Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Standards and Reagents
2.3. Nutritional Value and Hydrophilic Compounds
2.4. Lipophilic Compounds
2.5. Polyphenolic Profile Characterization
2.5.1. Preparation of Hydroethanolic Extracts
2.5.2. Analysis of Phenolic Compounds
2.6. Bioactivities
2.6.1. Antioxidant and Cytotoxic Activity
2.6.2. Antimicrobial Activity
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatzopoulou, E.; Carocho, M.; Di Gioia, F.; Petropoulos, S.A. The beneficial health effects of vegetables and wild edible greens: The case of the mediterranean diet and its sustainability. Appl. Sci. 2020, 10, 9144. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Plant Genetic Resources, Use Them or Lose Them; FAO: Rome, Italy, 2005. [Google Scholar]
- Gollin, D. Conserving genetic resources for agriculture: Economic implications of emerging science. Food Secur. 2020, 12, 919–927. [Google Scholar] [CrossRef]
- Bharucha, Z.; Pretty, J. The roles and values of wild foods in agricultural systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2913–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrillo, P.L. Sustainable diets and biodiversity. In Sustainable Diets and Biodiversity. Directions and Solutions for Policy, Research and Action; Burlingame, B., Dernini, S., Eds.; FAO: Rome, Italy, 2012; p. 309. ISBN 978-92-5-107288-2. [Google Scholar]
- Costa, R.; Albergamo, A.; Pellizzeri, V.; Dugo, G. Phytochemical screening by LC-MS and LC-PDA of ethanolic extracts from the fruits of Kigelia africana (Lam.) Benth. Nat. Prod. Res. 2017, 31, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.; Salvo, A.; Rotondo, A.; Bartolomeo, G.; Pellizzeri, V.; Saija, E.; Arrigo, S.; Interdonato, M.; Trozzi, A.; Dugo, G. Combination of separation and spectroscopic analytical techniques: Application to compositional analysis of a minor citrus species. Nat. Prod. Res. 2018, 32, 2596–2602. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Carvalho, A.M.; Ferreira, I.C.F.R. Wild edible plants: Nutritional and toxicological characteristics, retrieval strategies and importance for today’s society. Food Chem. Toxicol. 2017, 110, 165–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Halophytic herbs of the Mediterranean basin: An alternative approach to health. Food Chem. Toxicol. 2018, 114, 155–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correa, R.C.G.; Di Gioia, F.; Ferreira, I.; Petropoulos, S.A. Halophytes for Future Horticulture: The Case of Small-Scale Farming in the Mediterranean Basin. In Halophytes for Future Horticulture: From Molecules to Ecosystems towards Biosaline Agriculture; Grigore, M.-N., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 1–28. ISBN 9783030178543. [Google Scholar]
- Corrêa, R.C.G.; Di Gioia, F.; Ferreira, I.C.F.R.; Petropoulos, S.A. Wild greens used in the Mediterranean diet. In The Mediterranean Diet: An Evidence-Based Approach; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2020; pp. 209–228. ISBN 9788578110796. [Google Scholar]
- Petropoulos, S.A.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Edible halophytes of the Mediterranean basin: Potential candidates for novel food products. Trends Food Sci. Technol. 2018, 74, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Conversa, G.; Lazzizera, C.; Bonasia, A.; Cifarelli, S.; Losavio, F.; Sonnante, G.; Elia, A. Exploring on-farm agro-biodiversity: A study case of vegetable landraces from Puglia region (Italy). Biodivers. Conserv. 2020, 29, 747–770. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Tzortzakis, N.; Sokovic, M.; Ciric, A.; Barros, L.; Ferreira, I.C. Bioactive compounds content and antimicrobial activities of wild edible Asteraceae species of the Mediterranean flora under commercial cultivation conditions. Food Res. Int. 2019, 119, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Ceccanti, C.; Landi, M.; Benvenuti, S.; Pardossi, A.; Guidi, L. Mediterranean wild edible plants: Weeds or “new functional crops”? Molecules 2018, 23, 2299. [Google Scholar] [CrossRef] [Green Version]
- Dogan, Y. Traditionally used wild edible greens in the Aegean Region of Turkey. Acta Soc. Bot. Pol. 2012, 81, 329–342. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.; Di Gioia, F.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.; Barros, L.; et al. Wild and cultivated Centaurea raphanina subsp. mixta: A valuable source of bioactive compounds. Antioxidants 2020, 9, 1–23. [Google Scholar]
- Panagouleas, C.; Skaltsa, H.; Lazari, D.; Skaltsounis, A.L.; Sokovic, M. Antifungal activity of secondary metabolites of Centaurea raphanina ssp. mixta, growing wild in Greece. Pharm. Biol. 2003, 41, 266–270. [Google Scholar]
- Mikropoulou, E.V.; Vougogiannopoulou, K.; Kalpoutzakis, E.; Sklirou, A.D.; Skaperda, Z.; Houriet, J.; Wolfender, J.L.; Trougakos, I.P.; Kouretas, D.; Halabalaki, M.; et al. Phytochemical composition of the decoctions of Greek edible greens (chórta) and evaluation of antioxidant and cytotoxic properties. Molecules 2018, 23, 1541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Chrysargyris, A.; Tzortzakis, N.; Ivanov, M.; Sokovic, M.D.; Barros, L.; et al. Chemical composition and plant growth of Centaurea raphanina subsp. mixta plants cultivated under saline conditions. Molecules 2020, 25, 1–26. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. The Effect of Nitrogen Fertigation and Harvesting Time on Plant Growth and Chemical Composition of Centaurea raphanina subsp. mixta (DC.) Runemark. Molecules 2020, 25, 3175. [Google Scholar] [CrossRef]
- Fernández-Marín, B.; Milla, R.; Martín-Robles, N.; Arc, E.; Kranner, I.; Becerril, J.M.; García-Plazaola, J.I. Side-effects of domestication: Cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant. Biol. 2014, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cultivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621. [Google Scholar] [CrossRef] [PubMed]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Al-Tawaha, A.; Al-Tawaha, A.R.; Gammoh, S.; Ereifej, K.I.; Al-Karaki, G.; Hamasha, H.R.; Tranchant, C.C.; et al. Herbal yield, nutritive composition, phenolic contents and antioxidant activity of purslane (Portulaca oleracea L.) grown in different soilless media in a closed system. Ind. Crops Prod. 2019, 141, 111746. [Google Scholar] [CrossRef]
- Disciglio, G.; Tarantino, A.; Frabboni, L.; Gagliardi, A.; Giuliani, M.M.; Tarantino, E.; Gatta, G. Qualitative characterisation of cultivated and wild edible plants: Mineral elements, phenols content and antioxidant capacity. Ital. J. Agron. 2017, 12, 383–394. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Vasilakoglou, I.B.; Petrotos, K.; Barros, L.; Ferreira, I.C.F.R. Nutritional value, chemical composition and cytotoxic properties of common purslane (Portulaca oleracea L.) in relation to harvesting stage and plant part. Antioxidants 2019, 8, 293. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019, 99, 6741–6750. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Levizou, E.; Ntatsi, G.; Fernandes, Â.; Petrotos, K.; Akoumianakis, K.; Barros, L.; Ferreira, I. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chem. 2017, 214, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Vasileios, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chem. 2018, 239, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkanis, A.C.; Fernandes, A.; Vaz, J.; Petropoulos, S.; Georgiou, E.; Ciric, A.; Sokovic, M.; Oludemi, T.; Barros, L.; Ferreira, I. Chemical composition and bioactive properties of Sanguisorba minor Scop. under Mediterranean growing conditions. Food Funct. 2019, 10, 1340–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.; Barros, L.; Ferreira, I. Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef] [Green Version]
- Amalraj, A.; Pius, A. Bioavailability of calcium and its absorption inhibitors in raw and cooked green leafy vegetables commonly consumed in India—An in vitro study. Food Chem. 2015, 170, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Kristanc, L.; Kreft, S. European medicinal and edible plants associated with subacute and chronic toxicity part II: Plants with hepato-, neuro-, nephro- and immunotoxic effects. Food Chem. Toxicol. 2016, 92, 38–49. [Google Scholar] [CrossRef]
- Petropoulos, S.; Ntatsi, G.; Levizou, E.; Barros, L.; Ferreira, I. Nutritional profile and chemical composition of Cichorium spinosum ecotypes. LWT Food Sci. Technol. 2016, 73, 95–101. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis of Association of Official Analytical Chemists International. In Official Methods of Analysis of AOAC International; Horwitz, W., Latimer, G., Eds.; AOAC International: Gaithersburg, MD, USA, 2016; ISBN 0935584773. [Google Scholar]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C.F.R. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Glamočlija, J.; Ćirić, A.; Nikolić, M.; Fernandes, Â.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R.; Soković, M.; Van Griensven, L.J.L.D. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”. J. Ethnopharmacol. 2015, 162, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, R.C.G.; De Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, S.; Fernandes, Â.; Karkanis, A.; Antoniadis, V.; Barros, L.; Ferreira, I. Nutrient solution composition and growing season affect yield and chemical composition of Cichorium spinosum plants. Sci. Hortic. 2018, 231, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Kołota, E.; Czerniak, K. The effects of nitrogen fertilization on yield and nutritional value of swiss chard. Acta Sci. Pol. Hortorum Cultus 2010, 9, 31–37. [Google Scholar]
- Poli, F.; Sacchetti, G.; Tosi, B.; Fogagnolo, M.; Chillemi, G.; Lazzarin, R.; Bruni, A. Variation in the content of the main guaianolides and sugars in Cichorium intybus var. “Rosso di Chioggia” selections during cultivation. Food Chem. 2002, 76, 139–147. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, W.R.; Liu, H.C. Effects of different nitrogen forms on the nutritional quality and physiological characteristics of Chinese chive seedlings. Plant. Soil Environ. 2014, 60, 216–220. [Google Scholar]
- Zhang, Y.P.S.Y.; Lin, X.Y.; Zhang, Y.P.S.Y.; Zheng, S.J.; Du, S.T. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant. Nutr. 2005, 28, 2011–2025. [Google Scholar] [CrossRef]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Fernández-Ruiz, V.; Sánchez-Mata, M.C.; Cámara, M.; Morales, R.; Tardío, J. Wild edible fruits as a potential source of phytochemicals with capacity to inhibit lipid peroxidation. Eur. J. Lipid Sci. Technol. 2013, 115, 176–185. [Google Scholar] [CrossRef]
- Barroso, M.R.; Martins, N.; Barros, L.; Antonio, A.L.; Rodrigues, M.Â.; Sousa, M.J.; Santos-Buelga, C.; Ferreira, I.C.F.R. Assessment of the nitrogen fertilization effect on bioactive compounds of frozen fresh and dried samples of Stevia rebaudiana Bertoni. Food Chem. 2018, 243, 208–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, P.; Ferreira, I.C.F.R.; Carvalho, A.M.; Sánchez-Mata, M.C.; Cámara, M.; Fernández-Ruiz, V.; Pardo-de-Santayana, M.; Tardío, J. Mediterranean non-cultivated vegetables as dietary sources of compounds with antioxidant and biological activity. LWT Food Sci. Technol. 2014, 55, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Guil, J.L.; Torija, M.E.; Giménez, J.J.; Rodriguez, I. Identification of fatty acids in edible wild plants by gas chromatography. J. Chromatogr. A 1996, 719, 229–235. [Google Scholar] [CrossRef]
- Hussain, N.; Li, H.; Jiang, Y.; Jabeen, Z.; Shamsi, I.H.; Ali, E.; Jiang, L. Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates. J. Zhejiang Univ. Sci. B 2014, 15, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, L.R.O.; Fernandes, Â.; Gioia, F.D.; Petropoulos, S.A.; Polyzos, N.; Dias, M.I.; Pinela, J.; Kostic, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; et al. The effect of nitrogen input on chemical profile and bioactive properties of green- and red-colored basil cultivars. Antioxidants 2020, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Miret, J.A.; Munné-Bosch, S. Plant amino acid-derived vitamins: Biosynthesis and function. Amino Acids 2014, 46, 809–824. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barreira, J.C.M.; Santos-Buelga, C.; et al. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Dalar, A.; Uzun, Y.; Mukemre, M.; Turker, M.; Konczak, I. Centaurea karduchorum Boiss. from Eastern Anatolia: Phenolic composition, antioxidant and enzyme inhibitory activities. J. Herb. Med. 2015, 5, 211–216. [Google Scholar] [CrossRef]
- Nascimento da Silva, L.C.; Bezerra Filho, C.M.; de Paula, R.A.; Silva e Silva, C.S.; Oliveira de Souza, L.I.; da Silva, M.V.; dos Santos Correia, M.T.; de Figueiredo, R.C.B.Q. In vitro cell-based assays for evaluation of antioxidant potential of plant-derived products. Free Radic. Res. 2016, 50, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Ostad, S.N.; Rajabi, A.; Khademi, R.; Farjadmand, F.; Eftekhari, M.; Hadjiakhoondi, A.; Khanavi, M. Cytotoxic potential of Centaurea bruguierana ssp. belangerana: The MTT assay. Acta Med. Iran. 2016, 54, 583–589. [Google Scholar] [PubMed]
- Mirzahosseini, G.; Manayi, A.; Khanavi, M.; Safavi, M.; Salari, A.; Madjid Ansari, A.; San’ati, H.; Vazirian, M. Bio-guided isolation of Centaurea bruguierana subsp. belangerana cytotoxic components. Nat. Prod. Res. 2019, 33, 1687–1690. [Google Scholar] [CrossRef]
- Ćirić, A.; Karioti, A.; Koukoulitsa, C.; Soković, M.; Skaltsa, H. Sesquiterpene lactones from Centaurea zuccariniana and their antimicrobial activity. Chem. Biodivers. 2012, 9, 2843–2853. [Google Scholar] [CrossRef] [PubMed]
- Tekeli, Y.; Zengin, G.; Aktumsek, A.; Mehmet, S.; Torlak, E. Antibacterial activities of extracts from twelve Centaurea species from Turkey. Arch. Biol. Sci. 2011, 63, 685–690. [Google Scholar] [CrossRef]
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
N0 Soil | N1 Soil | N2 Soil | N3 Soil | N0 Peat/Perlite | N1 Peat/Perlite | N2 Peat/Perlite | N3 Peat/Perlite | |
Nutritional value (g/100 g fw) | ||||||||
Moisture | 84.9 ± 0.6 c | 82.4 ± 0.7 e | 82.4 ± 0.8 e | 83.4 ± 0.5 d | 86.4 ± 0.1 a | 85.8 ± 0.7 b | 86.3 ± 0.4 a | 85.6 ± 0.2 b |
Fat | 0.35 ± 0.01 d | 0.37 ± 0.01 c | 0.53 ± 0.01 a | 0.47 ± 0.01 b | 0.31 ± 0.01 e | 0.32 ± 0.01 e | 0.275 ± 0.003 g | 0.293 ± 0.001 f |
Proteins | 4.08 ± 0.01 e | 4.82 ± 0.01 c | 5.28 ± 0.01 a | 4.92 ± 0.04 b | 3.07 ± 0.01 h | 4.15 ± 0.01 d | 3.19 ± 0.01 g | 3.89 ± 0.01 f |
Ash | 2.53 ± 0.01 c | 3.92 ± 0.01 a | 2.88 ± 0.05 b | 2.93 ± 0.05 b | 2.37 ± 0.08 d | 2.00 ± 0.02 e | 2.05 ± 0.04 e | 1.99 ± 0.01 f |
Carbohydrates | 8.1 ± 0.1 d | 8.5 ± 0.1 b | 8.9 ± 0.1 a | 8.3 ± 0.1 c | 7.8 ± 0.1 e | 7.7 ± 0.1 e | 8.1 ± 0.1 d | 8.2 ± 0.1 cd |
Energy (kcal/100 g fw) | 51.9 ± 0.1 d | 56.5 ± 0.1 c | 61.4 ± 0.1 a | 57.0 ± 0.1 b | 46.3 ± 0.2 h | 50.4 ± 0.1 f | 47.8 ± 0.1 g | 51.0 ± 0.1 e |
Free sugars (g/100 g fw) | ||||||||
Fructose | 0.40 ± 0.02 a | 0.238 ± 0.005 d | 0.16 ± 0.01 e | 0.37 ± 0.01 b | 0.18 ± 0.02 e | 0.22 ± 0.02 d | 0.318 ± 0.001 c | 0.212 ± 0.006 d |
Glucose | 0.292 ± 0.005 a | 0.211 ± 0.008 b | 0.201 ± 0.005 b | 0.159 ± 0.007 c | 0.158 ± 0.005 c | 0.146 ± 0.003 c | 0.198 ± 0.001 b | 0.140 ± 0.008 c |
Sucrose | 0.192 ± 0.006 a | 0.049 ± 0.004 f | 0.066 ± 0.003 e | 0.099 ± 0.001 c | 0.079 ± 0.002 d | 0.044 ± 0.003 f | 0.116 ± 0.002 b | 0.128 ± 0.007 b |
Trehalose | 0.168 ± 0.005 cd | 0.199 ± 0.005 a | 0.188 ± 0.008 ab | 0.168 ± 0.008 cd | 0.189 ± 0.009 ab | 0.163 ± 0.005 cd | 0.152 ± 0.009 d | 0.172 ± 0.008 bc |
Sum | 1.05 ± 0.01 a | 0.700 ± 0.005 c | 0.62 ± 0.03 d | 0.79 ± 0.01 b | 0.61 ± 0.03 de | 0.58 ± 0.03 e | 0.78 ± 0.01 b | 0.65 ± 0.03 d |
Organic acids (mg/100 g fw) | ||||||||
Oxalic acid | 1131 ± 4 d | 1265 ± 3 b | 1373 ± 3 a | 1254 ± 3 c | 910 ± 7 h | 998 ± 2 f | 1007 ± 5 e | 932 ± 4 g |
Malic acid | 925 ± 5 a | 272 ± 4 h | 816 ± 1 b | 554 ± 4 c | 318 ± 3 f | 295 ± 5 g | 375 ± 4 e | 480 ± 3 d |
Ascorbic acid | 0.090 ± 0.004 d | 0.230 ± 0.008 a | 0.020 ± 0.005 e | 0.18 ± 0.01 b | 0.100 ± 0.008 d | 0.14 ± 0.02 c | 0.13 ± 0.01 c | 0.20 ± 0.01 b |
Citric acid | 878 ± 3 c | 814 ± 7 d | 1045 ± 4 a | 756 ± 3 e | 597 ± 5 g | 578 ± 4 h | 665 ± 2 f | 1029 ± 1 b |
Fumaric acid | tr | 0.020 ± 0.001 | tr | tr | tr | tr | tr | tr |
Sum | 2934 ± 6 b | 2352 ± 8 e | 3234 ± 7 a | 2565 ± 4 c | 1825 ± 10 h | 1871 ± 1 g | 2047 ± 4 f | 2442 ± 1 d |
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
N0 Soil | N1 Soil | N2 Soil | N3 Soil | N0 Peat/Perlite | N1 Peat/Perlite | N2 Peat/Perlite | N3 Peat:/Perlite | |
Fatty acids (%) | ||||||||
C8:0 | 1.52 ± 0.03 e | 0.125 ± 0.001 f | 0.21 ± 0.02 b | 0.173 ± 0.006 c | 0.15 ± 0.01 e | 0.26 ± 0.02 a | 0.089 ± 0.001 g | 0.16 ± 0.01 d |
C10:0 | 0.781 ± 0.008 a | 0.227 ± 0.009 d | 0.220 ± 0.004 e | 0.246 ± 0.008 c | 0.28 ± 0.02 b | 0.22 ± 0.01 e | 0.108 ± 0.005 g | 0.173 ± 0.007 f |
C11:0 | 1.90 ± 0.02 a | 0.38 ± 0.02 f | 0.27 ± 0.03 h | 0.73 ± 0.07 d | 0.85 ± 0.03 c | 1.01 ± 0.09 b | 0.30 ± 0.01 g | 0.63 ± 0.04 e |
C12:0 | 0.396 ± 0.006 b | 0.314 ± 0.001 e | 0.328 ± 0.008 d | 0.35 ± 0.03 c | 0.43 ± 0.01 a | 0.27 ± 0.02 f | 0.111 ± 0.003 h | 0.18 ± 0.01 g |
C14:0 | 4.25 ± 0.04 b | 4.47 ± 0.03 a | 1.33 ± 0.06 d | 1.17 ± 0.06 e | 2.84 ± 0.04 c | 1.36 ± 0.05 d | 0.874 ± 0.009 f | 0.58 ± 0.01 g |
C14:1 | nd | 0.58 ± 0.01 a | 0.269 ± 0.004 b | 0.212 ± 0.008 c | 0.185 ± 0.001 d | 0.19 ± 0.01 d | 0.077 ± 0.003 e | 0.083 ± 0.004 e |
C15:0 | 0.91 ± 0.02 a | 0.42 ± 0.02 d | 0.53 ± 0.02 b | 0.47 ± 0.02 c | 0.470 ± 0.001 c | 0.53 ± 0.01 b | 0.411 ± 0.004 d | 0.418 ± 0.005 d |
C16:0 | 47.66 ± 0.09 a | 26.6 ± 0.7 g | 31.33 ± 0.03 c | 29.7 ± 0.2 f | 32.3 ± 0.4 b | 30.8 ± 0.3 d | 30.19 ± 0.01 e | 30.0 ± 0.3 f |
C17:0 | 0.95 ± 0.04 a | 0.54 ± 0.01 de | 0.59 ± 0.02 b | 0.566 ± 0.007 bc | 0.55 ± 0.03 cd | 0.534 ± 0.001 e | 0.324 ± 0.004 g | 0.490 ± 0.004 f |
C18:0 | 6.28 ± 0.08 a | 3.78 ± 0.07 e | 3.84 ± 0.06 e | 4.35 ± 0.06 c | 4.44 ± 0.01 c | 4.68 ± 0.07 b | 4.05 ± 0.01 d | 3.20 ± 0.03 f |
C18:1 n9 c | 1.85 ± 0.05 f | 3.91 ± 0.03 b | 2.32 ± 0.02 d | 2.26 ± 0.02 d | 2.09 ± 0.01 e | 4.02 ± 0.01 a | 3.52 ± 0.01 c | 2.26 ± 0.02 d |
C18:2 n6 c | 13.8 ± 0.4 e | 23.5 ± 0.2 c | 23.5 ± 0.2 c | 22.46 ± 0.02 d | 23.7 ± 0.1 c | 24.0 ± 0.5 c | 26.8 ± 0.2 b | 28.0 ± 0.4 a |
C18:3 n3 | 14.4 ± 0.1 f | 30.2 ± 0.3 c | 30.68 ± 0.05 b | 32.67 ± 0.05 a | 27.4 ± 0.2 e | 27.79 ± 0.03 e | 29.3 ± 0.3 d | 29.48 ± 0.09 d |
C20:0 | 1.13 ± 0.01 a | 0.87 ± 0.03 b | 0.74 ± 0.03 c | 0.72 ± 0.01 c | 0.68 ± 0.03 d | 0.732 ± 0.008 c | 0.435 ± 0.004 e | 0.74 ± 0.02 c |
C21:0 | 0.274 ± 0.001 c | 0.28 ± 0.02 c | 0.27 ± 0.02 c | 0.31 ± 0.01 b | 0.394 ± 0.005 a | 0.21 ± 0.02 d | 0.171 ± 0.009 e | 0.27 ± 0.01 c |
C22:0 | 1.71 ± 0.02 a | 1.54 ± 0.02 b | 1.19 ± 0.08 e | 1.43 ± 0.01 c | 1.1 ± 0.1 f | 1.24 ± 0.01 d | 1.24 ± 0.02 d | 1.51 ± 0.07 b |
C23:0 | 0.90 ± 0.01 a | 0.48 ± 0.02 c | 0.52 ± 0.02 b | 0.52 ± 0.01 b | 0.47 ± 0.01 c | 0.506 ± 0.003 b | 0.385 ± 0.002 e | 0.45 ± 0.01 d |
C24:0 | 1.34 ± 0.03 e | 1.77 ± 0.08 b | 1.83 ± 0.01 a | 1.7 ± 0.2 c | 1.70 ± 0.02 c | 1.7 ± 0.1 c | 1.61 ± 0.01 d | 1.38 ± 0.01 e |
SFA | 70.0 ± 0.2 a | 41.8 ± 0.5 f | 43.2 ± 0.2 d | 42.40 ± 0.07 e | 46.6 ± 0.3 b | 44.0 ± 0.5 c | 40.30 ± 0.04 g | 40.2 ± 0.2 g |
MUFA | 1.85 ± 0.05 g | 4.48 ± 0.02 a | 2.59 ± 0.02 d | 2.47 ± 0.01 e | 2.27 ± 0.01 f | 4.21 ± 0.02 b | 3.60 ± 0.01 c | 2.3 ± 0.02 f |
PUFA | 28.2 ± 0.3 h | 53.7 ± 0.5 e | 54.2 ± 0.2 d | 55.13 ± 0.08 c | 51.1 ± 0.3 g | 51.8 ± 0.5 f | 56.10 ± 0.05 b | 57.5 ± 0.3 a |
PUFA/SFA | 0.40 ± 0.01 h | 1.28 ± 0.05 de | 1.25 ± 0.02 e | 1.30 ± 0.07 cd | 1.09 ± 0.3 g | 1.18 ± 0.05 f | 1.39 ± 0.04 b | 1.43 ± 0.03 a |
n6/n3 | 0.96 ± 0.25 a | 0.78 ± 0.15 d | 0.77 ± 0.15 d | 0.69 ± 0.03 e | 0.86 ± 0.01 c | 0.86 ± 0.04 c | 0.91 ± 0.15 b | 0.95 ± 0.18 a |
Tocopherols (mg/100 g fw) | ||||||||
α-Tocopherol | 0.046 ± 0.003 e | 0.056 ± 0.001 d | 0.063 ± 0.002 d | 0.056 ± 0.003 d | 0.036 ± 0.002 f | 0.121 ± 0.004 a | 0.078 ± 0.001 c | 0.110 ± 0.002 b |
γ-Tocopherol | 0.151 ± 0.006 c | 0.17 ± 0.01 b | 0.086 ± 0.001 e | 0.143 ± 0.001 d | 0.069 ± 0.002 e | 0.199 ± 0.001 a | 0.042 ± 0.002 f | 0.069 ± 0.008 e |
Sum | 0.200 ± 0.007 c | 0.23 ± 0.01 b | 0.150 ± 0.001 e | 0.200 ± 0.001 c | 0.100 ± 0.001 g | 0.320 ± 0.001 a | 0.120 ± 0.001 f | 0.18 ± 0.01 d |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MS2 (m/z) | Tentative Identification |
---|---|---|---|---|---|
1 | 14.16 | 349 | 493 | 317 (100) | Myricetin-O-hexoside |
2 | 18.1 | 344 | 477 | 301 (100) | Quercetin-3-O-glucoside |
3 | 18.63 | 334 | 461 | 285 (100) | Kaempherol-O-glucuronide |
4 | 20.4 | 334 | 579 | 285 (100) | Kaempherol-O-hexosyl-pentoside |
5 | 22.14 | 334 | 563 | 269 (100) | Apigenin-O-hexosyl-pentoside |
6 | 22.9 | 334 | 445 | 269 (100) | Apigenin-O-glucuronide |
7 | 25.44 | 332 | 665 | 621 (100), 285 (45) | Kaempherol-O-malonyl-pentoside |
8 | 28.28 | 286/326 | 549 | 429 (12), 297 (14), 279 (5), 255 (41) | Pinocembrim arabirosyl glucoside |
9 | 29.47 | 286/326 | 563 | 443 (12), 401 (5), 297 (21), 255 (58) | Pinocembrim neohesperidoside |
10 | 31.39 | 288/328 | 591 | 549 (30), 429 (20), 297 (15), 279 (5), 255 (32) | Pinocembrim acetylarabirosyl glucoside |
11 | 31.79 | 285/326 | 605 | 563 (12), 545 (5), 443 (30), 401 (10), 255 (40) | Pinocembrim acetyl neohesperidoside isomer I |
12 | 32.14 | 286/328 | 605 | 563 (10), 545 (5), 443 (28), 401 (9), 255 (39) | Pinocembrim acetyl neohesperidoside isomer II |
Peaks | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatments | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Tfols | Tflavones | Tflav | TPC |
N0 soil | 0.088 ± 0.002 f | 0.019 ± 0.001 g | 0.041 ± 0.003 e | 0.027 ± 0.004 d | 0.03 ± 0.004 d | 0.03 ± 0.01 c | 0.018 ± 0.001 d | tr | 0.9 ± 0.1 cd | 0.04 ± 0.002 f | 0.052 ± 0.004 d | 0.43 ± 0.02 d | 0.192 ± 0.001 g | 0.057 ± 0.001 e | 1.5 ± 0.1 e | 1.7 ± 0.1 e |
N1 soil | 0.113 ± 0.002 b | 0.025 ± 0.001 c | 0.057 ± 0.001 b | 0.034 ± 0.004 a | 0.04 ± 0.001 a | 0.035 ± 0.003 a | 0.027 ± 0.004 a | 0.067 ± 0.001 b | 1.4 ± 0.1 a | 0.127 ± 0.001 c | 0.13 ± 0.01 a | 1.4 ± 0.1 a | 0.255 ± 0.001 b | 0.075 ± 0.001 a | 3.0 ± 0.1 a | 3.4 ± 0.1 a |
N2 soil | 0.104 ± 0.003 d | 0.021 ± 0.001 f | 0.042 ± 0.001 e | 0.028 ± 0.003 c | 0.04 ± 0.002 a | 0.033 ± 0.001 b | 0.021 ± 0.001 b | tr | 1.06 ± 0.02 c | 0.034 ± 0.003 g | 0.058 ± 0.002 c | 0.43 ± 0.02 d | 0.216 ± 0.001 f | 0.073 ± 0.002 a | 1.6 ± 0.1 e | 1.9 ± 0.1 de |
N3 soil | 0.103 ± 0.001 d | 0.022 ± 0.003 e | 0.047 ± 0.003 d | 0.029 ± 0.001 b | 0.035 ± 0.002 b | 0.03 ± 0.001 c | 0.021 ± 0.001 b | tr | 1.2 ± 0.1 bc | 0.031 ± 0.002 g | 0.062 ± 0.004 c | 0.7 ± 0.1 c | 0.223 ± 0.001 e | 0.065 ± 0.001 c | 1.9 ± 0.2 bc | 2.2 ± 0.2 bc |
N0 peat/perlite | 0.095 ± 0.004 e | 0.021 ± 0.003 f | 0.045 ± 0.001 d | 0.027 ± 0.001 d | 0.03 ± 0.002 d | 0.029 ± 0.002 c | 0.019 ± 0.001 c | 0.036 ± 0.004 c | 1.1 ± 0.1 bc | 0.102 ± 0.003 d | 0.084 ± 0.01 b | 0.39 ± 0.01 d | 0.232 ± 0.001 d | 0.061 ± 0.001 d | 1.8 ± 0.1 cd | 1.9 ± 0.1 de |
N1 peat/perlite | 0.108 ± 0.004 c | 0.023 ± 0.002 d | 0.047 ± 0.001 d | 0.026 ± 0.004 d | 0.029 ± 0.001 d | 0.028 ± 0.001 d | 0.021 ± 0.002 b | 0.096 ± 0.002 a | 0.85 ± 0.03 d | 0.344 ± 0.001 a | nd | 0.299 ± 0.003 e | 0.226 ± 0.001 e | 0.057 ± 0.001 e | 1.59 ± 0.03 e | 1.87 ± 0.03 de |
N2 peat/perlite | 0.114 ± 0.001 a | 0.027 ± 0.004 a | 0.069 ± 0.002 a | 0.027 ± 0.001 d | 0.036 ± 0.002 b | 0.033 ± 0.001 b | 0.021 ± 0.001 b | 0.06 ± 0.01 b | 1.1 ± 0.1 bc | 0.196 ± 0.002 b | nd | 0.31 ± 0.004 e | 0.258 ± 0.001 a | 0.069 ± 0.001 b | 1.69 ± 0.02 de | 2.02 ± 0.02 cd |
N3 peat/perlite | 0.108 ± 0.001 c | 0.026 ± 0.002 b | 0.053 ± 0.002 c | 0.03 ± 0.001 b | 0.032 ± 0.001 c | 0.026 ± 0.003 e | 0.021 ± 0.002 b | 0.001 ± 0.0001 d | 1.3 ± 0.2 ab | 0.073 ± 0.003 e | nd | 0.8 ± 0.1 b | 0.238 ± 0.003 c | 0.058 ± 0.001 e | 2.1 ± 0.3 b | 2.4 ± 0.3 b |
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
N0 Soil | N1 Soil | N2 Soil | N3 Soil | N0 Peat/Perlite | N1 Peat/Perlite | N2 Peat/Perlite | N3 Peat/Perlite | |
Antioxidant activity | ||||||||
OxHLIA (IC50; µg/mL); Δt = 60 min | 280 ± 8 b | 327 ± 9 a | 108 ± 8 f | 159 ± 11 c | 163 ± 8 c | 136 ± 6 d | 116 ± 7 e | 43 ± 3 g |
TBARS (EC50, μg/mL) | 87 ± 2 a | 41 ± 1 d | 64 ± 4 b | 58 ± 2 c | 18.4 ± 0.7 f | 19.2 ± 0.8 f | 57 ± 3 c | 38 ± 1 e |
Cytotoxicity to non-tumor cell lines (GI50 values μg/mL) | ||||||||
PLP2 | 350 ± 10 | >400 | >400 | >400 | >400 | >400 | >400 | >400 |
Cytotoxicity to tumor cell lines (GI50 values μg/mL) | ||||||||
HeLa | 211 ± 4 g | >400 | 249 ± 15 d | 237 ± 10 e | 259 ± 25 c | 223 ± 11 f | 266 ± 24 b | 288 ± 13 a |
HepG2 | 325 ± 22 a | >400 | >400 | 253 ± 12 c | 301 ± 3 b | 330 ± 12 a | 247 ± 14 c | 333 ± 13 a |
MCF-7 | 296 ± 20 b | >400 | >400 | 331 ± 16 a | 278 ± 11 c | >400 | >400 | 274.8 ± 0.4 d |
NCI-H460 | 316 ± 26 a | >400 | >400 | 283 ± 22 b | 266 ± 10 c | 255 ± 10 d | 249 ± 10 e | >400 |
Treatments | Antibacterial Activity | S. aureus | B. cereus | L. monocytogenes | E. coli | S. typhimurium | E. cloacae |
N0 soil | MIC | 0.5 | 0.5 | 1 | 0.5 | 1 | 1 |
MBC | 1 | 1 | 2 | 1 | 2 | 2 | |
N1 soil | MIC | 1 | 1 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 2 | 4 | 1 | 4 | 4 | |
N2 soil | MIC | 0.5 | 0.5 | 1 | 1 | 1 | 1 |
MBC | 1 | 1 | 2 | 2 | 2 | 2 | |
N3 soil | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | |
N0 peat/perlite | MIC | 1 | 0.5 | 2 | 1 | 1 | 1 |
MBC | 2 | 1 | 4 | 2 | 2 | 2 | |
N1 peat/perlite | MIC | 1 | 0.5 | 2 | 0.5 | 2 | 2 |
MBC | 2 | 1 | 4 | 1 | 4 | 4 | |
N2 peat/perlite | MIC | 1 | 0.5 | 2 | 0.5 | 1 | 2 |
MBC | 2 | 1 | 4 | 1 | 2 | 4 | |
N3 peat/perlite | MIC | 1 | 0.5 | 2 | 0.5 | 1 | 2 |
MBC | 2 | 1 | 4 | 1 | 2 | 4 | |
Streptomycin | MIC | 0.1 | 0.025 | 0.15 | 0.1 | 0.1 | 0.025 |
MBC | 0.2 | 0.05 | 0.3 | 0.2 | 0.2 | 0.05 | |
Ampicillin | MIC | 0.1 | 0.1 | 0.15 | 0.15 | 0.1 | 0.1 |
MBC | 0.15 | 0.15 | 0.3 | 0.2 | 0.2 | 0.15 | |
Antifungal Activity | Aspergillus fumigatus | Aspergillus niger | Aspergillus versicolor | Penicillium funiculosum | Trichoderma viride | Penicillium verrucosum var. cyclopium | |
N0 soil | MIC | 0.5 | 0.5 | 0.5 | 0.12 | 0.12 | 0.12 |
MFC | 1 | 1 | 1 | 0.25 | 0.25 | 0.25 | |
N2 soil | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 |
MFC | 1 | 1 | 1 | 1 | 0.5 | 0.5 | |
N3 soil | MIC | 0.5 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 |
MFC | 1 | 1 | 1 | 1 | 0.5 | 0.5 | |
N0 peat/perlite | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.12 | 0.25 |
MFC | 1 | 1 | 1 | 0.5 | 0.25 | 0.5 | |
N1 peat/perlite | MIC | 0.25 | 0.5 | 0.5 | 0.5 | 0.25 | 0.25 |
MFC | 0.5 | 1 | 1 | 1 | 0.5 | 0.5 | |
N2 peat/perlite | MIC | 0.5 | 0.5 | 0.5 | 0.25 | 0.12 | 0.12 |
MFC | 1 | 1 | 1 | 0.5 | 0.25 | 0.25 | |
N3 peat/perlite | MIC | 0.25 | 0.5 | 0.5 | 0.5 | 0.12 | 0.12 |
MFC | 0.5 | 1 | 1 | 1 | 0.25 | 0.25 | |
Streptomycin | MIC | 0.15 | 0.15 | 0.1 | 0.2 | 0.15 | 0.1 |
MFC | 0.2 | 0.2 | 0.2 | 0.25 | 0.2 | 0.2 | |
Ampicillin | MIC | 0.2 | 0.2 | 0.2 | 0.2 | 1 | 0.2 |
MFC | 0.5 | 0.5 | 0.5 | 0.5 | 1.5 | 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petropoulos, S.A.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Calhelha, R.C.; Ivanov, M.; Sokovic, M.D.; Ferreira, I.C.F.R.; Barros, L. Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy 2021, 11, 576. https://doi.org/10.3390/agronomy11030576
Petropoulos SA, Fernandes Â, Dias MI, Pereira C, Calhelha RC, Ivanov M, Sokovic MD, Ferreira ICFR, Barros L. Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy. 2021; 11(3):576. https://doi.org/10.3390/agronomy11030576
Chicago/Turabian StylePetropoulos, Spyridon A., Ângela Fernandes, Maria Inês Dias, Carla Pereira, Ricardo C. Calhelha, Marija Ivanov, Marina D. Sokovic, Isabel C. F. R. Ferreira, and Lillian Barros. 2021. "Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark" Agronomy 11, no. 3: 576. https://doi.org/10.3390/agronomy11030576
APA StylePetropoulos, S. A., Fernandes, Â., Dias, M. I., Pereira, C., Calhelha, R. C., Ivanov, M., Sokovic, M. D., Ferreira, I. C. F. R., & Barros, L. (2021). Effects of Growing Substrate and Nitrogen Fertilization on the Chemical Composition and Bioactive Properties of Centaurea raphanina ssp. mixta (DC.) Runemark. Agronomy, 11(3), 576. https://doi.org/10.3390/agronomy11030576