Principles and Prospects of Prunus Cultivation in Greenhouse
Abstract
:1. Introduction
2. Main Factors Involved in the Cultivation of Fruit Trees in the Greenhouse
2.1. Planting Systems and Growth Substrates
2.2. Rootstock and Cultivar Selection
2.3. Pollination Management
2.4. Summer Pruning and Stem Girdling
2.5. Temperature and Humidity Control
2.6. Solar Radiation, Photosynthetic Capacity, and Carbon Dioxide Concentration
3. Main Benefits of Planting Fruit Trees in the Greenhouse
3.1. Precocity and Time of Harvesting
3.2. Fruit Quality, Storage Life, and Market Proximity
3.3. Pests, Diseases Control, and Organic Culture
4. Main Handicaps of Production in the Greenhouse
4.1. Light Scarcity in High Latitudes
4.2. How to Break Bud Dormancy in Greenhouse Conditions?
4.3. High Temperature in Greenhouse in Warm Conditions
4.4. The Amount of CO2
4.5. Fruit Quality, Coloring, and Aroma Compounds
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaulis, N.J. Tree and soil response to cultural treatments of peach in South Central Pennsylvania. Proc. Am. Soc. Hortic. Sci. 1946, 48, 26–31. [Google Scholar]
- Martínez-Gómez, P.; Sozzi, G.O.; Sánchez-Pérez, R.; Rubio, M.; Gradziel, T.M. New approaches to Prunus tree crop breeding. J. Food Agric. Environ. 2003, 1, 52–63. [Google Scholar]
- Robinson, T.L. Recent advances and future directions in orchard planting systems. Acta Hortic. 2004, 732, 367–381. [Google Scholar] [CrossRef]
- Slathia, D.; Reshi, M.; Hussain, S. Protected cultivation of ornamentals. Glob. J. Bio-Sci. Biotech. 2018, 7, 302–311. [Google Scholar]
- Aman, A.; Sinha, S.; Rajan, R. Potentiality of protected cultivation in fruit crops: An overview. J. Pharmacogn. Phytochem. 2018, 7, 3557–3560. [Google Scholar]
- Peaches in Greenhouses in China. Available online: https://www.growingproduce.com/fruits/stone-fruit/peaches-in-greenhouses-in-china/ (accessed on 24 February 2021).
- Layne, D.R.; Wang, Z.; Niu, L. Protected cultivation of peach and nectarine in China–Industry observations and assessments. J. Amer. Pomol. Soc. 2013, 6, 18–28. [Google Scholar]
- Gao, H.; Wang, S.; Wang, J. Fruit protected cultivation in China. Acta Hortic. 2004, 633, 59–66. [Google Scholar] [CrossRef]
- Kamota, F. Protected cultivation of fruit trees in Japan. J. Agric. Meteorol. 1987, 42, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Japan: Peaches Grow in Small Paper Bags. Available online: https://www.freshplaza.com/article/2098950/japan-peaches-grow-in-small-paper-bags/ (accessed on 24 February 2021).
- España: Arranca la Cosecha de Las Primeras Nectarinas y Melocotones de Invernadero. Available online: https://www.freshplaza.es/article/9089931/espana-arranca-la-cosecha-de-las-primeras-nectarinas-y-melocotones-de-invernadero/ (accessed on 24 February 2021).
- Caruso, T.; Giovannini, D.; Marra, F.P.; Sottile, F. Planting density, above-ground dry-matter partitioning and fruit quality in greenhouse-grown Flordaprince’ peach (Prunus persica L. Batsch) trees trained to “free-standing Tatura”. J. Hortic. Sci. Biotech. 1999, 74, 547–552. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, D.; Li, D.; Li, X. Studies on developments of quality physiology of peach in greenhouse. Chin. Agric. Sci. Bull. 2005, 28, 286–288. [Google Scholar]
- Caruso, T.; Barone, E. Aspetti e problemi della peschicoltura protetta. Riv. Fruttic. 1993, 4, 43–53. (In Italian) [Google Scholar]
- Haoyuan, S.; Yuzhu, W.; Li, Y.; Zhenru, L. Some factors influencing greenhouse apricot production in Beijing. In Proceedings of the 2nd Conference on Key Technology of Horticulture, Beijing, China, 17–18 July 2010; pp. 11–15. [Google Scholar]
- Alganci, U.; Sertel, E.; Kaya, S.; Üstündağ, B. A research on agricultural mapping capabilities of the SPOT 6 satellite images. In Proceedings of the Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Fairfax, VA, USA, 12–16 August 2013; pp. 93–96. [Google Scholar]
- Gruda, N.; Qaryouti, M.M.; Leonardi, C. Growing media. In Good Agricultural Practices for Greenhouse Vegetable Crops; FAO: Rome, Italy, 2013; pp. 271–302. [Google Scholar]
- Allaire, S.E.; Caron, J.; Duchesne, I.; Parent, L.E.; Rioux, J.A. Air-filled porosity, gas relative diffusivity and tortuosity: Indices of Prunus × cistena sp. growth in peat substrates. J. Am. Soc. Hortic. Sci. 1996, 121, 236–242. [Google Scholar] [CrossRef]
- Savvas, D.; Gianquinto, G.; Tuzel, Y.; Gruda, N. Soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Crops; FAO: Rome, Italy, 2013; pp. 303–354. [Google Scholar]
- Jones, J.B. Hydroponics: A practical Guide for the Soilless Grower; CRC Press: New York, NY, USA, 2005; p. 352. [Google Scholar]
- Keith, R. How-To Hydroponics; The Futuregarden, Inc.: New York, NY, USA, 2003; p. 435. [Google Scholar]
- Leonardi, C.; Maggio, A. Choice of species and cultivars for protected cultivation. In Good Agricultural Practices for Greenhouse Vegetable Crops; FAO: Rome, Italy, 2013; pp. 97–108. [Google Scholar]
- Muñoz-Sanz, J.V.; Zuriaga, E.; Cruz-García, F.; McClure, B.; Romero, C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. Front. Plant Sci. 2000, 11, 195. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, J.; Herrero, M. Evaluation of pollination as the cause of erratic fruit set in apricot ‘Moniqui’. J. Hortic. Sci. 1996, 71, 801–805. [Google Scholar] [CrossRef]
- Sanzol, J.; Herrero, M. Self-incompatibility and self-fruitfulness in pear cv. Agua de Aranjuez. J. Am. Soc. Hortic. Sci. 2007, 132, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Pérez, R.; Dicenta, F.; Martínez-Gómez, P. Identification of S-alleles in almond using multiplex-PCR. Euphytica 2004, 138, 263–269. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Egea, J. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 2011, 130, 357–372. [Google Scholar] [CrossRef]
- Lee, K.L.; Cho, J.G.; Jeong, J.H.; Ryu, S.; Han, J.H.; Do, G.R. Effect of the Elevated Temperature on the Growth and Physiological Responses of Peach ‘Mihong’ (Prunus persica). Prot. Hortic. Plant Fact. 2020, 29, 373–380. (In Korean) [Google Scholar] [CrossRef]
- Martínez-García, P.J.; Ortega, E.; Dicenta, F. Self-pollination does not affect fruit set or fruit characteristics in almond (Prunus dulcis). Plant Breed. 2011, 130, 367–371. [Google Scholar] [CrossRef]
- Saez, A.; Aizen, M.A.; Medici, S.; Viel, M.; Villalobos, E.; Negri, P. Bees increase crop yield in an alleged pollinator-independent almond variety. Sci. Rep. 2020, 10, 3177. [Google Scholar] [CrossRef] [Green Version]
- Erez, A.; Yablowitz, Z.; Korcinski, R.; Zilberstaine, M. Greenhouse growing of stone fruits: Effect of temperature on competing sinks. Acta Hortic. 2000, 513, 417–425. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Liu, S.E.; Niu, L.; Fan, W.; Liu, H.C. Study on tree training and pruning of nectarine in protected culture. J. Fruit Sci. 1999, 513, 417–425. (In Chinese) [Google Scholar]
- Wang, H.; Wang, F.; Wang, G.; Majourhat, K. The responses of photosynthetic capacity, chlorophyll fluorescence and chlorophyll content of nectarine (Prunus persica var. Nectarina Maxim) to greenhouse and field grown conditions. Sci. Hortic. 2007, 112, 66–72. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, L.T.; Wang, J.X.; Wang, S.M.; Gao, H.J.; Gao, H.Y. Effects of low temperature and weak light on the functions of photosystem in Prunus armeniaca L. leaves in solar greenhouse. Ying Yong Sheng Tai Xue Bao 2008, 19, 512–516. [Google Scholar]
- Galan, V. Greenhouse Cultivation of Tropical Fruits. Acta Hortic. 2002, 575, 725–735. [Google Scholar]
- Allara, M.; Fredrix, M.; Bessy, C.; Prasterine, F. Product safety. In Good Agricultural Practices for Greenhouse Vegetable Crops; FAO: Rome, Italy, 2013; pp. 581–602. [Google Scholar]
- Alonso, F.; Hueso, J.J.; Navarro, J.L.; Cuevas, L. Effects of plastic coverage on the earliness of the apirena Flame Seedless table grape cultivar. Actas Hortic. 2003, 39, 444–446. (In Spanish) [Google Scholar]
- Wang, J.Z.; Zhang, A.N.; Fan, S.H. The present status and future of fruit protected cultivation in Shandong. Chin. Fruit 1999, 3, 46–48. (In Chinese) [Google Scholar]
- Génard, M.; Bruchou, C. Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci. Hortic. 1992, 52, 37–51. [Google Scholar] [CrossRef]
- Kong, Y.; Yao, Y.; Ma, C.; Li, B. Effect of canopy position on some fruit quality parameters of greenhouse-grown nectarine. Acta Hort. 2011, 893, 925–930. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, J.; Yao, Y.; Wang, Z.; Guo, J.; Lian, S.; Ma, C.; Li, B. The relationship between light transmittance and canopy structure parameters of nectarine trees in Chinese lean-to greenhouse. Acta Hortic. 2012, 927, 413–419. [Google Scholar] [CrossRef]
- Marini, R.P.; Sowers, D.; Marini, M.C. Peach fruit quality is affected by shade during final swell of fruit growth. J. Am. Soc. Hortic. Sci. 1991, 116, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Mowa, E.; Kalili, M.; Akundabweni, L.; Percy, C. Impact of Organic Hydroponic Nutrient Solution on Tomato Fruit Quality. Int. Sci. Technol. J. Namib. 2018, 1, 62–77. [Google Scholar]
- Wurm, L.; Urschler, W. Influence of plastic cover on fruit-quality and monilia laxa infestations with organically produced apricots. In Proceedings of the International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 18–20 February 2008; pp. 116–122. [Google Scholar]
- Børve, J.; Meland, M.; Sekse, L.; Stensvand, A. Plastic covering to reduce sweet cherry fruit cracking affects fungal fruit decay. Acta Hortic. 2008, 795, 485–488. [Google Scholar] [CrossRef]
- Wali, M.A. Integrated pest management and plant hygiene under protected cultivation. In Good Agricultural Practices for Greenhouse Vegetable Crops; FAO: Rome, Italy, 2013; pp. 399–426. [Google Scholar]
- Lang, G.A. Growing sweet cherries under plastic covers and tunnels: Physiological aspects and practical considerations. Acta Hort. 2014, 1020, 303–312. [Google Scholar] [CrossRef]
- Guvvali, T.; Nirmala, A.; Rao, B. Protected cultivation of fruit crops: A review. Int. J. Pure App. Biosci. 2017, 5, 1628–1634. [Google Scholar] [CrossRef]
- Rubio, M.; García-Ibarra, A.; Martínez-Gómez, P.; Dicenta, F. Analysis of the main factors involved in the evaluation of Prunus resistance to Plum pox virus (Sharka) in control greenhouse conditions. Sci. Hortic. 2009, 123, 46–50. [Google Scholar] [CrossRef]
- Rubio, M.; Gómez, E.M.; Martínez-Gómez, P.; Dicenta, F. Behaviour of apricot cultivars against Hop stunt viroid. J. Phytopathol. 2016, 164, 193–197. [Google Scholar] [CrossRef]
- García-Ibarra, A.; Martínez-Gómez, P.; Dicenta, F.; Rubio, M. Evaluation of apricot (Prunus armeniaca L.) resistance to Apricot chlorotic leaf spot virus (ACLSV) in controlled greenhouse conditions. Eur. J. Plant Pathol. 2012, 133, 857–863. [Google Scholar] [CrossRef]
- Martínez-Gómez, P.; Dicenta, F.; Egea, J. Breaking dormancy of GF305 peach and Real Fino apricot trees during the evaluation of resistance to sharka (Plum pox potyvirus). Agronomie 2000, 20, 885–892. [Google Scholar] [CrossRef]
- Okie, W.R.; Reilly, C.C.; Nyczepir, A.P. Effect of Criconemella xenoplax and ClitovybeTabescenes on cold hardiness of greenhouse-grown peach trees. Hortic. Sci. 1986, 21, 274–276. [Google Scholar]
- Okie, W.R.; Nyczepir, A.P.; Reilly, C.C. Screening of peach and other Prunus species for resitance to ring nematode in greenhouse. J. Am. Soc. Hortic. Sci. 1987, 112, 67–70. [Google Scholar]
- Culver, D.J.; Ramming, D.W.; McKenry, M.V. Procedures for field and greenhouse screening of Prunus genotypes for resistance and tolerance to root lesion nematode. J. Am. Soc. Hortic. Sci. 1989, 114, 30–35. [Google Scholar]
- Erez, A.; Yablowitz, Z.; Korcinski, R. Greenhouse peach growing. Acta Hortic. 1998, 465, 593–600. [Google Scholar] [CrossRef]
- Rodriguez, A.; Pérez-López, D.; Centeno, A.; Ruiz Ramos, M. Viability of temperate fruit tree varieties in Spain under climate change according to chilling accumulation. Agric. Syst. 2021, 186, 102961. [Google Scholar] [CrossRef]
- Kubota, N.; Matthews, M.A.; Takahagi, T.; Kliewer, W.M. Budbreak with garlic preparations: Effects of garlic preparations and of calcium and hydrogen cyanamides on budbreak of grapevines grown in greenhouses. Am. J. Enol. Vit. 2000, 51, 409–414. [Google Scholar]
- Gemma, H. Dormancy breaking in Japanese pears grown in a heated greenhouse. Acta Hortic. 1994, 395, 57–68. [Google Scholar] [CrossRef]
- Erez, A. Means to compensate for insufficient chilling to improve bloom and leafing. Acta Hortic. 1995, 395, 81–95. [Google Scholar] [CrossRef]
- Erez, A.; Yablowitz, Z.; Aronovitz, A.; Hadar, A. Dormancy Breaking Chemicals; Efficiency with Reduced Phytotoxicity. Acta Hortic. 2008, 772, 105–125. [Google Scholar] [CrossRef]
- Prudencio, A.S.; Dicenta, F.; Martínez-Gómez, P. Monitoring dormancy transition in almond [Prunus dulcis (Miller) Webb] during cold and warm Mediterranean seasons through the analysis of a DAM (Dormancy-Associated MADS-Box) gene. Horticulturae 2018, 4, 41. [Google Scholar] [CrossRef] [Green Version]
- Prudencio, A.S.; Díaz-Vivancos, P.; Dicenta, F.; Hernández, J.A.; Martínez-Gómez, P. Monitoring the transition from endodormancy to ecodormancy in almond through the analysis and expression of a specific Class III peroxidase gene. Tree Genet. Gen. 2019, 15, 44. [Google Scholar] [CrossRef]
- Idso, S.B.; Kimball, B.A. Effects of atmospheric CO2 enrichment on photosynthesis, respiration, and growth of sour orange trees. Plant Physiol. 1992, 99, 341–343. [Google Scholar] [CrossRef] [PubMed]
- Castilla, N. The greenhouse climate. In Greenhouse Technology and Management, 2nd ed.; Esteban, J.B., Ed.; CABI Publishing: Wallingford, UK, 2013; pp. 30–42. [Google Scholar]
- Xi, W.; Zhang, Q.; Lu, X.; Wei, C.; Yu, S.; Zhou, Z. Improvement of flavor quality and consumer acceptance during postharvest ripening in greenhouse peaches by carbon dioxide enrichment. Food Chem. 2014, 164, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Selli, S.; Gubbuk, H.; Kafkas, E.; Gunes, E. Comparison of aroma compounds in Dwarf Cavendish banana (Musa spp. AAA) grown from open-field and protected cultivation area. Sci. Hortic. 2012, 141, 76–82. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Gómez, P.; Rahimi Devin, S.; Salazar, J.A.; López-Alcolea, J.; Rubio, M.; Martínez-García, P.J. Principles and Prospects of Prunus Cultivation in Greenhouse. Agronomy 2021, 11, 474. https://doi.org/10.3390/agronomy11030474
Martínez-Gómez P, Rahimi Devin S, Salazar JA, López-Alcolea J, Rubio M, Martínez-García PJ. Principles and Prospects of Prunus Cultivation in Greenhouse. Agronomy. 2021; 11(3):474. https://doi.org/10.3390/agronomy11030474
Chicago/Turabian StyleMartínez-Gómez, Pedro, Sama Rahimi Devin, Juan A. Salazar, Jesús López-Alcolea, Manuel Rubio, and Pedro J. Martínez-García. 2021. "Principles and Prospects of Prunus Cultivation in Greenhouse" Agronomy 11, no. 3: 474. https://doi.org/10.3390/agronomy11030474
APA StyleMartínez-Gómez, P., Rahimi Devin, S., Salazar, J. A., López-Alcolea, J., Rubio, M., & Martínez-García, P. J. (2021). Principles and Prospects of Prunus Cultivation in Greenhouse. Agronomy, 11(3), 474. https://doi.org/10.3390/agronomy11030474