Substandard and Semi-Dwarfing Citrus Rootstocks for More Intensive, Higher-Density, and Sustainable Plantation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Measurements
2.3. Statistical Analysis
3. Results and Discussion
3.1. ‘Lane Late’ Navel Orange Trees Size
3.2. ‘Lane Late’ Navel Orange-Rootstock Affinity
3.3. ‘Lane Late’ Navel Orange Trees Productivity
3.4. ‘Lane Late’ Navel Orange Trees Nutrient Status
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture. Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, A. Is the presence of Trioza erytreae, vector of huanglongbing disease, endangering the Mediterranean citrus industry? Survey of its population density and geographical spread over the last years. J. Plant Pathol. 2018, 100, 567–574. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Duran-Vila, N.; Quinto, J.; Hervalejo, Á. Geographic spread and inter-annual evolution of populations of Trioza erytreae in the Iberian Peninsula. J. Plant Pathol. 2019, 101, 1151–1157. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Romero-Rodríguez, E.; Quinto, J.; Hervalejo, A. Nuevos desafíos de la citricultura Española. Horticultura 2018, 68, 68–73. [Google Scholar]
- Mademba-Sy, F.; Lemerre-Desprez, Z.; Lebegin, S. Use of Flying Dragon trifoliate orange as dwarfing rootstock for citrus under tropical climatic conditions. HortScience 2012, 47, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Diez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Ladaniya, M.S.; Marathe, R.A.; Das, A.K.; Rao, C.N.; Huchche, A.D.; Shirgure, P.S.; Murkute, A.A. High density planting studies in acid lime (Citrus aurantifolia Swingle). Sci. Hortic. 2020, 261, 108935. [Google Scholar] [CrossRef]
- Arenas-Arenas, F.J.; Romero-Rodríguez, E.; Hervalejo, A. Intensificación del cultivo de cítricos. Vida Rural 2020, 480, 38–42. [Google Scholar]
- Toplu, C.; Uygur, V.; Kaplankıran, M.; Demirkeser, T.H.; Yıldız, E. Effect of citrus rootstocks on leaf mineral composition of ‘Okitsu’, ‘Clausellina’ and ‘Silverhill’ mandarin cultivars. J. Plant Nutr. 2012, 35, 1329–1340. [Google Scholar] [CrossRef]
- Incesu, M.; Yeşíloğlu, T.; Çímen, B.; Yilmaz, B. Influences of different iron levels on plant growth and photosynthesis of W. Murcott mandarin grafted on two rootstocks under high pH conditions. Turk. J. Agric. For. 2015, 39, 838–844. [Google Scholar] [CrossRef]
- Dubey, A.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Kumar, S.; Awasthi, O.P.; Dubey, A.K.; Pandey, R.; Sharma, V.K.; Mishra, A.K.; Sharma, R.M. Root morphology and the effect of rootstocks on leaf nutrient acquisition of Kinnow mandarin (Citrus nobilis Loureiro × Citrus reticulata Blanco). J. Hortic. Sci. Biotechnol. 2018, 93, 100–106. [Google Scholar] [CrossRef]
- Yilmaz, B.; Cimen, B.; Incesu, M.; Uysal, K.M.; Yesiloglu, T. Rootstock influences on seasonal changes in leaf physiology and fruit quality of Rio Red grapefruit variety. Appl. Ecol. Environ. Res. 2018, 16, 4065–4080. [Google Scholar] [CrossRef]
- Mestre, L.; Reig, G.; Betrán, J.A.; Moreno, M.A. Influence of plum rootstocks on agronomic performance, leaf mineral nutrition and fruit quality of ‘Catherina’ peach cultivar in heavy-calcareous soil conditions. Spanish J. Agric. Res. 2017, 15, e0901. [Google Scholar] [CrossRef]
- Shahkoomahally, S.; Chaparro, J.X.; Beckman, T.G.; Sarkhosh, A. Influence of rootstocks on leaf mineral content in the subtropical peach cv. UFSun. HortScience 2020, 55, 496–502. [Google Scholar] [CrossRef]
- Newcomb, D.A. Selection of rootstocks for salinity and disease resistance. In Proceedings of the International Society of Citriculture II, Orlando, FL, USA, 3–7 December 1978; pp. 117–120. [Google Scholar]
- Forner, J.B.; Aparicio, M.; Alcaide, A.; Giner, J.; Pina, J.A.; Sala, J. Present status of citrus rootstocks in Spain. In Proceedings of the International Society of Citriculture, Tokyo, Japan, 9–12 November 1981. [Google Scholar]
- Urbaneja-Bernat, P.; Carrillo, D.; Jaques, J.A. Behavior of Diaphorina citri: An investigation of the potential risk to the most commonly used citrus rootstock in Europe. Entomol. Gen. 2020, 40, 79–86. [Google Scholar] [CrossRef]
- Duran-Vila, N.; Bové, J.M. Citrus HLB is an emerging disease transmitted by psyllid vectors. Can it be prevented? If not, can it be managed? Int. Cent. Adv. Mediterr. Agron. Stud. Watch Lett. 2015, 33, 9. [Google Scholar]
- Albrecht, U.; Bowman, K.D. Tolerance of the Trifoliate Citrus Hybrid US-897 (Citrus reticulata Blanco × Poncirus trifoliata L. Raf.) to Huanglongbing. HortScience 2011, 46, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Forner, J.B.; Forner-Giner, M.A.; Alcaide, A. Forner-Alcaide 5 and Forner-Alcaide 13: Two new citrus rootstocks released in Spain. HortScience 2003, 38, 629–630. [Google Scholar] [CrossRef] [Green Version]
- Forner-Giner, M.A.; Forner, J.B. Nuevos patrones de cítricos resistentes a la salinidad. Vida Rural 2009, 298, 35–37. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; Food: Rome, Italy, 1977; Volume 24. [Google Scholar]
- Quiñones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Fertigation: Concept and application in citrus. In Advances in Citrus Nutrition; Springer: Dordrecht, The Netherlands, 2012; pp. 281–301. ISBN 9789400741713. [Google Scholar]
- Turrell, F.M. Tables of Surfaces and Volumes of Spheres and of Prolate and Oblate Spheroids, and Spheroidal Coefficients; University of California Press: Berkeley, CA, USA, 1946. [Google Scholar]
- Pearce, S.C.; Doberšek-Urbanc, S. The measurement of irregularity in growth and cropping. J. Hortic. Sci. 1967, 42, 295–305. [Google Scholar] [CrossRef]
- Steyn, W.J.A. Plant tissue analysis, errors involved in the preparative phase of leaf analysis. J. Agric. Food Chem. 1959, 7, 344–348. [Google Scholar] [CrossRef]
- Ulrich, A.; Hills, F.J. Principles and practices of plant analysis. In Soil Testing and Plant Analysis; Westerman, R.L., Ed.; Soil Science Society of America: Madinson, WI, USA, 1967; pp. 11–24. [Google Scholar]
- Ashby, D.L. Washing techniques for the removal of nutrient element deposits from the surface of apple, cherry and peach leaves. J. Am. Soc. Hortic. Sci. 1969, 94, 266–268. [Google Scholar]
- IEDF. Comité interinstitucional para el estudio de diagnóstico foliar Métodos de referencia para la determinación de elementos minerales en vegetales. An. Edafol. Agrobiol. 1969, 28, 409–460. [Google Scholar]
- Legaz, F.; Serna, M.D.; Ferrer, P.; Cebolla, V.; Primo-Millo, E. Análisis de Hojas, Suelos y Aguas de Riego Para el Diagnóstico Nutricional de Plantaciones de cítricos. Procedimiento de Toma de Muestras; Generalitat Valenciana—Conselleria de Agricultura, Pesca y Alimentació: Valencia, Spain, 1995. [Google Scholar]
- Forner-Giner, M.A.; Rodriguez-Gamir, J.; Martinez-Alcantara, B.; Quiñones, A.; Iglesias, D.J.; Primo-Millo, E.; Forner, J. Performance of Navel orange trees grafted onto two new dwarfing rootstocks (Forner-Alcaide 517 and Forner-Alcaide 418). Sci. Hortic. 2014, 179, 376–387. [Google Scholar] [CrossRef]
- Da Silva Rodrigues, M.J.; De Araújo Neto, S.E.; De Carvalho Andrade Neto, R.; Dos Santos Soares Filho, W.; Girardi, E.A.; Lessa, L.S.; De Almeida, U.O.; De Araújo, J.M.I. Agronomic performance of the ‘Pera’ orange grafted onto nine rootstocks under the conditions of Rio Branco, Acre, Brazil. Rev. Bras. Ciencias Agrar. 2019, 14, e6642. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.R.; de Carvalho, H.W.L.; Teodoro, A.V.; de Barros, I.; de Carvalho, L.M.; Soares Filho, W.d.S.; Passos, O.S. Performance of the pineapple sweet orange on different rootstocks. Biosci. J. 2020, 36. [Google Scholar] [CrossRef] [Green Version]
- Donadio, L.C.; Lederman, I.E.; Roberto, S.R.; Stucchi, E.S. Dwarfing-canopy and rootstock cultivars for fruit trees. Rev. Bras. Frutic. 2019, 41. [Google Scholar] [CrossRef]
- Bassal, M.A. Growth, yield and fruit quality of ‘Marisol’ clementine grown on four rootstocks in Egypt. Sci. Hortic. 2009, 119, 132–137. [Google Scholar] [CrossRef]
- Legua, P.; Bellver, R.; Forner, J.B.; Forner-Giner, M.A. Plant growth, yield and fruit quality of ‘Lane Late’ navel orange on four citrus rootstocks. Span. J. Agric. Res. 2011, 9, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Hervalejo, A.; Suarez, M.P.; Moreno-Rojas, J.M.; Arenas-Arenas, F.J. Overall fruit Quality of ‘Lane Late’ Orange on Sub-Standard and Semi-Dwarfing Rootstocks. J. Agric. Sci. Tech. 2020, 22, 235–246. [Google Scholar]
- Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, C.; Zhang, R.; Fan, Z.; Chen, F.; Liu, Y. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Glob. Ecol. Conserv. 2019, 19, e00663. [Google Scholar] [CrossRef]
- Perez-Zamora, O. Leaf nutrient concentration, yield, production efficiency, juice quality and nutrimental indexes on Valencia orange grafted on citrus rootstocks. Agrociencia 2004, 38, 141–154. [Google Scholar]
- Ranjha, A.M.; Akram, M.; Mehdi, S.M.; Sadiq, M.; Sarfraz, M.; Hassan, G. Nutritional status of citrus orchards in Sahiwal district. J. Biol. Sci. 2002, 2, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Zekri, M.; Obreza, T.A. Micronutrient Deficiencies in Citrus: Iron, Zinc, and Manganese. EDIS 1969, 2003. [Google Scholar] [CrossRef]
DL (m) | DT (m) | D2 (m2) | Dr (cm) | Ds (cm) | Dr/Ds | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | 3.94 | b | 3.65 | b | 14.49 | c | 16.29 | c | 12.49 | c | 1.31 | b |
CL | 3.33 | a | 3.32 | ab | 11.22 | ab | 13.85 | b | 11.93 | bc | 1.17 | a |
FA13 | 3.23 | a | 3.11 | a | 10.10 | a | 13.57 | ab | 9.55 | a | 1.45 | cd |
FA41 | 3.31 | a | 3.30 | ab | 10.98 | a | 12.56 | a | 9.47 | a | 1.33 | bc |
FA5 | 3.55 | ab | 3.36 | ab | 12.09 | abc | 16.22 | c | 10.70 | ab | 1.52 | d |
MP | 3.98 | b | 3.50 | ab | 14.15 | bc | 14.44 | b | 11.24 | bc | 1.28 | ab |
% | ppm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Kg tree−1 | N | P | K | Ca | Mg | B | Cu | Fe | Mn | Zn | |
Kg tree−1 | 1.00 | 0.58 * | 0.47 * | 0.52 * | −0.17 | −0.33 | −0.32 | 0.24 | −0.34 * | 0.27 | −0.14 |
Kg m−3 | 0.88 * | 0.61 * | 0.63 * | 0.48 * | −0.06 | −0.30 | −0.28 | 0.25 | −0.54 * | 0.16 | −0.04 |
TH (m) | 0.13 | −0.18 | 0.11 | −0.22 | −0.13 | −0.10 | −0.19 | −0.02 | 0.05 | −0.10 | −0.22 |
DL (m) | 0.29 | −0.04 | 0.24 | 0.09 | −0.30 | −0.21 | 0.11 | 0.03 | 0.16 | −0.01 | −0.20 |
DT (m) | 0.13 | −0.15 | 0.04 | −0.11 | −0.19 | −0.15 | −0.08 | −0.20 | 0.05 | −0.01 | −0.24 |
Vc (m3) | 0.15 | −0.15 | 0.16 | −0.11 | −0.23 | −0.17 | −0.09 | −0.08 | 0.07 | −0.07 | −0.24 |
Dr (cm) | 0.19 | −0.14 | 0.00 | −0.36 | 0.15 | 0.26 | −0.21 | 0.16 | 0.17 | −0.04 | −0.42 * |
Ds (cm) | 0.28 | −0.27 | 0.05 | −0.22 | 0.17 | 0.09 | −0.28 | −0.17 | 0.02 | −0.02 | −0.21 |
Dr/Ds | −0.12 | 0.25 | 0.01 | −0.07 | −0.13 | 0.05 | 0.13 | 0.37 | 0.15 | 0.06 | −0.11 |
B (ppm) | Cu (ppm) | Fe (ppm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | |||||||
CA | 43.33 | a | 59.05 | a | 6.33 | a | 5.74 | a | 57.00 | a | 107.13 | bc |
CL | 60.67 | ab | 66.40 | a | 4.00 | a | 3.13 | a | 63.00 | a | 64.77 | a |
FA13 | 70.00 | ab | 67.78 | a | 6.00 | a | 5.20 | a | 58.00 | a | 71.46 | a |
FA41 | 89.33 | b | 70.15 | a | 6.67 | a | 4.10 | a | 65.33 | a | 72.03 | a |
FA5 | 53.33 | a | 61.19 | a | 5.00 | a | 3.99 | a | 58.00 | a | 86.43 | ab |
MP | 44.00 | b | 65.90 | a | 5.67 | a | 2.05 | a | 66.00 | a | 114.20 | c |
Optimal range * | 31–100 | 6–14 | 61–100 | |||||||||
Mn (ppm) | Zn (ppm) | |||||||||||
2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | |||||||||
CA | 26.00 | a | 25.93 | a | 18.00 | a | 17.27 | a | ||||
CL | 36.33 | ab | 28.60 | a | 18.00 | a | 17.30 | a | ||||
FA13 | 40.00 | bc | 31.51 | a | 24.67 | a | 16.15 | a | ||||
FA41 | 28.33 | ab | 29.51 | a | 21.67 | a | 15.16 | a | ||||
FA5 | 38.33 | abc | 45.38 | b | 17.00 | a | 15.41 | a | ||||
MP | 49.33 | c | 69.61 | c | 16.33 | a | 18.98 | a | ||||
Optimal range * | 26–60 | 26–70 |
CA | CL | FA13 | FA41 | FA5 | MP | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
kg tree−1 | ||||||||||||
2008/2009 | 52.95 | ab | 32.92 | a | 43.30 | a | 47.45 | a | 49.07 | a | 70.59 | b |
2009/2010 | 32.47 | ab | 26.25 | ab | 26.21 | ab | 22.59 | a | 27.54 | ab | 39.28 | b |
2010/2011 | 53.03 | a | 46.98 | a | 43.50 | a | 41.02 | a | 52.93 | a | 86.83 | b |
2011/2012 | 48.32 | a | 40.91 | a | 35.27 | a | 44.58 | a | 34.20 | a | 51.16 | a |
2012/2013 | 28.25 | ab | 27.87 | ab | 17.74 | a | 21.62 | a | 28.38 | ab | 46.03 | b |
2013/2014 | 42.99 | a | 69.33 | a | 44.83 | a | 46.54 | a | 58.88 | a | 70.93 | a |
Averages | ||||||||||||
kg tree−1 | 43.04 | ab | 42.05 | ab | 32.44 | a | 36.85 | a | 40.08 | ab | 60.93 | b |
kg m−3 | 2.76 | a | 3.94 | a | 3.80 | a | 3.72 | a | 3.55 | a | 4.10 | a |
ABI (%) | 23.36 | a | 31.86 | a | 35.48 | a | 32.13 | a | 23.30 | a | 15.39 | a |
N (%) | P (%) | K (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | |||||||
CA | 2.38 | ab | 2.29 | a | 0.15 | a | 0.12 | a | 0.92 | a | 0.68 | a |
CL | 2.39 | ab | 2.23 | a | 0.14 | a | 0.09 | a | 1.00 | a | 0.75 | a |
FA13 | 2.74 | b | 2.27 | a | 0.16 | a | 0.12 | a | 1.07 | a | 0.75 | a |
FA41 | 2.20 | a | 2.37 | a | 0.16 | a | 0.11 | a | 0.99 | a | 0.75 | a |
FA5 | 2.43 | ab | 2.29 | a | 0.14 | a | 0.05 | a | 0.89 | a | 0.71 | a |
MP | 2.69 | b | 2.25 | a | 0.14 | a | 0.10 | a | 1.17 | a | 1.14 | b |
Optimal range * | 2.51–2.80 | 0.13–0.16 | 0.71–1.00 | |||||||||
Ca (%) | Mg (%) | |||||||||||
2009/2010 | 2012/2013 | 2009/2010 | 2012/2013 | |||||||||
CA | 3.54 | a | 3.65 | b | 0.28 | a | 0.39 | b | ||||
CL | 3.76 | a | 3.69 | b | 0.30 | a | 0.34 | ab | ||||
FA13 | 3.44 | a | 3.44 | b | 0.30 | a | 0.29 | ab | ||||
FA41 | 3.30 | a | 3.47 | b | 0.27 | a | 0.33 | ab | ||||
FA5 | 3.96 | a | 3.54 | b | 0.34 | a | 0.41 | b | ||||
MP | 3.07 | a | 3.04 | a | 0.22 | a | 0.21 | a | ||||
Optimal range * | 3.00–5.00 | 0.25–0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hervalejo, A.; Suárez, M.P.; Arenas-Arenas, F.J. Substandard and Semi-Dwarfing Citrus Rootstocks for More Intensive, Higher-Density, and Sustainable Plantation Systems. Agronomy 2021, 11, 660. https://doi.org/10.3390/agronomy11040660
Hervalejo A, Suárez MP, Arenas-Arenas FJ. Substandard and Semi-Dwarfing Citrus Rootstocks for More Intensive, Higher-Density, and Sustainable Plantation Systems. Agronomy. 2021; 11(4):660. https://doi.org/10.3390/agronomy11040660
Chicago/Turabian StyleHervalejo, Aurea, María Paz Suárez, and Francisco José Arenas-Arenas. 2021. "Substandard and Semi-Dwarfing Citrus Rootstocks for More Intensive, Higher-Density, and Sustainable Plantation Systems" Agronomy 11, no. 4: 660. https://doi.org/10.3390/agronomy11040660
APA StyleHervalejo, A., Suárez, M. P., & Arenas-Arenas, F. J. (2021). Substandard and Semi-Dwarfing Citrus Rootstocks for More Intensive, Higher-Density, and Sustainable Plantation Systems. Agronomy, 11(4), 660. https://doi.org/10.3390/agronomy11040660