Łabędzki, L. Thermal conditions in Bydgoszcz region in growing seasons 2011–2050 in view of expected climate change. J. Water Land Dev. 2014, 23, 21–29. [Google Scholar] [CrossRef][Green Version]
- Pink, M. Polska jako kraj winiarski? Od tradycji do rodzących się możliwości [Poland as a wine country? From tradition to emerging possibilities]. Probl. Drob. Gospod. Rol. 2015, 2, 37–56. [Google Scholar]
- Rolbiecki, S.; Piszczek, P. Effect of the forecast climate change on the grapevine water requirements in the Bydgoszcz region. Infrastruct. Ecol. Rural Areas 2016, 4, 1847–1856. [Google Scholar]
- Rojek, M. Potrzeby nawadniania w Polsce [Irrigation needs in Poland]. In Nawadnianie Roślin [Plant Irrigation]; Karczmarczyk, S., Nowak, L., Eds.; PWRiL: Poznań, Poland, 2006; pp. 91–108. [Google Scholar]
- Rzekanowski, C. Kształtowanie się potrzeb nawodnieniowych roślin sadowniczych w Polsce [Shaping of irrigation needs for fruit plants in Poland]. Infrastruct. Ecol. Rural Aeas 2009, 3, 19–27. [Google Scholar]
- Lisek, J. Climatic factors affecting development and yielding of grapevine in Central Poland. J. Fruit Ornam. Plant Res. 2008, 16, 286–293. [Google Scholar]
- Myśliwiec, R. Winorośl i Wina [Vines and Wines]; PWRiL: Warszawa, Poland, 2006; p. 22. [Google Scholar]
- Grabowski, J.; Kopytowski, J. Czas aktywnego wzrostu roślin w Polsce północno-wschodniej, a warunki uprawy winorośli [The time of active plant growth in north-eastern Poland and the conditions of viticulture]. Zesz. Probl. Postep. Nauk Roln. 2009, 536, 87–94. [Google Scholar]
- Słowik, K. Deszczowanie Roślin Sadowniczych [Sprinkling of Fruit Plants]; PWRiL: Warszawa, Poland, 1973. [Google Scholar]
- Dzieżyc, J. Rolnictwo w Warunkach Nawadniania [Irrigationin Agriculture]; PWN: Warszawa, Poland, 1988. [Google Scholar]
- Łabędzki, L.; Szajda, J.; Szuniewicz, J. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania. Przegląd stanu wiedzy [Evapotranspiration of agricultural crops—Terminology, definitions, calculation methods. Review]. IMUZ Falenty 1996, 33, 1–15. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology for Reclaimed Municipal Waste Dumas]; SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Rolbiecki, S. O szacowaniu potrzeb wodnych drzew owocowych w Polsce na podstawie temperatury powietrza [Comparison of sour cherry-tree water requirements in the regions of Bydgoszcz and Wrocław]. Infrastruct. Ecol. Rural Areas 2018, II, 393–406. [Google Scholar]
- Jagosz, B.; Rolbiecki, S.; Stachowski, P.; Ptach, W.; Łangowski, A.; Kasperska-Wołowicz, W.; Sadan, H.A.; Rolbiecki, R.; Prus, P.; Kazula, M.J. Assessment of water needs of grapevines in western Poland from the perspective of climate change. Agriculture 2020, 10, 477. [Google Scholar] [CrossRef]
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; FAO Irrigation and Drainage Paper 24; Food and Agriculture Organization: Rome, Italy, 1977. [Google Scholar]
- Kryza, M.; Szymanowski, M.; Błaś, M.; Migała, K.; Werner, M.; Sobik, M. Observed changes in SAT and GDD and the climatological suitability of the Poland-Germany-Czech Republic transboundary region for wine grapes cultivation. Theor. Appl. Climatol. 2015, 122, 207–218. [Google Scholar] [CrossRef]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Żakowicz, S.; Hewelke, P. Wybrane Materiały Meteorologiczne [Selected Meteorological Materials]; SGGW: Warszawa, Poland, 1995; p. 356. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Produkcyjnej [Basics of Technical Infrastructure in Production Space]; SGGW: Warszawa, Poland, 2009; p. 192. [Google Scholar]
- Rolbiecki, S.; Rzekanowski, C. Influence of sprinkler and drip irrigation on the growth and yield of strawberries grown on sandy soils. Acta Hortic. 1997, 439, 669–672. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of apple trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 929–936. [Google Scholar] [CrossRef]
- Rzekanowski, C.; Rolbiecki, S. The influence of drip irrigation on yields of some cultivars of stone fruit-bearing trees in central Poland under different rainfall conditions during the vegetation season. Acta Hortic. 2000, 537, 937–942. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro-irrigation under loose sandy soil conditions. Acta Hortic. 2002, 585, 649–652. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Effect of micro-irrigation on the growth and yield of raspberry (Rubus idaeus L.) cv. ‘Polana’ grown in very light soil. Acta Hortic. 2002, 585, 653–657. [Google Scholar] [CrossRef]
- Stachowski, P.; Markiewicz, J. The need of irrigation in central Poland on the example of Kutno county. Annu. Set Environ. Prot. 2011, 13, 1453–1472. [Google Scholar]
- Treder, W.; Pacholak, E. Nawadnianie roślin sadowniczych [Irrigation of fruit plants]. In Nawadnianie Roślin [Plant Irrigation]; Karczmarczyk, S., Nowak, L., Eds.; PWRiL: Poznań, Poland, 2006; pp. 333–365. [Google Scholar]
- Ruiz-Sanchez, M.C.; Domingo, R.; Castel, J.R. Deficit irrigation in fruit trees and vines in Spain. Span. J. Agric. Res. 2010, 8, 5–20. [Google Scholar] [CrossRef]
- Yunusa, I.A.M.; Walker, R.R.; Loveys, B.R.; Blackmore, D.H. Determination of transpiration in irrigated grapevines: Comparison of the heat-pulse technique with gravimetric and micrometeorological methods. Irrig. Sci. 2000, 20, 1–8. [Google Scholar] [CrossRef]
- Cifre, J.; Bota, J.; Escalona, J.M.; Medrano, H.; Flexas, J. Phyisological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency? Agric. Ecosyst. Environ. 2005, 106, 159–170. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Burg, P. The influence of drip irrigation on the quality of vine grapes. Acta Univ. Agric. Silvic. Mendel Brun. 2008, 56, 31–36. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Castel, J.R. Effects of irrigation on the performance of grapevine cv. Tempranillo in Requena, Spain. Am. J. Enol. Viticult. 2008, 59, 30–38. [Google Scholar]
- Acevedo-Opazoa, C.; Ortega-Fariasa, S.; Fuentes, S. Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agric. Water Manag. 2010, 97, 956–964. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigues, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef]
- Intrigliolo, D.S.; Pérez, D.; Risco, D.; Yeves, A.; Castel, J.R. Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Sci. 2012, 30, 339–349. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W.; Kammerer, G.; Himmelbauer, M.L. Survey of soil water distribution in a vineyard and implications for subsurface drip irrigation control. Soil Water Res. 2016, 11, 250–258. [Google Scholar] [CrossRef]
- Nolz, R.; Loiskandl, W. Evaluating soil water content data monitored at different locations in a vineyard with regard to irrigation control. Soil Water Res. 2017, 12, 152–160. [Google Scholar] [CrossRef]
- Duchêne, É.; Pieri, F.H.P. Grapevine and climate change: What adaptations of plant material and training systems should we anticipate? Spéc. Laccave J. Int. Sci. Vigne Vin 2014, 3, 61–69. [Google Scholar]
- Kartschall, T.; Wodinski, M.; von Bloh, W.; Oesterle, H.; Rachimow, C.; Hoppmann, D. Changes in phenology and frost risks in Vitis vinifera (cv Riesling) between 1901 and 2100. Meteorol. Z. 2015, 24, 189–200. [Google Scholar] [CrossRef]
- Eccel, E.; Zollo, A.L.; Mercogliano, P.; Zorer, R. Simulations of quantitative shift in bio-climatic indices in the viticultural areas of Trentino (Italian Alps) by an open source R package. Comput. Electron. Agric. 2016, 127, 92–100. [Google Scholar] [CrossRef]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Duchene, E.; Schneider, C. Grapevine and climatic changes: A glance at the situation in Alsace. Agron. Sustain. Dev. 2005, 25, 93–99. [Google Scholar] [CrossRef]
- Neumann, P.A.; Matzarakis, A. Viticulture in southwest Germany under climate change conditions. Clim. Res. 2011, 47, 161–169. [Google Scholar] [CrossRef]
- Goergen, K.; Beersma, L.; Hoffmann, L.; Junk, J. ENSEMBLES-based assessment of regional climate effects in Luxembourg and their impact on vegetation. Clim. Chang. 2013, 119, 761–773. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Piszczek, P.; Chmura, K. Attempt at comparison of the grapevine water requirements in the regions of Bydgoszcz and Wrocław. Infrastruct. Ecol. Rural Areas 2017, III, 1157–1166. [Google Scholar]
- Irimia, L.M.; Patriche, C.V.; Rosca, B. Climate change impact on suitability for wine production in Romania. Theor. Appl. Climatol. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Piña-Rey, A.; González-Fernández, E.; Fernández-González, M.; Lorenzo, M.N.; Rodríguez-Rajo, F.J. Climate change impacts assessment on wine-growing bioclimatic transition areas. Agriculture 2020, 10, 605. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B.; Liszewska, M. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę [Impact of climate change on water demand of late potato]. Infrastruct. Ecol. Rural Areas 2013, 2, 155–165. [Google Scholar]
- Kuchar, L.; Iwański, S. Rainfall simulation for the prediction of crop irrigation in future climate. Infrastruct. Ecol. Rural Areas 2011, 5, 7–18. [Google Scholar]
- Kuchar, L.; Iwański, S. Rainfall evaluation for crop production until 2050-2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2013, 2, 187–200. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Simulation of hydrothermal conditions for crop production purpose until 2050–2060 and selected climate change scenarios for North Central Poland. Infrastruct. Ecol. Rural Areas 2015, II, 319–334. [Google Scholar]
- Kuchar, L.; Iwański, S.; Diakowska, E.; Gąsiorek, E. Assessment of meteorological drought in 2015 for North Central part of Poland using hydrothermal coefficient (HTC) in the context of climate change. Infrastruct. Ecol. Rural Areas 2017, I, 257–273. [Google Scholar]
- Serra, I.; Strever, A.; Myburgh, P.; Deloire, A. Review: The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust. J. Grape Wine Res. 2014, 20, 1–14. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuño, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Kenny, G.J.; Harrison, P.A. The effects of climate variability and change on grape suitability in Europe. J. Wine Res. 1992, 3, 163–183. [Google Scholar] [CrossRef]
Province | Station | Altitude a | Longitude | Latitude |
---|---|---|---|---|
Kuyavian–Pomeranian | Bydgoszcz | 46 | 18°01′ | 53°08′ |
Masovian | Warszawa | 106 | 20°59′ | 52°09′ |
Greater Poland | Poznań | 86 | 16°50′ | 52°25′ |
Lodz | Łódź | 184 | 19°24′ | 51°44′ |
Period | Trend Equation | R2 | Tendency (°C·Decade−1) |
---|---|---|---|
Kuyavian–Pomeranian Province | |||
May–October | y = 0.0272x + 15.070 | R² = 0.2007 *** | 0.3 |
June–August | y = 0.0406x + 17.874 | R² = 0.1952 *** | 0.4 |
July | y = 0.0262x + 19.006 | R² = 0.0339 n.s. | 0.3 |
Masovian Province | |||
May–October | y = 0.0396x + 14.987 | R² = 0.3887 *** | 0.4 |
June–August | y = 0.0577x + 17.720 | R² = 0.3848 *** | 0.6 |
July | y = 0.0477x + 18.813 | R² = 0.1277 ** | 0.5 |
Greater Poland Province | |||
May–October | y = 0.055x + 14.310 | R² = 0.4967 *** | 0.6 |
June–August | y = 0.0739x + 16.813 | R² = 0.448 *** | 0.7 |
July | y = 0.0607x + 17.906 | R² = 0.1516 ** | 0.6 |
Lodz Province | |||
May–October | y = 0.0351x + 14.312 | R² = 0.3518 *** | 0.3 |
June–August | y = 0.0572x + 16.821 | R² = 0.3726 *** | 0.6 |
July | y = 0.0490x + 17.794 | R² = 0.1123 ** | 0.5 |
Characteristic | Province | Months of the Growing Season | |||||
---|---|---|---|---|---|---|---|
May | June | July | August | September | October | ||
Minimum (mm) | K–P a | 39 | 80 | 103 | 91 | 51 | 19 |
M | 41 | 79 | 101 | 92 | 52 | 21 | |
G–P | 37 | 76 | 98 | 90 | 50 | 20 | |
L | 37 | 75 | 96 | 88 | 48 | 19 | |
Maximum (mm) | K–P | 57 | 109 | 133 | 119 | 70 | 34 |
M | 55 | 106 | 132 | 121 | 68 | 34 | |
G–P | 54 | 106 | 133 | 121 | 86 | 35 | |
L | 52 | 103 | 127 | 118 | 67 | 35 | |
Median (mm) | K–P | 48 | 89 | 116 | 104 | 60 | 27 |
M | 48 | 88 | 115 | 105 | 61 | 28 | |
G–P | 47 | 85 | 114 | 103 | 60 | 28 | |
L | 45 | 84 | 110 | 102 | 58 | 27 | |
Standard deviation (mm) | K–P | 3.5 | 5.3 | 6.9 | 5.6 | 4.4 | 3.7 |
M | 3.1 | 5.2 | 6.4 | 5.4 | 4.4 | 3.5 | |
G–P | 3.4 | 5.8 | 7.5 | 6.2 | 6.3 | 3.7 | |
L | 3.2 | 5.2 | 7.0 | 5.4 | 4.6 | 3.6 | |
Variability coefficient (%) | K–P | 7.4 | 6.0 | 6.0 | 5.4 | 7.4 | 14.2 |
M | 6.5 | 5.9 | 5.6 | 5.1 | 7.3 | 12.6 | |
G–P | 7.4 | 6.8 | 6.7 | 6.0 | 10.3 | 13.1 | |
L | 7.0 | 6.2 | 6.3 | 5.3 | 7.8 | 13.5 |
Period | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear Correlation Coefficient (r) | ||||
May–October | 0.191 n.s. | 0.450 *** | 0.194 n.s. | 0.196 n.s. |
June–August | 0.080 n.s. | 0.261 n.s. | 0.028 n.s. | 0.068 n.s. |
July | 0.117 n.s. | 0.185 n.s. | 0.127 n.s. | 0.030 n.s. |
Tendency of Rainfall (mm decade−1) | ||||
May–October | 15.5 | 38.3 | 14.9 | 15.2 |
June–August | 5.1 | 16.5 | 1.7 | –3.9 |
July | 4.1 | 8.7 | 5.5 | –1.2 |
Period | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
Linear Correlation Coefficient (r) | ||||
May–October | 0.456 *** | 0.644 *** | 0.701 *** | 0.610 *** |
June–August | 0.429 *** | 0.614 *** | 0.660 *** | 0.598 *** |
July | 0.184 n.s. | 0.357 ** | 0.389 ** | 0.335 ** |
Tendency of Water Needs (mm decade−1) | ||||
May–October | 5.8 | 8.4 | 11.5 | 7.6 |
June–August | 4.6 | 6.6 | 8.4 | 6.5 |
July | 1.1 | 2.0 | 2.5 | 2.0 |
Probability of Rainfall Deficit Occurrence | Provinces | |||
---|---|---|---|---|
Kuyavian–Pomeranian | Masovian | Greater Poland | Lodz | |
May–October | ||||
N50% = normal years | 133 | 100 | 126 | 103 |
N25% = medium dry years | 254 | 251 | 262 | 232 |
N10% = very dry years | 330 | 363 | 296 | 300 |
June–August | ||||
N50% = normal years | 117 | 92 | 106 | 95 |
N25% = medium dry years | 200 | 194 | 194 | 175 |
N10% = very dry years | 260 | 303 | 225 | 242 |
July | ||||
N50% = normal years | 37 | 35 | 31 | 30 |
N25% = medium dry years | 95 | 87 | 81 | 88 |
N10% = very dry years | 129 | 122 | 99 | 132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Łangowski, A.; Sadan, H.A.; Ptach, W.; Stachowski, P.; Kasperska-Wołowicz, W.; Pal-Fam, F.; Liberacki, D. The Water Needs of Grapevines in Central Poland. Agronomy 2021, 11, 416. https://doi.org/10.3390/agronomy11030416
Jagosz B, Rolbiecki S, Rolbiecki R, Łangowski A, Sadan HA, Ptach W, Stachowski P, Kasperska-Wołowicz W, Pal-Fam F, Liberacki D. The Water Needs of Grapevines in Central Poland. Agronomy. 2021; 11(3):416. https://doi.org/10.3390/agronomy11030416
Chicago/Turabian StyleJagosz, Barbara, Stanisław Rolbiecki, Roman Rolbiecki, Ariel Łangowski, Hicran A. Sadan, Wiesław Ptach, Piotr Stachowski, Wiesława Kasperska-Wołowicz, Ferenc Pal-Fam, and Daniel Liberacki. 2021. "The Water Needs of Grapevines in Central Poland" Agronomy 11, no. 3: 416. https://doi.org/10.3390/agronomy11030416
APA StyleJagosz, B., Rolbiecki, S., Rolbiecki, R., Łangowski, A., Sadan, H. A., Ptach, W., Stachowski, P., Kasperska-Wołowicz, W., Pal-Fam, F., & Liberacki, D. (2021). The Water Needs of Grapevines in Central Poland. Agronomy, 11(3), 416. https://doi.org/10.3390/agronomy11030416