Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Definitions and Parameters of N Budgets
2.3. Calculation of Gross N Budgets
2.4. Classification of Farmers and Definition of Hotspots
2.5. Improvement Strategy Scenarios
2.6. Data Processing and Analysis
3. Results
3.1. N Budgets and Spatial Variation in Cereal Crops
3.2. Hotspot Counties in Terms of N Budgets
3.3. Targeting Hotspot Regions for Sustainable N Management
4. Discussion
4.1. Driving Forces of High N Surplus and Spatial Variation in Cereal Crops
4.2. Approaches for Improvement in N Management
4.3. Comparisons and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tollefson, J. UN sets out next development goals. Nature 2015, 525, 434–435. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.; Erisman, J.; Abrol, Y.; Bekunda, M.; Datta, A.; Davidson, E.; de Vries, W.; Oenema, O. Our Nutrient World. The Challenge to Produce More Food & Energy with Less Pollution; Centre for Ecology & Hydrology: Bailrigg, UK, 2013. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, P.; Ramankutty, N.; Bennett, E.M.; Donner, S.D. Characterizing the Spatial Patterns of Global Fertilizer Application and Manure Production. Earth Interact. 2010, 14, 1–22. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/faostat/en/#data (accessed on 25 May 2020).
- Chen, X.H.; Ma, L.; Ma, W.Q.; Wu, Z.G.; Cui, Z.L.; Hou, Y.; Zhang, F.S. What has caused the use of fertilizers to skyrocket in China? Nutr. Cycl. Agroecosyst. 2018, 110, 241–255. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Wang, S.Q.; Xing, G.X.; Shi, W.M.; Xu, R.K.; Zhu, Z.L. Nitrogen Balance in a Highly Fertilized Rice-Wheat Double-Cropping System in Southern China. Soil Sci. Soc. Am. J. 2012, 76, 1068–1078. [Google Scholar] [CrossRef]
- Cui, Z.; Dou, Z.; Chen, X.; Ju, X.; Zhang, F. Managing Agricultural Nutrients for Food Security in China: Past, Present, and Future. Agron. J. 2014, 106, 191–198. [Google Scholar] [CrossRef]
- Hofmeier, M.; Roelcke, M.; Han, Y.; Lan, T.; Bergmann, H.; Böhm, D.; Cai, Z.; Nieder, R. Nitrogen management in a rice–wheat system in the Taihu Region: Recommendations based on field experiments and surveys. Agric. Ecosyst. Environ. 2015, 209, 60–73. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Agriculture. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Chen, X.; Zhang, F. Current Nitrogen Management Status and Measures to Improve the Intensive Wheat–Maize System in China. Ambio 2010, 39, 376–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price Bureau of the National Development and Reform Commission of China. China Agricultural Products Cost-Benefit Compilation of Information; China Statistics Press: Beijing, China, 2018.
- Ju, X.; Gu, B.; Wu, Y.; Galloway, J.N. Reducing China’s fertilizer use by increasing farm size. Glob. Environ. Chang. 2016, 41, 26–32. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Cao, G.; Li, X.; Zhang, H.; Wang, C.; Liu, Q.; Chen, X.; Cui, Z.; Shen, J.; Jiang, R.; et al. Closing yield gaps in China by empowering smallholder farmers. Nature 2016, 537, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Yu, W. Agricultural and Agri-Environment Policy and Sustainable Agricultural Development in China; Department of Food and Resource Economics, University of Copenhagen: Frederiksberg, Denmark, 2017. [Google Scholar]
- Ouyang, W.; Hao, F.; Wei, X.; Huang, H. Spatial and temporal trend of Chinese manure nutrient pollution and assimilation capacity of cropland and grassland. Environ. Sci. Pollut. Res. Int. 2013, 20, 5036–5046. [Google Scholar] [CrossRef]
- Bai, Z.; Ma, L.; Jin, S.; Ma, W.; Velthof, G.L.; Oenema, O.; Liu, L.; Chadwick, D.; Zhang, F. Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China. Environ. Sci. Technol. 2016, 50, 13409–13418. [Google Scholar] [CrossRef] [Green Version]
- Bai, Z.H.; Ma, W.Q.; Ma, L.; Velthof, G.L.; Wei, Z.B.; Havlik, P.; Oenema, O.; Lee, M.R.F.; Zhang, F.S. China’s livestock transition: Driving forces, impacts, and consequences. Sci. Adv. 2018, 4, eaar8534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.P.; Cui, Z.L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.S.; Meng, Q.F.; Hou, P.; Yue, S.C.; Romheld, V.; et al. Integrated soil-crop system management for food security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, L.J.; Zhang, Z.X.; Carlson, K.M.; MacDonald, G.K.; Brauman, K.A.; Liu, Y.C.; Zhang, W.; Zhang, H.Y.; Wu, W.B.; Zhao, X.L.; et al. Progress towards sustainable intensification in China challenged by land-use change. Nat. Sustain. 2018, 1, 304–313. [Google Scholar] [CrossRef]
- Ma, W.; Li, J.; Ma, L.; Wang, F.; Sisák, I.; Cushman, G.; Zhang, F. Nitrogen flow and use efficiency in production and utilization of wheat, rice, and maize in China. Agric. Syst. 2008, 99, 53–63. [Google Scholar] [CrossRef]
- Li, S.; He, P.; Jin, J. Nitrogen use efficiency in grain production and the estimated nitrogen input/output balance in China agriculture. J. Sci. Food Agric. 2013, 93, 1191–1197. [Google Scholar] [CrossRef]
- Wang, X.; Feng, A.; Wang, Q.; Wu, C.; Liu, Z.; Ma, Z.; Wei, X. Spatial variability of the nutrient balance and related NPSP risk analysis for agro-ecosystems in China in 2010. Agric. Ecosyst. Environ. 2014, 193, 42–52. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Zhang, W.; Mi, G.; Miao, Y.; Li, X.; et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Price Bureau of the National Development and Reform Commission of China. Nutrient Content in Organic Fertilizer of China; China Agricultural Publishing House: Beijing, China, 1999.
- Xu, W.; Luo, X.S.; Pan, Y.P.; Zhang, L.; Tang, A.H.; Shen, J.L.; Zhang, Y.; Li, K.H.; Wu, Q.H.; Yang, D.W.; et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China. Atmos. Chem. Phys. 2015, 15, 12345–12360. [Google Scholar] [CrossRef] [Green Version]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Shibata, H.; Gu, B.; Wang, Y. Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China’s main food crops. Environ. Res. Lett. 2018, 13, 014017. [Google Scholar] [CrossRef]
- Yue, S.; Meng, Q.; Zhao, R.; Ye, Y.; Zhang, F.; Cui, Z.; Chen, X. Change in Nitrogen Requirement with Increasing Grain Yield for Winter Wheat. Agron. J. 2012, 104, 1687–1693. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, P.; Gao, Q.; Chen, X.; Zhang, F.; Cui, Z. On-Farm Estimation of Nutrient Requirements for Spring Corn in North China. Agron. J. 2012, 104, 1436–1442. [Google Scholar] [CrossRef]
- Yan, P.; Yue, S.; Meng, Q.; Pan, J.; Ye, Y.; Chen, X.; Cui, Z. An Understanding of the Accumulation of Biomass and Nitrogen Is Benefit for Chinese Maize Production. Agron. J. 2016, 108, 895–904. [Google Scholar] [CrossRef]
- Xu, X.; Xie, J.; Hou, Y.; He, P.; Pampolino, M.F.; Zhao, S.; Qiu, S.; Johnston, A.M.; Zhou, W. Estimating nutrient uptake requirements for rice in China. Field Crops Res. 2015, 180, 37–45. [Google Scholar] [CrossRef]
- Yin, Y.L.; Ying, H.; Xue, Y.F.; Zheng, H.F.; Zhang, Q.S.; Cui, Z.L. Calculating socially optimal nitrogen (N) fertilization rates for sustainable N management in China. Sci. Total Environ. 2019, 688, 1162–1171. [Google Scholar] [CrossRef]
- Liu, R.; Xu, F.; Liu, Y.; Wang, J.; Yu, W. Spatio-temporal characteristics of livestock and their effects on pollution in China based on geographic information system. Environ. Sci. Pollut. Res. Int. 2016, 23, 14183–14195. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Nagumo, T.; Hatano, R. Nitrogen Cycling with Respect to Environmental Load in Farm Systems in Southwest China. Nutr. Cycl. Agroecosyst. 2005, 73, 119–134. [Google Scholar] [CrossRef]
- Fan, M.; Lu, S.; Jiang, R.; Liu, X.; Zeng, X.; Goulding, K.W.T.; Zhang, F. Nitrogen input, 15N balance and mineral N dynamics in a rice–wheat rotation in southwest China. Nutr. Cycl. Agroecosyst. 2007, 79, 255–265. [Google Scholar] [CrossRef]
- Circular of the Ministry of Agriculture on the Issuance of the “Action Plan for Zero Growth of Chemical Fertilizer Use by 2020” and the “Action Plan for Zero Growth of Pesticide Use by 2020”. Available online: http://www.moa.gov.cn/nybgb/2015/san/201711/t20171129_5923401.htm (accessed on 25 May 2020).
- National Bureau of Statistics. Available online: http://www.stats.gov.cn/ (accessed on 25 May 2020).
- Wu, L. Nitrogen Fertilizer Demand and Greenhouse Gas Mitigation Potential under Nitrogen Limiting Conditions for Chinese Agriculture Production; China Agricultural University: Beijing, China, 2014. [Google Scholar]
- Wu, L.; Chen, X.; Cui, Z.; Wang, G.; Zhang, W. Improving nitrogen management via a regional management plan for Chinese rice production. Environ. Res. Lett. 2015, 10, 095011. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.; Cui, Z.; Zhang, W.; Zhang, F. Establishing a regional nitrogen management approach to mitigate greenhouse gas emission intensity from intensive smallholder maize production. PLoS ONE 2014, 9, e98481. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.X. How China will protect one-quarter of its land. Nature 2019, 569, 457. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Xue, Y.; Yan, K.; Wang, Y.; Yin, Y.; Liu, Z.; Zhang, Q.; Tian, X.; Li, Z.; Liu, Y.; et al. Safeguarding Food Supply and Groundwater Safety for Maize Production in China. Environ. Sci. Technol. 2020, 54, 9939–9948. [Google Scholar] [CrossRef] [PubMed]
- Li, S.L.; Liu, C.Q.; Lang, Y.C.; Zhao, Z.Q.; Zhou, Z.H. Tracing the sources of nitrate in karstic groundwater in Zunyi, Southwest China: A combined nitrogen isotope and water chemistry approach. Environ. Earth Sci. 2010, 60, 1415–1423. [Google Scholar] [CrossRef]
- Wang, C.T.; Li, S.K. Assessment of limiting factors and techniques prioritization for maize production in China. Sci. Agric. Sin. 2010, 43, 1136–1146. [Google Scholar]
- He, Q.; Zhou, G. The climatic suitability for maize cultivation in China. Chin. Sci. Bulletin. 2011, 57, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.B.; Cai, D.X.; Grant, C.; Hoogmoed, W.B.; Oenema, O. Factors controlling regional grain yield in China over the last 20 years. Agron. Sustain. Dev. 2015, 35, 1127–1138. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Shindo, J. Changes in the nitrogen balance in agricultural land in Japan and 12 other Asian Countries based on a nitrogen-flow model. Nutr. Cycl. Agroecosyst. 2012, 94, 47–61. [Google Scholar] [CrossRef]
- van Grinsven, H.J.M.; ten Berge, H.F.M.; Dalgaard, T.; Fraters, B.; Durand, P.; Hart, A.; Hofman, G.; Jacobsen, B.H.; Lalor, S.T.J.; Lesschen, J.P.; et al. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 2012, 9, 5143–5160. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, S. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 1–19. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Jiang, R.; He, P.; Yang, J.; Zhou, W.; Ma, J.; Liu, Y. Estimating soil nitrogen balance at regional scale in China’s croplands from 1984 to 2014. Agric. Syst. 2018, 167, 125–135. [Google Scholar] [CrossRef]
- Zhao, R.F.; Chen, X.P.; Zhang, F.S. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China Plain. Acta Pedol. Sin. 2009, 46, 684–697. [Google Scholar]
- Niu, X.; Ju, X. Organic fertilizer resources and utilization in China. J. Plant Nutr. Fertil. 2017, 23, 1462–1479. [Google Scholar] [CrossRef]
- Biemer, P.P. Total Survey Error: Design, Implementation, and Evaluation. Public Opin. Q. 2011, 74, 817–848. [Google Scholar] [CrossRef]
- Chen, G.F. Limiting Factors Analysis and Designing for High Yield and High Nutrient Use Efficiency for Winter Wheat and Summer Maize in Smallholder Farmers Fields in the North China Plain; China Agricultural University: Beijing, China, 2018. [Google Scholar]
- Chadwick, D.; Wei, J.; Yan’an, T.; Guanghui, Y.; Qirong, S.; Qing, C. Improving manure nutrient management towards sustainable agricultural intensification in China. Agric. Ecosyst. Environ. 2015, 209, 34–46. [Google Scholar] [CrossRef]
- Smith, S.J.; Sharpley, A.N. Soil-Nitrogen Mineralization in the Presence of Surface and Incorporated Crop Residues. Agron. J. 1990, 82, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Vityakon, P.; Meepech, S.; Cadisch, G.; Toomsan, B. Soil Organic Matter and Nitrogen Transformation Mediated by Plant Residues of Different Qualities in Sandy Acid Upland and Paddy Soils. Neth. J. Agric. Sci. 2000, 48, 75–90. [Google Scholar] [CrossRef] [Green Version]
- Sommer, R.; Ryan, J.; Masri, S.; Singh, M.; Diekmann, J. Effect of shallow tillage, moldboard plowing, straw management and compost addition on soil organic matter and nitrogen in a dryland barley/wheat-vetch rotation. Soil Tillage Res. 2011, 115–116, 39–46. [Google Scholar] [CrossRef]
- Patrick, W.H.; Mahapatra, I.C. Transformation and Availability to Rice of Nitrogen and Phosphorus in Waterlogged Soils. Adv. Agron. 1968, 20, 323–359. [Google Scholar]
- Sogbedji, J.M.; van Es, H.M.; Yang, C.L.; Geohring, L.D.; Magdoff, F.R. Nitrate leaching and nitrogen budget as affected by maize nitrogen rate and soil type. J. Environ. Qual. 2000, 29, 1813–1820. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, F.; Leip, A.; Fu, B.; Yang, H.; Chen, Y.; Gao, S.; Shang, Z.; Ma, L. Spatial patterns of nitrogen runoff from Chinese paddy fields. Agric. Ecosyst. Environ. 2016, 231, 246–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Shao, Q.; Liu, H.; Lei, Q.; Zhai, X.; Wang, X. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China. J. Hydrol. 2016, 543, 577–594. [Google Scholar] [CrossRef]
Crop | Grain N Concentration (g kg−1) | N Harvest Index | Data Source |
---|---|---|---|
Wheat | 21.1 | 0.77 | Yue et al., 2012 [32] |
Spring maize | 11.6 | 0.61 | Zhang et al., 2012 [33] |
Summer maize | 12.7 | 0.59 | Yan et al., 2016 [34] |
Rice | 11.9 | 0.65 | Xu et al., 2015 [35] |
N Budgets (Mt) | Wheat | Maize | Rice | Total |
---|---|---|---|---|
Nfer | 4.70 | 6.43 | 5.22 | 16.4 |
Nman | 0.33 | 0.63 | 0.32 | 1.28 |
Ndep | 0.48 | 0.64 | 0.59 | 1.71 |
Nfix | 0.12 | 0.16 | 0.89 | 1.17 |
Nin | 5.63 | 7.86 | 7.02 | 20.5 |
Nrem | 2.71 | 3.57 | 2.89 | 9.16 |
Nsur | 2.91 | 4.29 | 4.14 | 11.3 |
Crop | Region | Planting Area | n | Nin | Nfer | Nman | Nrem | Nsur |
---|---|---|---|---|---|---|---|---|
million ha | kg N ha−1 | kg N ha−1 | kg N ha−1 | kg N ha−1 | kg N ha−1 | |||
Wheat | North | 4.00 | 258 | 218 | 158 | 35 | 89 | 128 |
Yangtze River Basin | 3.55 | 145 | 223 | 192 | 6 | 103 | 120 | |
Center | 14.5 | 346 | 250 | 217 | 8 | 128 | 122 | |
Southwest | 1.90 | 167 | 184 | 129 | 31 | 74 | 110 | |
Total | 23.9 | 916 | 235 | 197 | 14 | 113 | 122 | |
Maize | Northeast | 11.3 | 164 | 217 | 178 | 14 | 122 | 95 |
Center | 9.79 | 347 | 239 | 211 | 3 | 105 | 134 | |
Northwest | 5.51 | 310 | 282 | 214 | 43 | 123 | 159 | |
South | 5.39 | 503 | 280 | 217 | 38 | 88 | 192 | |
Total | 32.0 | 1324 | 246 | 201 | 20 | 112 | 134 | |
Rice | North | 2.82 | 105 | 211 | 157 | 4 | 107 | 105 |
Yangtze River Basin | 13.6 | 352 | 252 | 190 | 11 | 101 | 151 | |
Southeast | 9.31 | 238 | 220 | 163 | 7 | 91 | 129 | |
Southwest | 3.89 | 191 | 245 | 173 | 22 | 95 | 150 | |
Total | 29.6 | 886 | 237 | 176 | 11 | 97 | 140 |
Crop | Types | Planting Area | n | Total Nin | Total Nrem | Total Nsur |
---|---|---|---|---|---|---|
million ha | (Mt) | (Mt) | (Mt) | |||
Wheat | Win–Win | 0.8 | 21 | 0.14 | 0.11 | 0.03 |
Win–Lose | 9.5 | 222 | 2.58 | 1.30 | 1.27 | |
Lose–Win | 6.2 | 368 | 1.00 | 0.49 | 0.51 | |
Lose–Lose | 7.4 | 305 | 1.91 | 0.81 | 1.10 | |
Total | 23.9 | 916 | 5.63 | 2.71 | 2.92 | |
Maize | Win–Win | 0.6 | 26 | 0.13 | 0.08 | 0.05 |
Win–Lose | 6.3 | 175 | 1.73 | 0.92 | 0.81 | |
Lose–Win | 6.8 | 286 | 1.11 | 0.69 | 0.42 | |
Lose–Lose | 18.3 | 837 | 4.90 | 1.88 | 3.02 | |
Total | 32.0 | 1324 | 7.86 | 3.57 | 4.29 | |
Rice | Win–Win | 1.7 | 52 | 0.31 | 0.20 | 0.12 |
Win–Lose | 5.2 | 177 | 1.57 | 0.60 | 0.97 | |
Lose–Win | 8.2 | 219 | 1.55 | 0.75 | 0.80 | |
Lose–Lose | 14.5 | 438 | 3.59 | 1.34 | 2.25 | |
Total | 29.6 | 886 | 7.02 | 2.89 | 4.14 |
Crop | Scenarios | Yield (t ha−1) | Nfer (Mt) | Nin (Mt) | Nrem (Mt) | Nsur (Mt) | Nsur/Yield (kg kg−1) | NUE |
---|---|---|---|---|---|---|---|---|
Wheat | Current | 5.8 | 4.7 | 5.6 | 2.7 | 2.9 | 21.0 | 0.48 |
S1 | 6.1 (4%) | 4.3 (−9%) | 5.2 (−8%) | 2.8 (4%) | 2.4 (−19%) | 16.4 (−22%) | 0.54 (13%) | |
S2 | 6.7 (15%) | 3.5 (−25%) | 4.5 (−21%) | 3.1 (15%) | 1.4 (−53%) | 8.5 (−59%) | 0.70 (44%) | |
Maize | Current | 7.7 | 6.4 | 7.9 | 3.6 | 4.3 | 17.4 | 0.45 |
S1 | 8.9 (15%) | 5.2 (−19%) | 6.7 (−15%) | 4.1 (15%) | 2.6 (−40%) | 9.0 (−48%) | 0.62 (36%) | |
S2 | 9.4 (21%) | 4.8 (−26%) | 6.2 (−21%) | 4.3 (21%) | 1.9 (−56%) | 6.3 (−64%) | 0.70 (53%) | |
Rice | Current | 7.2 | 5.2 | 7.0 | 2.9 | 4.1 | 19.4 | 0.41 |
S1 | 7.8 (8%) | 4.7 (−11%) | 6.5 (−8%) | 3.1 (8%) | 3.4 (−19%) | 14.6 (−25%) | 0.48 (17%) | |
S2 | 8.1 (13%) | 4.2 (−20%) | 6.0 (−15%) | 3.2 (13%) | 2.8 (−33%) | 11.5 (−41%) | 0.54 (31%) | |
Total | Current | 7.0 | 16.4 | 20.5 | 9.2 | 11.3 | 57.8 | 0.45 |
S1 | 7.7 (10%) | 14.2 (−13%) | 18.3 (−11%) | 10.0 (10%) | 8.3 (−27%) | 40.0 (−31%) | 0.55 (22%) | |
S2 | 8.2 (17%) | 12.5 (−24%) | 16.6 (−19%) | 10.6 (17%) | 6.0 (−47%) | 26.3 (−54%) | 0.64 (43%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, T.; Yin, Y.; Ying, H.; Cui, Z.; Zhang, F. Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production. Agronomy 2021, 11, 557. https://doi.org/10.3390/agronomy11030557
Zhang Q, Li T, Yin Y, Ying H, Cui Z, Zhang F. Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production. Agronomy. 2021; 11(3):557. https://doi.org/10.3390/agronomy11030557
Chicago/Turabian StyleZhang, Qingsong, Tingyu Li, Yulong Yin, Hao Ying, Zhenling Cui, and Fusuo Zhang. 2021. "Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production" Agronomy 11, no. 3: 557. https://doi.org/10.3390/agronomy11030557
APA StyleZhang, Q., Li, T., Yin, Y., Ying, H., Cui, Z., & Zhang, F. (2021). Targeting Hotspots to Achieve Sustainable Nitrogen Management in China’s Smallholder-Dominated Cereal Production. Agronomy, 11(3), 557. https://doi.org/10.3390/agronomy11030557