Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Plants
2.2. Experimental Solutions
2.3. Germination and Seedlings Development
2.4. Plantlet Growth Assessments
2.5. Statistical Analysis
3. Results
3.1. Osmotic and Ionic Effects on Germination
3.2. Effects of NaCl and Brine on Seedling Stage
3.3. Effect of NaCl and Brine on Plantlet Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladeiro, B. Saline agriculture in the 21st century: Using salt contaminated resources to cope food requirements. J. Bot. 2012, 2012, 310705. [Google Scholar] [CrossRef]
- Bencherif, K.; Boutekrabt, A.; Fontaine, J.; Laruelle, F.; Dalpè, Y.; Lounès-Hadj Sahraoui, A. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci. Total Environ. 2015, 533, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. CRC Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Chandrasekaran, M.; Boughattas, S.; Hu, S.; Oh, S.-H.; Sa, T. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 2014, 24, 611–625. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Rha, E.S. The effect of salinity (NaCl) on the germination and seedling of sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea L.). Korean J. Plant Res. 2004, 7, 226–232. [Google Scholar]
- Ajithkumar, P.I.; Ibadapbiangshylla. Morphological and biochemical response to salinity stress on Setaria italic Seedlings. J. Appl. Adv. Res. 2017, 2, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A.; Emam, Y.; Pessarakli, M. Response of various cultivars of wheat and maize to salinity stress. J. Food Agric. Environ. 2009, 7, 123–128. [Google Scholar] [CrossRef]
- Arzani, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell. Dev. Biol.-Plant 2008, 44, 373–383. [Google Scholar] [CrossRef]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Zeng, L.; Shannon, M.C.; Grieve, C.M. Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica 2002, 127, 235–245. [Google Scholar] [CrossRef]
- Zörb, C.; Geilfus, C.-M.; Dietz, K.-J. Salinity and crop yield. Plant Biol. 2018, 21 (Suppl. S1), 31–38. [Google Scholar] [CrossRef]
- Konuşkan, Ö.; Gözübenli, H.; Atiş, İ.; Atak, M. Effects of Salinity Stress on Emergence and Seedling Growth Parameters of Some Maize Genotypes (Zea mays L.). TURJAF 2017, 5, 1668–1672. [Google Scholar] [CrossRef] [Green Version]
- Cuartero, J.; Bolarín, M.C.; Asíns, M.J.; Moreno, V. Increasing salt tolerance in the tomato. J. Exp. Bot. 2006, 57, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Rajabi Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Cardenas Perez, S.; Piernik, A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 2020, 10, 859. [Google Scholar] [CrossRef]
- Piernik, A.; Hrynkiewicz, K.; Wojciechowska, A.; Szymańska, S.; Lis, M.I.; Muscolo, A. Effect of halotolerant endophytic bacteria isolated from Salicornia europaea L. on the growth of fodder beet (Beta vulgaris L.) under salt stress. Arch. Agron. Soil Sci. 2017, 63, 1404–1418. [Google Scholar] [CrossRef]
- Eker, S.; Cömertpay, G.; Konuşkan, Ö.; Ülger, A.C.; Öztürk, L.; Çakmak, I. Effect of Salinity Stress on Dry Matter Production and Ion Accumulation in Hybrid Maize Varieties. Turk. J. Agric. For. 2006, 30, 365–373. [Google Scholar]
- Mbarki, S.; Skalicky, M.; Vachova, P.; Hajihashemi, S.; Jouini, L.; Zivcak, M.; Tlustos, P.; Brestic, M.; Hejnak, V.; Khelil, A.Z. Comparing Salt Tolerance at Seedling and Germination Stages in Local Populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 2020, 9, 526. [Google Scholar] [CrossRef] [Green Version]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Hakim, M.A.; Juraimi, A.S.; Begum, M.; Hanafi, M.M.; Mohd, R.I.; Selamat, A. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). Afr. J. Biotechnol. 2010, 9, 1911–1918. [Google Scholar] [CrossRef]
- Angessa, T.T.; Zhang, X.-Q.; Zhou, G.; Broughton, S.; Zhang, W.; Li, C. Early growth stages salinity stress tolerance in CM72 x Gairdner doubled haploid barley population. PLoS ONE 2017, 12, e0179715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abo-Kassem, E.E.-D.M. Effects of salinity: Calcium interaction of growth and nucleic acid metabolism in five species of Chenopodiaceae. Turk. J. Bot. 2007, 31, 125–134. [Google Scholar]
- Zhang, H.; Irving, L.J.; McGill, C.; Matthew, C.; Zhou, D.; Kemp, P. The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator. Ann. Bot. 2010, 106, 1027–1035. [Google Scholar] [CrossRef]
- Fricke, W.; Akhiyarova, G.; Wei, W.; Alexandersson, E.; Miller, A.; Kjellbom, P.O.; Richardson, A.; Wojciechowski, T.; Schreiber, L.; Veselov, D.; et al. The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 2006, 57, 1079–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colmer, T.D.; Munns, R.; Flowers, T.J. Improving salt tolerance of wheat and barley: Future prospects. Aust. J. Exp. Agric. 2005, 45, 1425–1443. [Google Scholar] [CrossRef]
- Heuer, B. Photosynthetic carbon metabolism of crops under salt stress. In Handbook of Photosynthesis; Pessarakli, M., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 779–792. [Google Scholar]
- Sage, R.F.; Sage, T.L.; Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Annu. Rev. Plant Biol. 2012, 63, 19–47. [Google Scholar] [CrossRef] [PubMed]
- Christin, P.-A.; Osborne, C.P.; Chatelet, D.S.; Columbus, J.T.; Besnard, G.; Hodkinson, T.R.; Garrison, L.M.; Vorontsova, M.S.; Edwards, E.J. Anatomical enablers and the evolution of C4 photosynthesis in grasses. Proc. Natl. Acad. Sci. USA 2013, 110, 1381–1386. [Google Scholar] [CrossRef] [Green Version]
- Voronin, P.Y.; Manzhulin, A.V.; Myasoedov, N.A.; Balkonin, Y.V.; Terenteva, E.I. Morphological types and photosynthesis of C4 plant leaves under long-term soil salinity. Russ. J. Plant Physiol. 1995, 42, 310–320. [Google Scholar]
- Eallonardo, A.S.; Leopold, D.J.; Fridley, J.D.; Stella, J.C. Salinity tolerance and the decoupling of resource axis plant traits. J. Veg. Sci. 2013, 24, 365–374. [Google Scholar] [CrossRef]
- Lefèvre, I.; Gratia, E.; Lutts, S. Discrimination between the ionic and osmotic components of salt stress in relation to free polyamine level in rice (Oryza sativa). Plant Sci. 2001, 161, 943–952. [Google Scholar] [CrossRef]
- Zhu, J.-K. Abiotic stress signaling and responses in plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Loupassaki, M.; Bertaki, M.; Androulakis, I. Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Sci. Hortic. 2002, 96, 235–247. [Google Scholar] [CrossRef]
- Arbona, V.; Flors, V.; Jacas, J.; García-Agustín, P.; Gómez-Cadenas, A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol. 2003, 44, 388–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrecillas, A.; Rodríguez, P.; Sánchez-Blanco, M.J. Comparison of growth, leaf water relations and gas exchange of Cistus albidus and C. monspeliensis plants irrigated with water of different NaCl salinity levels. Sci. Hort. 2003, 97, 353–368. [Google Scholar] [CrossRef]
- Sánchez-Blanco, M.J.; Rodríguez, P.; Olmos, E.; Morales, M.A.; Torrecillas, A. Differences in the Effects of Simulated Sea Aerosol on Water Relations, Salt Content, and Leaf Ultrastructure of Rock-Rose Plants. J. Environ. Qual. 2004, 33, 1369–1375. [Google Scholar] [CrossRef] [Green Version]
- Alarcón, J.J.; Morales, M.A.; Ferrández, T.; Sánchez-Blanco, M.J. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006, 81, 845–853. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl– ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef] [Green Version]
- Orlovsky, N.; Japakova, U.; Zhang, H.; Volis, S. Effect of salinity on seed germination, growth and ion content in dimorphic seeds of Salicornia europaea L. (Chenopodiaceae). Plant Divers. 2016, 38, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fatemi, F.; Hashemi-Petroudi, S.H.; Nematzadeh, G.; Askari, H.; Abdollahi, M.R. Exploiting differential gene expression to discover ionic and osmotic-associated transcripts in the halophyte grass Aeluropus littoralis. Biol. Proced. Online 2019, 21, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Valdez-Aguilar, L.A.; Grieve, C.M.; Razak-Mahar, A.; McGiffen, M.E.; Merhaut, D.J. Growth and ion distribution is affected by irrigation with saline water in selected landscape species grown in two consecutive growing seasons: Spring–summer and fall–winter. HortScience 2011, 46, 632–642. [Google Scholar] [CrossRef] [Green Version]
- Zohary, D.; Hopf, M. Domestication of plants in the Old World, 3rd ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Arzani, A.; Ashraf, M. Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comp. Rev. Food Sci. Food Saf. 2017, 16, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Baltensperger, D.D. Progress with proso, pearl and other millets. In Trends in New Crops and New Uses, Proceedings of the Fifth National Symposium, Atlanta, GA, USA, 10–13 November 2001; Janick, J., Whipkey, A., Eds.; ASHS Press: Alexandria, VA, USA, 2002; pp. 100–103. [Google Scholar]
- Hodowla Roślin Smolice Sp. z o.o. Available online: https://www.hrsmolice.pl/ (accessed on 3 December 2020).
- Hodowla Roślin Strzelce Sp. z o.o. Available online: https://hr-strzelce.pl/ (accessed on 3 December 2020).
- International Seed Testing Association. International rules for seed testing. Rules 1985. Seed Sci. Technol. 1985, 13, 299–520. [Google Scholar]
- Soil Survey Staff. Kellogg Soil Survey Laboratory Methods Manual. In Soil Survey Investigations Report No. 42, Version 5.0; Burt, R., Soil Survey Staff, Eds.; USDA NRCS: Lincoln, NE, USA, 2014; pp. 1–1002. [Google Scholar]
- Abdul-Baki, A.A.; Anderson, J.D. Vigor determination in soybean seed by multiple criteria. Crop Sci. 1973, 13, 630–633. [Google Scholar] [CrossRef]
- Black, M.; Pritchard, H.W. (Eds.) Desiccation and Survival in Plants. Drying without Dying; CABI Publishing: New York, NY, USA, 2003. [Google Scholar]
- Statsoft, Inc. STATISTICA (Data Analysis Software System), version 7.0; Statsoft, Inc.: Tulsa, OK, USA, 2006. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Manual and User’s Guide: Software Ordination (Version 5.0); Biometrics: Wageningen, The Netherlands; České Budějovice, Czech Republic, 2012. [Google Scholar]
- Kamkar, B.; Vakili, S.; Mirizadeh, A. Effects of salinity and temperature on germination of three millet varieties. J. Seed Sci. Biotechnol. 2009, 2, 35–39. [Google Scholar]
- Nedjimi, B. Effect of salinity and temperature on germination of Lygeum spartum. Agric. Res. 2013, 2, 340–345. [Google Scholar] [CrossRef] [Green Version]
- Ghoulam, C.; Fares, K. Effect of salinity on seed germination and early seedling growth of sugar beet (Beta vulgaris L.). Seed Sci. Technol. 2001, 29, 357–364. [Google Scholar]
- Szymańska, S.; Dąbrowska, G.B.; Tyburski, J.; Niedojadło, K.; Piernik, A.; Hrynkiewicz, K. Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environ. Exp. Bot. 2019, 163, 55–68. [Google Scholar] [CrossRef]
- Rahman, M.; Kayani, S.A.; Gul, S. Combined effects of temperature and salinity stress on corn cv. Sunahry. Pak. J. Biol. Sci. 2000, 3, 1459–1463. [Google Scholar] [CrossRef]
- Almansouri, M.; Kinet, J.M.; Lutts, S. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 2001, 231, 243–254. [Google Scholar] [CrossRef]
- Sozharajan, R.; Natarajan, S. Germination and seedling growth of Zea mays L. under different levels of sodium chloride stress. Int. Lett. Nat. Sci. 2014, 12, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, E.C.; Custódio Nogueira, R.J.M.; de Araújo, F.P.; de Melo, N.F.; de Azevedo Neto, A.D. Physiological responses to salt stress in young umbu plants. Environ. Exp. Bot. 2008, 63, 147–157. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Denden, M.; Ayeb, N.E. Changes in fatty acids composition, hydrogen peroxide generation and lipid peroxidation of salt-stressed corn (Zea mays L.) roots. Acta Physiol. Plant. 2009, 31, 787–796. [Google Scholar] [CrossRef]
- Liu, M.; Qiao, Z.; Zhang, S.; Wang, Y.; Lu, P. Response of broomcorn millet (Panicum miliaceum L.) genotypes from semiarid regions of China to salt stress. Crop J. 2015, 3, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Panuccio, M.R.; Jacobsen, S.E.; Akhtar, S.S.; Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 2014, 6, plu047. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef]
- Tsegay, B.A.; Gebreslassie, B. The effect of salinity (NaCl) on germination and early seedling growth of Lathyrus sativus and Pisum sativum var. abyssinicum. Afr. J. Plant Sci. 2014, 8, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Juraimi, A.S.; Rafii, M.Y.; Hamid, A.A.; Aslani, F.; Hakim, M.A. Salinity-induced changes in the morphology and major mineral nutrient composition of purslane (Portulaca oleracea L.) accessions. Biol. Res. 2016, 49, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anuradha, C. Effect of salt stress on seedling growth of sunflower (Helianthus annuus L.). Biotechnology 2014, 3, 15–22. [Google Scholar]
- Mu, Y.; Lin, J.; Mu, C.; Gao, Z. Effects of NaCl stress on the growth and physiological changes in oat (Avena sativa) seedlings. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Yousofinia, M.; Ghassemian, A.; Sofalian, O.; Khomari, S. Effects of salinity stress on barley (Hordeum vulgare L.) germination and seedling growth. Int. J. Agric. Crop Sci. (IJACS) 2012, 4, 1353–1357. [Google Scholar]
- Gururaja Rao, G.; Patel, P.R.; Bagdi, D.L.; Chinchmalatpure, A.R.; Nayak, A.K.; Khandelwal, M.K.; Meena, R.L. Effect of saline water irrigation on growth ion content and forage yield of halophytic grasses grown on saline black soil. Indian J. Plant Physiol. 2005, 10, 315–321. [Google Scholar]
- Halima, N.B.; Saad, R.B.; Slima, A.B.; Khemakhem, B.; Fendri, I.; Abdelkafi, S. Effect of salt stress on stress-associated genes and growth of Avena sativa L. ISESCO J. Sci. Technol. 2014, 10, 73–80. [Google Scholar]
- Munns, R.; James, R.A.; Läuchli, A. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 2006, 57, 1025–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghannoum, O. C4 photosynthesis and water stress. Ann. Bot. 2009, 103, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.P.; Freckleton, R.P. Ecological selection pressures for C4 photosynthesis in the grasses. Proc. R. Soc. B Biol. Sci. 2009, 276, 1753–1760. [Google Scholar] [CrossRef] [Green Version]
- Vitkauskaitė, G.; Venskaitytė, L. Differences between C3 (Hordeum vulgare L.) and C4 (Panicum miliaceum L.) plants with respect to their resistance to water deficit. Žemdirbystė-Agriculture 2011, 98, 349–356. [Google Scholar]
- Shahid, M.A.; Pervez, M.A.; Ashraf, M.Y.; Ayyub, C.M.; Ashfaq, M.; Mattson, N.S. Characterization of salt tolerant and salt sensitive pea (Pisum sativum L.) genotypes under saline regime. Pak. J. Life Soc. Sci. 2011, 9, 145–152. [Google Scholar]
- Almodares, A.; Hadi, M.R.; Dosti, B. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J. Biol. Sci. 2007, 7, 1492–1495. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Khaliq, A.; Matloob, A.; Wahid, M.A.; Afzal, I. Germination and growth response of three wheat cultivars to NaCl salinity. Soil Environ. 2013, 32, 36–43. [Google Scholar]
- Sánchez-Lizaso, J.L.; Romero, J.; Ruiz, J.; Gacia, E.; Buceta, J.L.; Invers, O.; Fernández Torquemada, J.; Mas, J.; Ruiz-Mateo, A.; Manzanera, M. Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: Recommendations to minimize the impact of brine discharges from desalination plants. Desalination 2008, 221, 602–607. [Google Scholar] [CrossRef]
- García-Morales, S.; Gómez-Merino, F.C.; Trejo-Téllez, L.I.; Tavitas-Fuentes, L.; Hernández-Aragón, L. Osmotic stress affects growth, content of chlorophyll, abscisic acid, Na+, and K+, and expression of novel NAC genes in contrasting rice cultivars. Biol. Plant. 2018, 62, 307–317. [Google Scholar] [CrossRef]
- Kumari, A.; Jewaria, P.K.; Bergmann, D.C.; Kakimoto, T. Arabidopsis Reduces Growth Under Osmotic Stress by Decreasing SPEECHLESS Protein. Plant Cell Physiol. 2014, 55, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Osakabe, Y.; Arinaga, N.; Umezawa, T.; Katsura, S.; Nagamachi, K.; Tanaka, H.; Ohiraki, H.; Yamada, K.; Seo, S.-U.; Abo, M.; et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 2013, 25, 609–624. [Google Scholar] [CrossRef] [Green Version]
- Debez, A.; Ben Hamed, K.; Grignon, C.; Abdelly, C. Salinity effects on germination, growth, and seed production of the halophyte Cakile maritima. Plant Soil 2004, 262, 179–189. [Google Scholar] [CrossRef]
RL | SL | TL | SVI | |
---|---|---|---|---|
Hordeum vulgare | ||||
Control | 73.5 b ± 0.8 | 112.7 b ± 1.8 | 186.2 b ± 2.5 | 17357 b ± 645 |
Brine | 47.4 a ± 1.6 | 79.9 a ± 1.7 | 127.3 a ± 3.2 | 12524 a ± 438 |
NaCl | 52.9 a ± 4.9 | 80.1 a ± 1.3 | 133.0 a ± 4.6 | 12788 a ± 384 |
ANOVA | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 |
Avena sativa | ||||
Control | 83.5 b ± 6.5 | 76.6 b ± 0.9 | 160.1 b ± 7.5 | 15461 b ± 514 |
Brine | 30.4 a ± 5.0 | 34.2 a ± 3.4 | 4.6 a ± 8.2 | 5839 a ± 856 |
NaCl | 30.6 a ± 7.5 | 32.5 a ± 8.4 | 63.1 a ± 15.8 | 5745 a ± 1375 |
ANOVA | p < 0.01 | p < 0.01 | p < 0.001 | p < 0.001 |
Panicum miliaceum | ||||
Control | 43.6 a ± 4.8 | 19.6 a ± 1.2 | 63.2 a ± 4.7 | 2893 a ± 547 |
Brine | 48.3 a ± 10.6 | 20.8 a ± 2.1 | 69.0 a ± 12.2 | 2693 a ± 303 |
NaCl | 50.6 a ± 12.3 | 23.0 a ± 1.2 | 73.6 a ± 13.5 | 2817 a ± 860 |
ANOVA | NS | NS | NS | NS |
Zea mays | ||||
Control | 151.9 b ± 11.7 | 47.7 b ± 3.3 | 199.7 b ± 15.0 | 19606 b ± 1332 |
Brine | 52.9 a ± 6.0 | 25.7 a ± 3.8 | 78.5 a ± 8.3 | 4994 a ± 625 |
NaCl | 53.2 a ± 3.6 | 23.1 a ± 0.3 | 76.3 a ± 3.8 | 5991 a ± 683 |
ANOVA | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.001 |
n | NoL [n] | RL [mm] | SL [mm] | PL [mm] | Wf [g·plant−1] | Wd [g·plant−1] | SLA [cm2·g−1] | LWR [g · g−1] | RWR [g · g−1] | TWC [%] | TWCs [%] | TWCr [%] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hordeum vulgare | |||||||||||||
Control | 25 | 5.4 b ± 0.2 | 169 b ± 10 | 127 a ± 14 | 296 b ± 12 | 1.422 b ± 0.127 | 0.178 b ± 0.001 | 569 a ± 25 | 0.506 a ± 0.016 | 0.156 a ± 0.008 | 87 b ± 0.3 | 88 b ± 0.4 | 74 b ± 3 |
Brine | 17 | 4.5 a ± 0.2 | 125 a ± 5 | 126 a ± 7 | 251 a ± 7 | 0.936 a ± 0.007 | 0.099 a ± 0.007 | 625 a ± 19 | 0.556 b ± 0.001 | 0.168 a ± 0.001 | 88 b ± 0.5 | 88 b ± 0.2 | 81 b ± 3 |
NaCl | 15 | 4.5 a ± 0.2 | 114 a ± 5 | 129 a ± 16 | 243 a ± 12 | 0.762 a ± 0.080 | 0.112 a ± 0.001 | 566 a ± 15 | 0.548 ab ± 0.010 | 0.179 a ± 0.013 | 84 a ± 0.6 | 86 a ± 0.4 | 58 a ± 7 |
ANOVA | p < 0.001 | p < 0.001 | NS | p < 0.01 | p < 0.001 | p < 0.001 | NS | p < 0.05 | NS | p < 0.001 | p < 0.001 | p < 0.01 | |
Avena sativa | |||||||||||||
Control | 15 | 5.6 b ± 0.2 | 106 a ± 13 | 161 a ± 21 | 266 a ± 23 | 0.614 a ± 0.092 | 0.088 a ± 0.011 | 547 a ± 22 | 0.564 a ± 0.012 | 0.079 a ± 0.010 | 86 a ± 0.8 | 87 a ± 0.8 | 17 a ± 4 |
Brine | 5 | 4.4 a ± 0.5 | 113 a ± 29 | 145 a ± 21 | 258 a ± 25 | 0.479 a ± 0.145 | 0.080 a ± 0.023 | 503 a ± 40 | 0.528 a ± 0.018 | 0.134 b ± 0.014 | 82 a ± 1 | 84 a ± 1 | 15 a ± 4 |
NaCl | 3 | 5.7 b ± 0.3 | 158 a ± 9 | 169 a ± 9 | 327 a ± 12 | 0.787 a ± 0.063 | 0.133 a ± 0.007 | 488 a ± 20 | 0.536 a ± 0.007 | 0.092 ab ± 0.003 | 83 a ± 0.4 | 84 a ± 0.5 | 47 b ± 7 |
ANOVA | p < 0.05 | NS | NS | NS | NS | NS | NS | NS | p < 0.05 | NS | NS | p < 0.013 | |
Panicum miliaceum | |||||||||||||
Control | 30 | 3.1 a ± 0.1 | 89 b ± 6 | 25 b ± 1 | 86 b ± 3 | 0.088 a ± 0.004 | 0.0088 a ± 0.0003 | 1087 a ± 88 | 0.433 a ± 0.011 | 0.379 b ± 0.014 | 88 a ± 0.8 | 92 a ± 0.1 | 60 a ± 3 |
Brine | 19 | 3.4 b ± 0.1 | 50 a ± 5 | 20 a ± 1 | 75 b ± 3 | 0.089 a ± 0.004 | 0.0093 a ± 0.0002 | 907 a ± 47 | 0.471 a ± 0.012 | 0.322 a ± 0.015 | 89 a ± 0.4 | 92 a ± 0.2 | 62 a ± 2 |
NaCl | 12 | 3.2 b ± 0.1 | 48 a ± 4 | 22 b ± 2 | 71 a ± 4 | 0.075 a ± 0.006 | 0.0079 a ± 0.0004 | 1074 a ± 82 | 0.449 a ± 0.014 | 0.348 ab ± 0.015 | 89 a ± 0.5 | 92 a ± 0.4 | 63 a ± 3 |
ANOVA | p < 0.05 | p < 0.001 | p < 0.05 | p < 0.05 | NS | NS | NS | NS | p < 0.05 | NS | NS | NS | |
Zea mays | |||||||||||||
Control | 23 | 4.7 a ± 0.3 | 150 a ± 15 | 210 a ± 31 | 352 a ± 41 | 2.010 a ± 0.394 | 0.407 a ± 0.033 | 860 a ± 40 | 0.202 a ± 0.0030 | 0.710 a ± 0.004 | 76 b ± 2 | 91 a ± 0.2 | 53 a ± 4 |
Brine | 3 | 2.7 a ± 0.3 | 76.3 a ± 17 | 30.0 a ± 15 | 106 a ± 15 | 0.700 a ± 0.138 | 0.292 a ± 0.018 | 813 a ± 262 | 0.031 a ± 0.011 | 0.939 a ± 0.020 | 56 a ± 7 | 87 a ± 5 | 46 a ± 5 |
NaCl | 3 | 3.0 a ± 0.6 | 71.3 a ± 9 | 70.3 a ± 32 | 142 a ± 36 | 0.757 a ± 0.132 | 0.275 a ± 0.024 | 1158 a ± 12 | 0.049 a ± 0.022 | 0.915 a ± 0.036 | 62 ab ± 6 | 91 a ± 1 | 48 a ± 3 |
ANOVA | NS | NS | NS | NS | NS | NS | NS | NS | NS | p < 0.05 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludwiczak, A.; Osiak, M.; Cárdenas-Pérez, S.; Lubińska-Mielińska, S.; Piernik, A. Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More? Agronomy 2021, 11, 435. https://doi.org/10.3390/agronomy11030435
Ludwiczak A, Osiak M, Cárdenas-Pérez S, Lubińska-Mielińska S, Piernik A. Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More? Agronomy. 2021; 11(3):435. https://doi.org/10.3390/agronomy11030435
Chicago/Turabian StyleLudwiczak, Agnieszka, Monika Osiak, Stefany Cárdenas-Pérez, Sandra Lubińska-Mielińska, and Agnieszka Piernik. 2021. "Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More?" Agronomy 11, no. 3: 435. https://doi.org/10.3390/agronomy11030435
APA StyleLudwiczak, A., Osiak, M., Cárdenas-Pérez, S., Lubińska-Mielińska, S., & Piernik, A. (2021). Osmotic Stress or Ionic Composition: Which Affects the Early Growth of Crop Species More? Agronomy, 11(3), 435. https://doi.org/10.3390/agronomy11030435