Combining Ability and Heterosis of Algerian Saharan Maize Populations (Zea mays L.) for Tolerance to No-Nitrogen Fertilization and Drought
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Field Trials
2.3. Statistical Analyses
3. Results
3.1. Analyses of Variance and Comparisons of Means
3.2. Varietal and Heterosis Effects among Algerian Maize Populations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinz, R.; Ribeiro, L.P.; Gonçalves, M.C.; Bhering, L.L.; Teodoro, P.E. Selection of maize top-crosses for different nitrogen levels through specific combining ability. Bragantia 2019, 78, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Jaidka, M.; Bathla, S.; Kaur, R. Improved Technologies for Higher Maize Production. In Maize-Production and Use; IntechOpen: London, UK, 2020. [Google Scholar]
- Li, K.; Ramakrishna, W. Basic Information. In Genetics, Genomics and Breeding of Maize; Wusirika, R., Bohn, M., Lai, J., Kole, C., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–13. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Rabara, R.C.; Ferrer, M.C.; Jara-Rabara, J.; Sotto, R.C. Securing Diversity for Food Security: The Case of Conservation and Use of Rice Genetic Resources. In New Visions in Plant Science; Çelik, Ö., Ed.; IntechOpen: London, UK, 2018; pp. 81–96. [Google Scholar]
- IPCC. Part A: Global and Sectoral Aspects. (Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change); Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova., R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mannan, M.A.; Akter Shashi, M. Amelioration of Drought Tolerance in Maize Using Rice Husk Biochar. In Maize-Production and Use; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar]
- Bouman, B.A.M.; Lampayan, R.M.; Tuong, T.P. Water Management in Irrigated Rice: Coping with Water Scarcity; International Rice Research Institute: Los Baños, Philippines, 2007. [Google Scholar]
- Salgotra, R.K.; Gupta, B.B. Plant Genetic Resources and Traditional Knowledge for Food Security; Springer Nature Singapore Private Limited: Singapore, 2016. [Google Scholar]
- Rao, G.J.N.; Reddy, J.N.; Variar, M.; Mahender, A. Molecular Breeding to Improve Plant Resistance to Abiotic Stresses. In Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits; Springer International Publishing: Cham, Switzerland, 2016; pp. 283–326. [Google Scholar]
- Mugo, S.; de Groote, H.; Bergvinson, D.; Mulaa, M.; Songa, J.; Gichuki, S. Developing Bt maize for resource-poor farmers—Recent advances in the IRMA project. Afr. J. Biotechnol. 2005, 4, 1490–1504. [Google Scholar] [CrossRef]
- Edmeades, G.O. Drought Tolerance in Maize: An Emerging Reality; The International Service for the Acquisition of Agri-biotech Applications (ISAAA): Ithaca, NY, USA, 2008. [Google Scholar]
- Bender, R.R.; Haegele, J.W.; Ruffo, M.L.; Below, F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agron. J. 2013, 105, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, P.F.; Badu-Apraku, B.; Gracen, V.E.; Danquah, E.Y.; Garcia-Oliveira, A.L.; Asante, M.D.; Afriyie-Debrah, C.; Gedil, M. Identification of quantitative trait loci for grain yield and other traits in tropical maize under high and low soil-nitrogen environments. Crop Sci. 2018, 58, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Al-Naggar, A.M.M.; Shafik, M.M.; Musa, R.Y.M. Multivariate Analysis of Genetic Diversity among Maize Genotypes and Trait Interrelationships under Drought and Low N Stress. In New Perspectives in Agriculture and Crop Science; Al-Naggar, D.A.M.M., Ed.; Book Publisher International (a part of SCIENCEDOMAIN International): West Bengal, India, 2020; Volume 2, pp. 70–92. [Google Scholar]
- Masuka, B.; Araus, J.L.; Das, B.; Sonder, K.; Cairns, J.E. Phenotyping for Abiotic Stress Tolerance in Maize. J. Integr. Plant Biol. 2012, 54, 238–249. [Google Scholar] [CrossRef]
- Dodig, D.; Božinović, S.; Nikolić, A.; Zorić, M.; Vančetović, J.; Ignjatovic-Micic, D.; Delic, N.; Weigelt-Fischer, K.; Junker, A.; Altmann, T. Image-derived traits related to mid-season growth performance of maize under nitrogen and water stress. Front. Plant Sci. 2019, 10, 814. [Google Scholar] [CrossRef] [Green Version]
- Malik, W.; Dechmi, F. Modelling agricultural nitrogen losses to enhance the environmental sustainability under Mediterranean conditions. Agric. Water Manag. 2020, 230, 105966. [Google Scholar] [CrossRef]
- Kamara, A.Y.; Ewansiha, S.U.; Tofa, A.I. Yield, N uptake and N utilization of early maturing, drought and striga-tolerant maize varieties under low N conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 373–387. [Google Scholar] [CrossRef]
- Buchanan-Wollaston, V.; Wilson, Z.; Tardieu, F.; Beynon, J.; Denby, K. Harnessing diversity from ecosystems to crops to genes. Food Energy Secur. 2017, 6, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Matin, M.Q.I.; Rasul, G.; Islam, A.K.M.A.; Mian, M.A.K.; Ivy, N.A.; Ahmed, J.U. Study of Genetic Diversity in Maize (Zea mays L.) Inbreds. Plant 2017, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Gore, M.; Bradbury, P.; Hogers, R.; Kirst, M.; Verstege, E.; van Oeveren, J.; Peleman, J.; Buckler, E.; van Eijk, M. Evaluation of Target Preparation Methods for Single-Feature Polymorphism Detection in Large Complex Plant Genomes. Crop. Sci. 2007, 47, 135–148. [Google Scholar] [CrossRef] [Green Version]
- Staller, J.E. Maize Obs and Cultures: History of Zea mays L.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.). In Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Hallauer, A.R.; Carena, M.J.; Filho, J.B.M. Quantitative Genetics in Maize Breeding; Springer Science+Business Media, LLC: New York, NY, USA, 2010. [Google Scholar]
- Nelimor, C.; Badu-Apraku, B.; Nguetta, S.P.A.; Tetteh, A.Y.; Garcia-Oliveira, A.L. Phenotypic characterization of maize landraces from Sahel and Coastal West Africa reveals marked diversity and potential for genetic improvement. J. Crop. Improv. 2010, 34, 122–138. [Google Scholar] [CrossRef]
- Hawtin, G.; Iwanaga, M.; Hodgkin, T. Genetic resources in breeding for adaptation. Euphytica 1996, 92, 255–266. [Google Scholar] [CrossRef]
- Grobman, A.; Bonavia, D. Origin, Domestication, and Evolution of Maize. In Origin, Domestication, and Its Role in the Development Of Culture; Bonavia, D., Ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 329–486. [Google Scholar]
- Katna, G.; Sood, V.K. Plant Genetic Resources, Traditional Knowledge and Their Use in Crop Improvement. In Plant Genetic Resources and Traditional Knowledge for Food Security; Salgotra, R.K., Gupta, B.B., Eds.; Springer Nature Singapore Private Limited: Singapore, 2015; pp. 23–38. [Google Scholar]
- Yamasaki, M.; Wright, S.I.; McMullen, M.D. Genomic screening for artificial selection during domestication and improvement in maize. Ann. Bot. 2007, 100, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Taller, J.M.; Bernardo, R. Diverse adapted populations for improving northern maize inbreds. Crop Sci. 2004, 44, 1444–1449. [Google Scholar] [CrossRef]
- Djemel, A.; Revilla, P.; Hanifi-Mekliche, L.; Malvar, R.A.; Alvarez, A.; Khelifi, L. Maize (Zea mays L.) from the Saharan oasis: Adaptation to temperate areas and agronomic performance. Genet. Resour. Crop Evol. 2012, 59, 1493–1504. [Google Scholar] [CrossRef] [Green Version]
- Aci, M.M.; Revilla, P.; Morsli, A.; Djemel, A.; Belalia, N.; Kadri, Y.; Khelifi-Saloui, M.; Ordás, B.; Khelifi, L. Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 2013, 58, 304–310. [Google Scholar]
- Beyene, Y.; Botha, A.M.; Myburg, A.A. Genetic diversity among traditional ethiopian highland maize accessions assessed by simple sequence repeat (SSR) markers. Genet. Resour. Crop Evol. 2006, 53, 1579–1588. [Google Scholar] [CrossRef]
- Djemel, A.; Cherchali, F.Z.; Benchikh-Le-Hocine, M.; Malvar, R.A.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Santiago, R.; Malvar, R.A.; Pedrol, N.; Revilla, P. Algerian maize populations from the Sahara Desert as potential sources of drought tolerance. Acta Physiol. Plant. 2019, 41, 12. [Google Scholar] [CrossRef]
- Maafi, O.; Revilla, P.; Álvarez-Iglesias, L.; Malvar, R.A.; Djemel, A. Adaptation assessment of drought tolerant maize populations from the Sahara in both shores of the Mediterranean Sea. Euphytica 2021. under review. [Google Scholar]
- Aci, M.M.; Lupini, A.; Mauceri, A.; Morsli, A.; Khelifi, L.; Sunseri, F. Genetic variation and structure of maize populations from Saoura and Gourara oasis in Algerian Sahara. BMC Genet. 2018, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Belalia, N.; Lupini, A.; Djemel, A.; Morsli, A.; Mauceri, A.; Lotti, C.; Khelifi-Slaoui, M.; Khelifi, L.; Sunseri, F. Analysis of genetic diversity and population structure in Saharan maize (Zea mays L.) populations using phenotypic traits and SSR markers. Genet. Resour. Crop. Evol. 2019, 66, 243–257. [Google Scholar] [CrossRef]
- Cherchali, F.Z.; Ordás, B.; Revilla, P.; Pedrol, N.; Djemel, A. Heterotic Patterns among Algerian, US Corn Belt, and European Flint Maize Populations under the Mediterranean Conditions of North Africa. Crop Sci. 2018, 58, 2422–2432. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows; Release 9.4; SAS Institue: Cary, NC, USA, 2015. [Google Scholar]
- Gardner, C.; Eberhart, S. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 1966, 22, 439–452. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, M.S.; Lamkey, K.R. DIALLEL-SAS05: A comprehensive program for Griffing’s and Gardner-Eberhart analyses. Agron. J. 2005, 97, 1097–1106. [Google Scholar] [CrossRef]
- Zeleke, K.; Demissew, A.; Wosene, G. Heterosis and combining ability of highland adapted maize (Zea mays L.) DH lines for desirable agronomic traits. Afr. J. Plant Sci. 2020, 14, 121–133. [Google Scholar] [CrossRef]
- Badu-Apraku, B.; Akinwale, R.O.; Franco, J.; Oyekunle, M. Assessment of reliability of secondary traits in selecting for improved grain yield in drought and low-nitrogen environments. Crop Sci. 2012, 52, 2050–2062. [Google Scholar] [CrossRef]
- Mogesse, W.; Zelleke, H.; Nigussie, M. General and specific combing ability of maize (Zea mays L.) inbred line for grain yield and yield related traits using 8 × 8 diallel crosses. Am. J. Biosci. 2020, 8, 45–56. [Google Scholar] [CrossRef]
- Chiuta, N.E.; Mutengwa, C.S. Combining ability of quality protein maize inbred lines for yield and morpho-agronomic traits under optimum as well as combined drought and heat-stressed conditions. Agronomy 2020, 10, 184. [Google Scholar] [CrossRef] [Green Version]
- Oyekale, S.A.; Badu-Apraku, B.; Adetimirin, V.O. Combining ability of extra-early biofortified maize inbreds under Striga infestation and low soil nitrogen. Crop Sci. 2020, 60, 1925–1945. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Hunt, L.A. Genotype by Environment Interaction and Crop Yield. In Plant Breeding Reviews; Janick, J., Ed.; John Wiley & Sons: Oxford, UK, 2010; pp. 135–178. [Google Scholar]
- Noëlle, M.A.H.; Richard, K.; Vernon, G.; Martin, Y.A.; Laouali, M.N.; Liliane, T.N.; Godswill, N.-N. Combining Ability and Gene Action of Tropical Maize (Zea mays L.) Inbred Lines under Low and High Nitrogen Conditions. J. Agric. Sci. 2017, 9, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, P.; Apraku, B.B.; Gracen, V.; Danquah, E.; Afriyie-Debrah, C.; Obeng-Dankwa, K.; Toyinbo, J. Combining ability and testcross performance of low N tolerant intermediate maize inbred lines under low soil nitrogen and optimal environments. J. Agric. Sci. 2020, 158, 351–370. [Google Scholar] [CrossRef]
- Amegbor, I.K.; Badu-Apraku, B.; Adu, G.B.; Adjebeng-Danquah, J.; Toyinbo, J. Combining ability of extra-early maize inbreds derived from a cross between maize and zea diploperennis and hybrid performance under contrasting environments. Agronomy 2020, 10, 1069. [Google Scholar] [CrossRef]
- Alphonse, N.; Edema, R.; Asea, G.; Gibson, P. Combining Ability and Genotype By Environment interaction of selected maize inbred lines for performance under low nitrogen and drought stress. Afr. Crop Sci. Conf. Proc. 2011, 10, 1–4. [Google Scholar]
- Umar, U.U.; Ado, S.G.; Aba, D.A.; Bugaje, S.M. Estimates of combining ability and gene action in maize (Zea mays L.) under water stress and non-stress conditions. J. Biol. Agric. Healthc. 2014, 4, 247–253. [Google Scholar] [CrossRef]
- Njeri, S.G.; Makumbi, D.; Warburton, M.L.; Diallo, A.; Jumbo, M.B.; Chemining’Wa, G. Genetic analysis of tropical quality protein maize (Zea mays L.) germplasm. Euphytica 2017, 213, 261. [Google Scholar] [CrossRef] [Green Version]
- Meseka, S.K.; Menkir, A.; Ibrahim, A.E.S.; Ajala, S.O. Genetic analysis of performance of maize inbred lines selected for tolerance to drought under low nitrogen. Maydica 2006, 51, 487–495. [Google Scholar]
- Beck, D.L.; Vasal, S.K.; Crossa, J. Heterosis and combining ability of CIMMYT’s tropical early and intermediate maturity maize (Zea mays L.) germplasm. Maydica 1990, 35, 279–285. [Google Scholar]
- Badu-Apraku, B.; Fakorede, M.; Talabi, A.; Oyekunle, M.; Aderounmu, M.; Lum, A.; Ribeiro, P.; Adu, G.; Toyinbo, J. Genetic studies of extra-early provitamin-A maize inbred lines and their hybrids in multiple environments. Crop. Sci. 2020, 60, 1325–1345. [Google Scholar] [CrossRef] [PubMed]
- Makumbi, D. Phenotypic and Genotypic Characterization of White Maize Inbreds, Hybrids and Synthetics under Stress and Non-Stress Environments. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, August 2005. [Google Scholar]
- Oyetunde, O.A.; Badu-Apraku, B.; Ariyo, O.J.; Alake, C.O. Efficiencies of heterotic grouping maturing maize inbred lines. Agronomy 2020, 10, 1198. [Google Scholar] [CrossRef]
ASI b (days) | ||||
---|---|---|---|---|
Water Stress | Well-Watered | |||
Without N c | With N | Without N | With N | |
Populations | ||||
AOR | 7.17 efgh | 3.83 efgh | 2.83 bc | 1.83 bcde |
BAH | 6.00 fghij | 8.50 bcd | 2.67 bc | 2.33 bcd |
IGS | 9.83 cde | 5.83 defg | 2.83 bc | 1.33 cde |
IZM | 10.75 cd | 9.5 ab | 3.67 bc | 2.33 bcd |
MST | 3.50 j | 4.20 efgh | 1.67 c | 0.67 de |
SHH | 4.67 ghij | 3.33 fgh | 1.33 c | 1.33 cde |
Populations’ crosses | ||||
AOR × BAH | 7.17 efgh | 5.17 efgh | 2.00 bc | 1.33 cde |
AOR × IGS | 9.17 cdef | 4.33 efgh | 2.50 bc | 2.00 bcde |
AOR × IZM | 11.17 c | 6.00 cdef | 3.00 bc | 2.33 bcd |
AOR × MST | 6.50 efghij | 3.67 efgh | 2.33 bc | 0.83 cde |
IGS × BAH | 4.00 hij | 3.17 gh | 2.17 bc | 1.17 cde |
IGS × MST | 5.83 fghij | 4.67 efgh | 2.67 bc | 1.33 cde |
IZM × BAH | 7.67 defg | 4.50 efgh | 3.50 bc | 1.17 cde |
IZM × IGS | 7.00 efghi | 6.33 cde | 3.00 bc | 0.33 e |
IZM × MST | 7.00 efghi | 5.00 efgh | 2.50 bc | 1.50 cde |
MST × BAH | 3.50 j | 2.50 h | 1.83 c | 0.67 de |
SHH × AOR | 3.67 ij | 5.17 efgh | 2.17 bc | 1.17 cde |
SHH × BAH | 3.83 hij | 3.33 fgh | 1.67 c | 0.67 de |
SHH × IGS | 6.17 fghij | 5.00 efgh | 2.83 bc | 1.00 cde |
SHH × IZM | 4.50 ghij | 3.83 efgh | 2.00 bc | 1.67 bcde |
SHH × MST | 3.67 ij | 2.83 h | 1.17 c | 0.33 e |
Checks | ||||
EPS20 | . | 5.00 efgh | 1.67 c | 3.33 ab |
EPS20 × EPS21 | 19.00 a | 11.50 a | 7.17 a | 1.83 bcde |
EPS21 | 15.50 b | 8.67 bc | 7.17 a | 2.50 abc |
EP17 × EP42 | . | 4.67 efgh | 4.80 ab | 4.17 a |
Means | 6.59 | 4.99 | 2.83 | 1.59 |
LSD(0.05) | 3.37 | 2.75 | 2.85 | 1.76 |
Grain Yield (t/ha) | ||||
Water Stress | Control | |||
Without N | With N | Without N | With N | |
Populations | ||||
AOR | 0.52 ghi | 1.04 bcdef | 1.98 fgh | 3.16 ghij |
BAH | 0.79 cdefgh | 1.04 bcdef | 2.55 cdefg | 3.54 efghi |
IGS | 0.67 defgh | 0.63 defghi | 3.10 abcd | 3.51 efghi |
IZM | 0.49 hi | 0.52 efghi | 1.70 ghi | 2.81 ij |
MST | 0.47 hi | 0.48 fghi | 2.06 efgh | 2.24 j |
SHH | 0.59 fgh | 0.64 defghi | 2.62 cdefg | 2.70 ij |
Populations’ crosses | ||||
AOR × BAH | 1.04 abcd | 1.12 abcde | 2.80 abcdef | 3.75 defgh |
AOR × IGS | 0.95 bcdef | 1.69 a | 3.81 a | 4.89 bc |
AOR × IZM | 0.71 defgh | 1.38 abc | 3.38 abc | 3.80 defgh |
AOR × MST | 0.65 efgh | 0.64 defghi | 3.09 abcde | 3.81 defgh |
IGS × BAH | 0.83 cdefgh | 1.47 ab | 2.70 bcdefg | 4.23 bcdef |
IGS × MST | 0.75 cdefgh | 1.00 bcdefg | 3.09 abcd | 4.06 cdefg |
IZM × BAH | 1.00 abcde | 0.77 cdefghi | 2.83 abcdef | 4.62 bcd |
IZM × IGS | 0.78 cdefgh | 0.67 defghi | 3.70 ab | 4.92 bc |
IZM × MST | 0.82 cdefgh | 0.95 bcdefghi | 3.16 abcd | 3.44 fghi |
MST × BAH | 0.66 defgh | 0.97 bcdefgh | 2.50 cdefg | 3.09 hij |
SHH × AOR | 1.31 ab | 0.73 defghi | 3.10 abcd | 4.01 cdefgh |
SHH × BAH | 0.93 bcdef | 1.14 abcde | 3.06 abcde | 4.42 bcde |
SHH × IGS | 0.87 cdefg | 1.23 abcd | 3.74 a | 5.09 ab |
SHH × IZM | 1.12 abc | 1.24 abcd | 3.18 abcd | 4.30 bcdef |
SHH × MST | 0.71 defgh | 1.24 abcd | 2.89 abcdef | 4.14 cdef |
Checks | ||||
EPS20 | 0.06 j | 0.36 hi | 0.73 i | 0.70 k |
EPS20 × EPS21 | 0.51 ghi | 0.65 defghi | 2.32 defg | 3.92 defgh |
EPS21 | 0.17 ij | 0.40 ghi | 1.09 hi | 2.70 ij |
EP17 × EP42 | 1.35 a | 0.32 i | 3.80 a | 5.94 a |
Means | 0.77 | 0.91 | 2.73 | 3.73 |
LSD(0.05) | 0.38 | 0.63 | 1.03 | 0.93 |
Well-Watered | |||||
With Nitrogen | Without Nitrogen | ||||
Sources of Variation | df | ASI a (days) | Grain Yield (t/ha) | ASI (days) | Grain Yield (t/ha) |
Year | 1 | 4.57 * | 2.51 * | 26.53 *** | 1.96 ns |
Rep (Year) | 4 | 4.92 ** | 0.73 ns | 11.76 *** | 7.04 *** |
Entry | 20 | 2.28 * | 3.49 *** | 2.69 * | 1.85 *** |
Variety | 5 | 3.66 ns | 3.96 ** | 7.94 ns | 2.05 ns |
Heterosis | 15 | 1.81 ns | 3.33 *** | 0.84 ns | 1.77 * |
Average heterosis | 1 | 5.73 ns | 35.67 ** | 0.53 ns | 16.38 ns |
Variety heterosis | 5 | 1.23 ns | 1.47 ns | 0.28 ns | 1.51 * |
Specific heterosis | 9 | 1.70 ns | 0.77 ns | 1.20 ns | 0.28 ns |
Year × Entry | 20 | 1.19 ns | 0.40 ns | 1.82 ns | 0.58 ns |
Variety × Year | 5 | 0.96 ns | 0.34 ns | 2.10 ns | 0.56 ns |
Heterosis × Year | 15 | 1.26 ns | 0.41 ns | 1.57 ns | 0.63 ns |
Average heterosis × Year | 1 | 2.40 ns | 0.00 ns | 1.02 ns | 0.74 ns |
Variety heterosis × Year | 5 | 0.81 ns | 0.50 ns | 2.74 ns | 0.26 ns |
Specific heterosis × Year | 9 | 1.39 ns | 0.41 ns | 1.05 ns | 0.82 ns |
Error | |||||
Degrees of freedom | 80 | 80 | 79 | 79 | |
Mean squares | 1.16 | 0.59 | 1.46 | 0.601 | |
Water-Stressed | |||||
With Nitrogen | Without Nitrogen | ||||
Sources of Variation | df | ASI (days) | Yield (t/ha) | ASI (days) | Grain Yield (t/ha) |
Year | 1 | 42.00 * | 0.19 ns | 95.98 *** | 0.27 ns |
Rep (Year) | 4 | 27.80 ** | 4.66 *** | 35.27 ** | 2.07 *** |
Entry | 20 | 13.91 ** | 0.66 ** | 31.81 *** | 0.27 ns |
Variety | 5 | 25.96 ** | 0.41 * | 92.28 * | 0.25 ns |
Heterosis | 15 | 12.71 * | 0.71 * | 12.79 * | 0.28 ** |
Average heterosis | 1 | 53.41 ** | 3.17 ns | 20.38 ** | 2.11 ns |
Variety heterosis | 5 | 20.73 * | 0.21 ns | 13.77 ns | 0.16 ns |
Specific heterosis | 9 | 4.14 ns | 0.71 ns | 11.97 ns | 0.14 ns |
Year × Entry | 20 | 4.11 ns | 0.23 ns | 6.20 ns | 0.08 ns |
Variety × Year | 5 | 2.11 ns | 0.09 ns | 11.88 ns | 0.08 ns |
Heterosis × Year | 15 | 4.38 ns | 0.29 ns | 5.63 ns | 0.08 ns |
Average heterosis × Year | 1 | 2.06 ns | 0.25 ns | 5.26 ns | 0.03 ns |
Variety heterosis × Year | 5 | 3.22 ns | 0.13 ns | 3.45 ns | 0.08 ns |
Specific heterosis × Year | 9 | 5.23 ns | 0.39 ns | 7.58 ns | 0.08 ns |
Error | |||||
Degrees of freedom | 77 | 78 | 75 | 80 | |
Mean squares | 6.16 | 0.29 | 7.36 | 0.17 |
ASI (days) | ||||
Water-Stressed | Well-Watered | |||
Populations | Without N b | With N | Without N | With N |
Varietal effect | ||||
AOR | 0.18 | −2.03 * | 0.33 | 0.19 |
BAH | −0.99 | 2.63 ** | 0.17 | 0.69 |
IGS | 2.85 * | −0.03 | 0.33 | −0.31 |
IZM | 3.76 ** | 3.63 ** | 1.17 * | 0.69 |
MST | −3.49 ** | −1.67 | −0.83 | −0.97 * |
SHH | −2.32 * | −2.53 * | −1.17 * | −0.31 |
Varietal heterosis | ||||
AOR | 1.76 * | 1.64 * | −0.11 | 0.36 |
BAH | −0.53 | −2.11 ** | −0.24 | −0.56 |
IGS | −0.95 | 0.43 | 0.18 | 0.15 |
IZM | −0.12 | −0.86 | −0.03 | −0.06 |
MST | 0.80 | 0.04 | 0.10 | 0.19 |
SHH | −0.95 | 0.85 | 0.10 | −0.10 |
Specific heterosis | ||||
AOR × BAH | 0.29 | 0.97 | −0.26 | −0.08 |
AOR × IGS | 0.79 | −1.08 | −0.26 | 0.38 |
AOR × IZM | 1.50 | 0.05 | 0.03 | 0.42 |
AOR × MST | −0.46 | −0.53 | 0.24 | −0.50 |
IGS × BAH | −1.50 | −0.83 | −0.38 | 0.21 |
IGS × MST | 0.25 | 0.68 | 0.28 | 0.46 |
IZM × BAH | −0.88 | 0.03 | −0.74 | 0.08 |
IZM × IGS | −1.29 | 0.59 | −0.26 | −1.13 ** |
IZM × MST | 0.13 | 0.47 | −0.09 | 0.33 |
MST × BAH | −0.58 | −0.28 | −0.05 | 0.00 |
SHH × AOR | −2.13 * | 0.59 | 0.24 | −0.21 |
SHH × BAH | 0.92 | 0.18 | −0.05 | −0.04 |
SHH × IGS | 1.75 | 0.63 | 0.62 | 0.08 |
SHH × IZM | −1.21 | −1.08 | −0.43 | 0.46 |
SHH × MST | 0.67 | −0.33 | −0.38 | −0.29 |
Average heterosis | −0.93 | −1.50 ** | −0.14 | −0.47* |
Grain Yield (t/ha) | ||||
Water-Stressed | Well-Watered | |||
Without N | With N | Without N | With N | |
Varietal effect | ||||
AOR | −0.07 | 0.32 | −0.35 | 0.16 |
BAH | 0.21 | 0.32 | 0.22 | 0.55 * |
IGS | 0.08 | −0.10 | 0.77 * | 0.51 |
IZM | −0.10 | −0.20 | −0.64* | −0.18 |
MST | −0.12 | −0.24 | −0.27 | −0.75 ** |
SHH | 0.00 | −0.09 | 0.28 | −0.29 |
Varietal heterosis | ||||
AOR | 0.10 | −0.12 | 0.30 | −0.23 |
BAH | −0.08 | −0.14 | −0.56 * | −0.46 * |
IGS | −0.09 | 0.21 | −0.04 | 0.33 |
IZM | 0.06 | 0.00 | 0.46 * | 0.15 |
MST | −0.14 | −0.03 | −0.10 | −0.20 |
SHH | 0.14 | 0.09 | −0.07 | 0.42 * |
Specific heterosis | ||||
AOR × BAH | 0.07 | −0.01 | −0.02 | −0.08 |
AOR × IGS | 0.05 | 0.41 * | 0.21 | 0.29 |
AOR × IZM | −0.25 | 0.37 | −0.02 | −0.28 |
AOR × MST | −0.10 | −0.33 | 0.06 | 0.37 |
IGS × BAH | −0.02 | 0.21 | −0.33 | −0.34 |
IGS × MST | 0.12 | −0.09 | −0.15 | −0.12 |
IZM × BAH | −0.09 | 0.23 | 0.00 | −0.58 * |
IZM × IGS | −0.06 | −0.47 * | 0.08 | 0.11 |
IZM × MST | 0.13 | 0.12 | 0.12 | −0.20 |
MST × BAH | −0.04 | 0.03 | 0.05 | −0.32 |
SHH × AOR | 0.22 | −0.43 * | −0.24 | −0.29 |
SHH × BAH | −0.11 | 0.00 | 0.30 | 0.16 |
SHH × IGS | −0.09 | −0.06 | 0.19 | 0.06 |
SHH × IZM | 0.09 | 0.22 | −0.17 | −0.21 |
SHH × MST | −0.11 | 0.27 | −0.08 | 0.27 |
Average heterosis | 0.29 ** | 0.36 ** | 0.80 *** | 1.18 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riache, M.; Revilla, P.; Maafi, O.; Malvar, R.A.; Djemel, A. Combining Ability and Heterosis of Algerian Saharan Maize Populations (Zea mays L.) for Tolerance to No-Nitrogen Fertilization and Drought. Agronomy 2021, 11, 492. https://doi.org/10.3390/agronomy11030492
Riache M, Revilla P, Maafi O, Malvar RA, Djemel A. Combining Ability and Heterosis of Algerian Saharan Maize Populations (Zea mays L.) for Tolerance to No-Nitrogen Fertilization and Drought. Agronomy. 2021; 11(3):492. https://doi.org/10.3390/agronomy11030492
Chicago/Turabian StyleRiache, Meriem, Pedro Revilla, Oula Maafi, Rosa Ana Malvar, and Abderahmane Djemel. 2021. "Combining Ability and Heterosis of Algerian Saharan Maize Populations (Zea mays L.) for Tolerance to No-Nitrogen Fertilization and Drought" Agronomy 11, no. 3: 492. https://doi.org/10.3390/agronomy11030492
APA StyleRiache, M., Revilla, P., Maafi, O., Malvar, R. A., & Djemel, A. (2021). Combining Ability and Heterosis of Algerian Saharan Maize Populations (Zea mays L.) for Tolerance to No-Nitrogen Fertilization and Drought. Agronomy, 11(3), 492. https://doi.org/10.3390/agronomy11030492