Evaluation of Humic Fertilizers on Kentucky Bluegrass Subjected to Simulated Traffic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Location and Plot Maintenance
2.2. Treatments
2.3. Simulated Traffic
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Percent Green Cover
3.2. Soil Moisture, Surface Hardness, and Rotational Resistance
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aldahir, P.; McElroy, J. A review of sports turf research techniques related to playability and safety standards. Agron. J. 2014, 106, 1297–1308. [Google Scholar] [CrossRef]
- Puhalla, J.; Krans, J.; Goatley, M. Sports Fields: Design, Construction, and Maintenance, 3rd ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Christians, N.; Patton, A.; Law, Q. Fundamentals of Turfgrass Management, 5th ed.; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Minner, D.; Valverde, F. Performance of established cool-season grass species under simulated traffic. Int. Turfgrass Soc. Res. J. 2005, 10, 393–397. [Google Scholar]
- Carrow, R.; Petrovic, A. Effects of traffic on turfgrasses. Turfgrass 1992, 32, 285–330. [Google Scholar]
- Dest, W.; Ebdon, J.; Guillard, K. Differentiating between the influence of wear and soil compaction and their interaction of turfgrass stress. Int. Turfgrass Soc. Res. J. 2009, 11, 1067–1083. [Google Scholar]
- Henderson, J.; Lanovaz, J.; Rogers, J., III; Sorochan, J.; and Vanini, J. A new apparatus to simulate athletic field traffic: The Cady Traffic Simulator. Agron. J. 2005, 97, 1153–1157. [Google Scholar] [CrossRef] [Green Version]
- Kowalewski, A.; Schwartz, B.; Grimshaw, A.; Sullivan, D.; Peake, J.; Green, T.; Rogers, J., III; Kaiser, L.; Clayton, H. Biophysical effects and ground force of the Baldree traffic simulator. Crop Sci. 2013, 53, 2239–2244. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.; Ebdon, J.; Dest, W. Characteristics in diverse wear tolerant genotypes of Kentucky bluegrass. Crop Sci. 2005, 45, 1917–1926. [Google Scholar] [CrossRef]
- Han, L.; Song, G.; Zhang, X. Preliminary observations on physiological responses of three turfgrass species to traffic stress. HortTechnology 2008, 18, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Głąb, T.; Szewczyk, W.; Dubas, E.; Kowalik, K.; Jezierski, T. Anatomical and morphological factors affecting wear tolerance of turfgrass. Sci. Hort. 2015, 185, 1–13. [Google Scholar] [CrossRef]
- Głąb, T.; Szewczyk, W. The effect of traffic on turfgrass root morphological features. Sci. Hort. 2015, 197, 542–554. [Google Scholar] [CrossRef]
- Pease, B.; Thoms, A.; Arora, R.; Christians, N. Intercellular void space effects on Kentucky bluegrass traffic tolerance. Agron. J. 2020, 112, 3450–3455. [Google Scholar] [CrossRef]
- Karcher, D.; Richardson, M. Batch analysis of digital images to evaluate turfgrass characteristics. Crop Sci. 2005, 45, 1536–1539. [Google Scholar] [CrossRef]
- Canaway, P.; Bell, M.; Holmes, G.; Baker, S. Standards for the playing quality of natural turf for association football. In Natural and Artificial Playing Fields: Characteristics and Safety Features; ASTM International: West Conshohocken, PA, USA, 1990. [Google Scholar]
- Canaway, P.; Bell, M. An apparatus for measuring traction and friction on natural and artificial playing surfaces. J. Sports Turf Res. Inst. 1986, 62, 211–214. [Google Scholar]
- Stier, J.; Rogers, J., III; Crum, J.; Rieke, P. Flurprimidol effects on Kentucky bluegrass under reduced irradiance. Crop Sci. 1999, 39, 1423–1430. [Google Scholar] [CrossRef]
- Stier, J.; Rogers, J. Trinexapac-ethyl and iron effects on supina and Kentucky bluegrasses under low irradiance. Crop Sci. 2001, 41, 457–465. [Google Scholar] [CrossRef]
- Ervin, E.; Koski, A. Kentucky bluegrass growth responses to trinexapac-ethyl, traffic, and nitrogen. Crop Sci. 2001, 41, 1871–1877. [Google Scholar] [CrossRef]
- Baker, S.; Spring, C.; Wheater, J. Fertiliser, sand topdressing and aeration programmes for football pitches. II. Cost-effectiveness of management strategies. J. Turfgrass Sports Surf. Sci. 2007, 83, 56–67. [Google Scholar]
- Martiniello, P. Effect of traffic stress on cool-season turfgrass under a Mediterranean climate. Agron. Sustain. Dev. 2007, 27, 293–301. [Google Scholar] [CrossRef]
- Spring, C.; Wheater, J.; Baker, S. Fertiliser, sand topdressing and aeration programmes for football pitches. I. Performance characteristics under simulated wear. J. Turfgrass Sports Surf. Sci. 2007, 83, 40–55. [Google Scholar]
- Hoffman, L.; Ebdon, J.; Dest, W.; DaCosta, M. Effects of Nitrogen and Potassium on Wear Mechanisms in Perennial Ryegrass: I. Wear Tolerance and Recovery. Crop Sci. 2010, 50, 357–366. [Google Scholar] [CrossRef]
- Mohammadi, M.; Etemadi, N.; Arab, M.; Aalifar, M.; Arab, M.; Pessarakli, M. Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress. Plant Physiol. Biochem. 2017, 111, 129–143. [Google Scholar] [CrossRef]
- Mohamadi, M.; Etemadi, N.; Nikbakht, A.; Pessarakli, M. Physiological responses of two cool-season grass species to Trinexapac-ethyl under traffic stress. HortScience 2017, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.; Thoms, A.; Breeden, G.; Sorochan, J. Effects of various plant growth regulators on the traffic tolerance of ‘Riviera’ bermudagrass (Cynodon dactylon L.). HortScience 2010, 45, 966–970. [Google Scholar] [CrossRef] [Green Version]
- Pope, J.; Eichenberg, R.; Birthisel, T. Use of humate dispersible granule technology as a soil amendment in turfgrass and horticultural soils. Appl. Turfgrass Sci. 2013, 10, 38. [Google Scholar] [CrossRef]
- Canellas, L.; Olivares, F.; Aguiar, N.; Jones, D.; Nebioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 2002, 34, 1527–1536. [Google Scholar] [CrossRef]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Dorer, S.; Peacock, C. The effects of humate and organic fertilizer on establishment and nutrition of creeping bent putting greens. Int. Turfgrass Soc. Res. J. 1997, 7, 437–443. [Google Scholar]
- Liu, C.; Cooper, R.; Bowman, D. Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 1998, 33, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Schmidt, R. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 2000, 40, 1344–1349. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Schmidt, R. Physiological effects of liquid applications of a seaweed extract and a humic acid on creeping bentgrass. J. Am. Soc. Hort. Sci. 2003, 128, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Schmidt, R.; Ervin, E.; Doak, S. Creeping bentgrass physiological responses to natural plant growth regulators and iron under two regimes. HortScience 2002, 37, 898–902. [Google Scholar] [CrossRef] [Green Version]
- Hunter, A.; Anders, A. The influence of humic acid on turfgrass growth and development of creeping bentgrass. Int. Conf. Turfgrass Manag. Sci. Sports Fields 2003, 661, 257–264. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E. Cytokinin-containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Sci. 2004, 44, 1737–1745. [Google Scholar] [CrossRef]
- Van Dyke, A.; Johnson, P.; Grossl, P. Influence of humic acid on water retention and nutrient acquisition in simulated golf putting greens. Soil Use Manag. 2009, 25, 255–261. [Google Scholar] [CrossRef]
- Gao, Y.; Li, D. Foliar fertilization by tank-mixing with organic amendment on creeping bentgrass. HortTechnology 2012, 22, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ervin, E.; Schmidt, R. Seaweed extract, humic acid, and propiconazole improve tall fescue sod heat tolerance and posttransplant quality. HortScience 2003, 38, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Schmidt, R. Antioxidant response to hormone-containing product in Kentucky bluegrass subjected to drought. Crop Sci. 1999, 39, 545–551. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Schmidt, R. Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 2003, 43, 952–956. [Google Scholar] [CrossRef]
- Ervin, E.; Roberts, J. Improving root development with foliar humic acid applications during Kentucky bluegrass sod establishment on sand. Int. Conf. Turfgrass Sci. Manag. Sports Fields 2007, 783, 317–322. [Google Scholar] [CrossRef]
- Zhu, H.; Li, D. Using humus on golf course fairways to alleviate soil salinity problems. HortTechnology 2018, 28, 284–288. [Google Scholar] [CrossRef]
- Lindsey, A.; Thoms, A.; Christians, N. Kentucky bluegrass and bermudagrass rooting response to humic fertilizers during greenhouse establishment. Agron. J. 2020, 112, 3396–3401. [Google Scholar] [CrossRef]
- Nikbakht, A.; Pessarakli, M.; Daneshvar-Hakimi-Maibodi, N.; Kafi, M. Perennial ryegrass growth responses to mycorrhizal infection and humic acid treatments. Agron. J. 2014, 106, 585–595. [Google Scholar] [CrossRef]
- Daneshvar-Hakimi-Maibodi, N.; Kafi, M.; Nikbakht, A.; Rejali, F. Effect of foliar applications of humic acid on growth, visual quality, nutrients content and root parameters of perennial ryegrass (Lolium perenne L.). J. Plant Nutr. 2015, 38, 224–236. [Google Scholar] [CrossRef]
- Dalsgaard, T.; Thoms, A.; Christians, N.; Mertz, I.; Horton, R. Comparison of Shockwave aerification and conventional aerification methods on athletic fields. Agron. J. 2020, 112, 3470–3477. [Google Scholar] [CrossRef]
- IEM. ISU Soil Moisture Network. Iowa Envrionment Mesonet, Iowa State University of Science and Technology. 2021. Available online: https://mesonet.agron.iastate.edu/agclimate/hist/daily.php (accessed on 10 February 2021).
- Dickson, K.; Sorochan, J.; Brosnan, J.; Stier, J.; Lee, J.; Strunk, W. Impact of soil water content on hybrid bermudagrass athletic fields. Crop Sci. 2018, 58, 1416–1425. [Google Scholar] [CrossRef]
- Thoms, A.; Sorochan, J.; Brosnan, J.; Samples, T. Perennial ryegrass (Lolium perenne L.) and grooming affect bermudagrass traffic tolerance. Crop Sci. 2011, 51, 2204–2211. [Google Scholar] [CrossRef]
- Richardson, M.; Karcher, D.; Purcell, L. Quantifying turfgrass cover using digital image analysis. Crop Sci. 2001, 41, 1884–1888. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 2014, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- DaCosta, M.; Huang, B. Heat-stress physiology and management. Turfgrass Biol. Use Manag. 2013, 56, 249–278. [Google Scholar]
Treatment 1 | Nutrient Analysis | Application Rate |
---|---|---|
Humic-coated urea (HCU) | 44N-0P-0K, 2% humic acid (HA) | 48.8 kg N ha−1 |
Poly-coated humic-coated urea (PCHCU) | 45N-0P-0.2K, 2% HA | 48.8 kg N ha−1 |
Synthetic fertilizer with black gypsum (SFBG) 2 | 22N-0P-3.3K, 30% gypsum, 4.7% HA | 48.8 kg N ha−1 |
SFBG (2 apps.) | 22N-0P-3.3K, 30% gypsum, 4.7% HA | 48.8 kg N ha−1 |
Black gypsum (BG) | 48% gypsum, 21% HA | 146.5 kg BG ha−1 |
Stabilized nitrogen | 46N-0P-0K | 48.8 kg N ha−1 |
Poly-coated sulfur-coated urea (PCSCU) | 43N-0P-0K, 4% sulfur | 48.8 kg N ha−1 |
Urea | 46N-0P-0K | 48.8 kg N ha−1 |
Nontreated | - | - |
Treatment 1 | 2019 | 2020 | ||
---|---|---|---|---|
Slope PGC 2 Event−1 | Intercept PGC | Slope PGC Event−1 | Intercept PGC | |
Humic-coated urea (HCU) | −3.6 | 104.0 | −3.6 | 95.5 |
Poly-coated humic-coated urea (PCHCU) | −3.3 | 102.8 | −3.8 | 96.7 |
Synthetic fertilizer with black gypsum (SFBG) | −3.4 | 105.5 | −3.6 | 94.9 |
SFBG (2 apps.) | −3.4 | 103.6 | −3.7 | 95.3 |
Black gypsum (BG) | −3.2 | 102.4 | −3.5 | 91.8 |
Stabilized nitrogen | −3.6 | 105.0 | −3.7 | 95.9 |
Poly-coated sulfur-coated urea (PCSCU) | −2.5 | 103.7 | −3.9 | 95.6 |
Urea | −3.3 | 104.6 | −3.6 | 99.0 |
Nontreated | −3.4 | 100.6 | −3.7 | 92.9 |
Orthogonal Contrast | ||||
HCU vs. urea | NS 3 | NS | NS | NS |
PCHCU vs. urea | NS | NS | NS | NS |
SFBG vs. urea | NS | NS | NS | NS |
HCU vs. nontreated | NS | NS | NS | NS |
PCHCU vs. nontreated | NS | NS | NS | NS |
SFBG vs. nontreated | NS | NS | NS | NS |
PCSCU vs. nontreated | ** | NS | NS | NS |
Urea vs. nontreated | NS | NS | NS | NS |
Treatment 1 | 2019 | 2020 | ||
---|---|---|---|---|
Slope PGC 2 WAFE−1 | Intercept PGC | Slope PGC WAFE−1 | Intercept PGC | |
Humic-coated urea (HCU) | 0.7 | 18.3 | 4.8 | 15.8 |
Poly-coated humic-coated urea (PCHCU) | 0.9 | 22.8 | 4.9 | 12.7 |
Synthetic fertilizer with black gypsum (SFBG) | 0.8 | 22.4 | 6.6 | 14.8 |
SFBG (2 apps.) | −0.2 | 22.2 | 3.9 | 18.1 |
Black gypsum (BG) | −0.4 | 25.9 | 2.6 | 17.3 |
Stabilized nitrogen | 1.1 | 17.5 | 4.2 | 14.2 |
Poly-coated sulfur-coated urea (PCSCU) | 0.9 | 40.5 | 5.1 | 14.6 |
Urea | 1.0 | 26.0 | 5.6 | 19.9 |
Nontreated | −0.3 | 20.2 | 2.2 | 14.5 |
Orthogonal Contrast | ||||
HCU vs. urea | NS 3 | * | NS | NS |
PCHCU vs. urea | NS | NS | NS | NS |
SFBG vs. urea | NS | NS | NS | NS |
HCU vs. nontreated | NS | NS | * | NS |
PCHCU vs. nontreated | NS | NS | * | NS |
SFBG vs. nontreated | NS | NS | *** | NS |
PCSCU vs. nontreated | NS | *** | * | NS |
Urea vs. nontreated | NS | NS | ** | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindsey, A.J.; Thoms, A.W.; Christians, N.E. Evaluation of Humic Fertilizers on Kentucky Bluegrass Subjected to Simulated Traffic. Agronomy 2021, 11, 611. https://doi.org/10.3390/agronomy11040611
Lindsey AJ, Thoms AW, Christians NE. Evaluation of Humic Fertilizers on Kentucky Bluegrass Subjected to Simulated Traffic. Agronomy. 2021; 11(4):611. https://doi.org/10.3390/agronomy11040611
Chicago/Turabian StyleLindsey, Alex J., Adam W. Thoms, and Nick E. Christians. 2021. "Evaluation of Humic Fertilizers on Kentucky Bluegrass Subjected to Simulated Traffic" Agronomy 11, no. 4: 611. https://doi.org/10.3390/agronomy11040611
APA StyleLindsey, A. J., Thoms, A. W., & Christians, N. E. (2021). Evaluation of Humic Fertilizers on Kentucky Bluegrass Subjected to Simulated Traffic. Agronomy, 11(4), 611. https://doi.org/10.3390/agronomy11040611