Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Life Table Study of G. aculeifer and S. scimitus
2.3. Life Table Data Analysis
2.4. Population Projection
3. Results
3.1. Survival and Developmental Characteristics of G. aculeifer and S. scimitus
3.2. Life Table of G. aculeifer and S. scimitus fed on T. putrescentiae
3.3. Population Parameters
3.4. Population Projection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, D.E.; Oliver, J.H. Geolaelaps oreithyiae, n. sp. (Acari, Laelapidae), a Thelytokous Predator of Arthropods and Nematodes, and a Discussion of Clonal Reproduction in the Mesostigmata. Acarologia 1990, 30, 293–303. [Google Scholar]
- Navarro-Campos, C.; Wäckers, F.L.; Pekas, A. Impact of Factitious Foods and Prey on the Oviposition of the Predatory Mites Gaeolaelaps Aculeifer and Stratiolaelaps Scimitus (Acari: Laelapidae). Exp. Appl. Acarol. 2016, 70, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.J.; Wright, E.M.; Lind, R.J. Biological Control of Glasshouse Sciarid Flies (Bradysia spp.) with the Predatory Mite, Hypoaspis Miles on Cyclamen and Poinsettia. Biocontrol Sci. Technol. 1993, 3, 285–293. [Google Scholar] [CrossRef]
- Bennison, J.A.; Maulden, K.; Maher, H. Choice of Predatory Mites for Biological Control of Ground-Dwelling Stages of Western Flower Thrips Within a “Push-Pull” Strategy on Pot Chrysanthemum. IOBC. WPRS Bull. 2002, 25, 9–12. [Google Scholar]
- Walter, D.E.; Campbell, N.J.H. Exotic vs. Endemic Biocontrol Agents: Would the real Stratiolaelaps miles (Berlese) (Acari: Mesostigmata: Laelapidae), Please Stand Up? Biol. Control 2003, 26, 253–269. [Google Scholar] [CrossRef]
- Freire, R.A.P.; de Moraes, G.J.; Silva, E.S.; Vaz, A.C.; de Campos Castilho, R. Biological Control of Bradysia Matogrossensis (Diptera: Sciaridae) in Mushroom Cultivation with Predatory Mites. Exp. Appl. Acarol. 2007, 42, 87–93. [Google Scholar] [CrossRef]
- Park, J.; Mostafiz, M.M.; Hwang, H.-S.; Jung, D.-O.; Lee, K.-Y. Comparison of the Predation Capacities of Two Soil-Dwelling Predatory Mites, Gaeolaelaps Aculeifer and Stratiolaelaps Scimitus (Acari: Laelapidae), on Three Thrips Species. J. Asia. Pac. Entomol. 2021, 24, 397–401. [Google Scholar] [CrossRef]
- Ali, O.; Dunne, R.; Brennan, P. Effectiveness of the Predatory Mite Hypoaspis Miles (Acari: Mesostigmata: Hypoaspidae) In Conjunction with Pesticides for Control of the Mushroom Fly Lycoriella solani (Diptera: Sciaridae). Exp. Appl. Acarol. 1999, 23, 65–77. [Google Scholar] [CrossRef]
- Cabrera, A.R.; Cloyd, R.A.; Zaborski, E.R. Development and Reproduction of Stratiolaelaps scimitus (Acari: Laelapidae) with Fungus Gnat Larvae (Diptera: Sciaridae), potworms (Oligochaeta: Enchytraeidae) or Sancassania aff. sphaerogaster (Acari: Acaridae) as the Sole Food Source. Exp. Appl. Acarol. 2005, 36, 71–81. [Google Scholar]
- Jeon, H.Y.; Kim, H.H.; Jung, J.A.; Kang, T.J.; Yang, C.Y. Damage Status of Poinsettia by the Fungus Gnat (Bradysia difformis) and Its Control with Predatory Mite (Hypoaspis aculeifer). Korean J. Hortic. Sci. Technol. 2007, 25, 468–473. [Google Scholar]
- Ali, W.; George, D.R.; Shiel, R.S.; Sparagano, O.A.E.; Guy, J.H. Laboratory Screening of Potential Predators of the Poultry Red Mite (Dermanyssus Gallinae) and Assessment of Hypoaspis Miles Performance under Varying Biotic and Abiotic Conditions. Vet. Parasitol. 2012, 187, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Lesna, I.; Sabelis, M.W.; van Niekerk, T.G.C.M.; Komdeur, J. Laboratory Tests for Controlling Poultry Red Mites (Dermanyssus Gallinae) with Predatory Mites in Small ‘Laying Hen’ Cages. Exp. Appl. Acarol. 2012, 58, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Rangel, J.; Ward, L. Evaluation of the Predatory Mite Stratiolaelaps Scimitus for the Biological Control of the Honey Bee Ectoparasitic Mite Varroa destructor. J. Apic. Res. 2018, 57, 425–432. [Google Scholar] [CrossRef]
- Kevan, D.K.M.; Sharma, G.D. Observations on the Biology of Hypoaspis Aculeifer (Canestrini 1884), Apparently New to North America (Acarina: Mesostigmata: Laelaptidae). Acarologia 1964, 6, 647–658. [Google Scholar]
- Ragusa, S.; Zedan, M.A.; Sciacchitano, M.A. The Effects of Food from Plant and Animal Sources on the Development and Egg Production of the Predaceous Mite Hypoaspis Aculeifer (Canestrini) (Parasitiformes, Dermanyssidae). Redia 1986, 69, 481–488. [Google Scholar]
- Sardar, M.A.; Murphy, P.W. Feeding Tests of Grassland Soil-Inhabiting Gamasine Predators. Acarologia 1987, 28, 117–121. [Google Scholar]
- Karg, W. Raubmilben als lndikatoren bei der Entwicklung eines Ökologisch Orientierten Pflanzenschutzes. Nachr. Dtsch. Pflanzenschutzd. 1995, 47, 149–156. (In Germany) [Google Scholar]
- Axelsen, J.A.; Holst, N.; Hamers, T.; Krogh, P.H. Simulations of the Predator-Prey Interactions in a Two Species Ecotoxicological Test System. Ecol. Modell. 1997, 101, 15–25. [Google Scholar] [CrossRef]
- Hiltunen, T.; Kaitala, V.; Laakso, J.; Becks, L. Evolutionary Contribution to Coexistence of Competitors in Microbial Food Webs. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170415. [Google Scholar] [CrossRef] [Green Version]
- Sabelis, M.W.; Van Rijn, P.C. Predation by Insects and Mites. In Thrips as Crop Pests; Lewis, T., Ed.; CABI: Wallingford, Oxfordshire, UK, 2021; pp. 259–354. [Google Scholar]
- Malik, A.; Gulati, R.; Duhan, K.; Poonia, A. Tyrophagus Putrescentiae (Schrank) (Acari: Acaridae) as a Pest of Grains: A Review. J. Entomol. Zool. Stud. 2018, 6, 2543–2550. [Google Scholar]
- Enkegaard, A.; Sardar, M.A.; Brødsgaard, H.F. The Predatory Mite Hypoaspis Miles: Biological and Demographic Characteristics on Two Prey Species, the Mushroom Sciarid Fly, Lycoriella Solani, and the Mould Mite, Tyrophagus Putrescentiae. Entomol. Exp. Appl. 1997, 82, 135–146. [Google Scholar] [CrossRef]
- Saeed, R.; Razaq, M. Effect of Prey Resource on the Fitness of the Predator Chrysoperla Carnea (Neuroptera: Chrysopidae). Pak. J. Zool. 2015, 47, 103–109. [Google Scholar]
- Aragón-Sánchez, M.; Román-Fernández, L.R.; Martínez-García, H.; Aragón-García, A.; Pérez-Moreno, I.; Marco-Mancebón, V.S. Rate of Consumption, Biological Parameters, and Population Growth Capacity of Orius Laevigatus Fed on Spodoptera Exigua. BioControl 2018, 63, 785–794. [Google Scholar] [CrossRef]
- Amer, M.E.S.; Fu, Y.; Niu, L. Biological Aspects of Orius Similis Zheng Reared on Two Preys at Three Constant Temperatures. J. Agric. Sci. Technol. A 2018, 8, 350–363. [Google Scholar]
- Liu, P.; Jia, W.; Zheng, X.; Zhang, L.; Sangbaramou, R.; Tan, S.; Liu, Y.; Shi, W. Predation Functional Response and Life Table Parameters of Orius Sauteri (Hemiptera: Anthocoridae) Feeding on Megalurothrips Usitatus (Thysanoptera: Thripidae). Fla. Entomol. 2018, 101, 254–259. [Google Scholar] [CrossRef]
- Ali, S.; Li, S.; Jaleel, W.; Musa Khan, M.; Wang, J.; Zhou, X. Using a Two-Sex Life Table Tool to Calculate the Fitness of Orius Strigicollis as a Predator of Pectinophora Gossypiella. Insects 2020, 11, 275. [Google Scholar] [CrossRef]
- Chi, H.; You, M.; Atlıhan, R.; Smith, C.L.; Kavousi, A.; Özgökçe, M.S.; Güncan, A.; Tuan, S.-J.; Fu, J.-W.; Xu, Y.-Y.; et al. Age-Stage, Two-Sex Life Table: An Introduction to Theory, Data Analysis, and Application. Entomol. Gen. 2020, 103–124. [Google Scholar] [CrossRef]
- Chi, H.; Getz, W.M. Mass Rearing and Harvesting Based on an Age-Stage, Two-Sex Life Table: A Potato Tuberworm (Lepidoptera: Gelechiidae) Case Study. Environ. Entomol. 1988, 17, 18–25. [Google Scholar] [CrossRef]
- Li, X.; Feng, D.; Xue, Q.; Meng, T.; Ma, R.; Deng, A.; Chi, H.; Wu, Z.; Atlihan, R.; Men, L.; et al. Density-Dependent Demography and Mass-Rearing of Carposina Sasakii (Lepidoptera: Carposinidae) Incorporating Life Table Variability. J. Econ. Entomol. 2019, 112, 255–265. [Google Scholar] [CrossRef]
- Lewis, E.G. On the Generation and Growth of a Population. Sankhyā Indian J. Stat. 1942, 6, 93–96. [Google Scholar]
- Leslie, P.H. On the Use of Matrices in Certain Population Mathematics. Biometrika 1945, 33, 183–212. [Google Scholar] [CrossRef] [PubMed]
- Birch, L.C. The Intrinsic Rate of Natural Increase of an Insect Population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Carey, J.R. Applied Demography for Biologists: With Special Emphasis on Insects; Oxford University Press: Oxford, NY, USA, 1993; ISBN 978-0-19-506687-6. [Google Scholar]
- Chi, H.; Liu, H. Two New Methods for the Study of Insect Population Ecology. Bull. Inst. Zool. 1985, 24, 225–240. [Google Scholar]
- Barker, P.S. The Response of a Predator, Hypoaspis Aculeifer (Canestrini) (Acarina:Laelapidae), to Two Species of Prey. Can. J. Zool. 2011, 47, 343–345. [Google Scholar] [CrossRef]
- Lesna, I.; Sabelis, M.; Conijn, C. Biological Control of the Bulb Mite, Rhizoglyphus Robini, by the Predatory Mite, Hypoaspis Aculeifer, on Lilies: Predator-Prey Interactions at Various Spatial Scales. J. Appl. Ecol. 1996, 33, 369–376. [Google Scholar] [CrossRef]
- Conijn, C.G.M.; Lesna, I.; Altena, K. Biological Control of the Bulb Mite Rhizoglyphus Robini by the Predatory Mite Hypoaspis Aculeifer on Lilies: Implementation in Practice. Acta Hortic. 1997, 430, 619–624. [Google Scholar] [CrossRef]
- Ydergaard, S.; Enkegaard, A.; Brødsgaard, H.F. The Predatory Mite Hypoaspis Miles: Temperature Dependent Life Table Characteristics on a Diet of Sciarid Larvae, Bradysia Paupera and B. Tritici. Entomol. Exp. Appl. 1997, 85, 177–187. [Google Scholar] [CrossRef]
- Berndt, O.; Poehling, H.-M.; Meyhöfer, R. Predation Capacity of Two Predatory Laelapid Mites on Soil-Dwelling Thrips Stages. Entomol. Exp. Appl. 2004, 112, 107–115. [Google Scholar] [CrossRef]
- Ajvad, F.T.; Madadi, H.; Michaud, J.P.; Zafari, D.; Khanjani, M. Life Table of Gaeolaelaps Aculeifer (Acari: Laelapidae) Feeding on Larvae of Lycoriella Auripila (Diptera: Sciaridae) with Stage-Specific Estimates of Consumption. Biocontrol Sci. Technol. 2018, 28, 157–171. [Google Scholar] [CrossRef]
- Jung, D.-O.; Hwang, H.-S.; Kim, J.-W.; Lee, K.-Y. Development of the mass-rearing technique for a predatory mite Stratiolaelaps scimitus (Acari: Laelapidae) using the double box system. Korean J. Appl. Entomol. 2018, 57, 253–260. [Google Scholar]
- Hwang, H.-S.; Jung, D.-O.; Park, J.; Lee, K.-Y. Simple Mass-Rearing Technique of a Predatory Mite Gaeolaelaps Aculeifer (Canestrini) (Acari: Laelapidae). Entomol. Res. 2019, 49, 529–533. [Google Scholar] [CrossRef]
- Chi, H. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; Su, H.-Y. Age-Stage, Two-Sex Life Tables of Aphidius Gifuensis (Ashmead) (Hymenoptera: Braconidae) and Its Host Myzus Persicae (Sulzer) (Homoptera: Aphididae) with Mathematical Proof of the Relationship between Female Fecundity and the Net Reproductive Rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Chi, H. Life Tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an Invalidation of the Jackknife Technique. J. Appl. Entomol. 2013, 137, 327–339. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University: Taichung, Taiwan, 2021. [Google Scholar]
- Efron, B.; Tibshirani, R.J. Introduction to the Bootstrap, Monographs on Statistics and Applied Probability; Chapman and Hall/CRC: London, UK, 1994; ISBN 978-0-412-04231-7. [Google Scholar]
- Huang, H.-W.; Chi, H.; Smith, C.L. Linking Demography and Consumption of Henosepilachna Vigintioctopunctata (Coleoptera: Coccinellidae) Fed on Solanum Photeinocarpum (Solanales: Solanaceae): With a New Method to Project the Uncertainty of Population Growth and Consumption. J. Econ. Entomol. 2018, 111, 1–9. [Google Scholar] [CrossRef]
- Chi, H. Timing of Control Based on the Stage Structure of Pest Populations: A Simulation Approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Chi, H. TIMING-Mschart: A Computer Program for the Population Projection Based on Age-Stage, Two-Sex Life Table; National Chung Hsing University: Taichung, Taiwan, 2021. [Google Scholar]
- Asgari, F.; Moayeri, H.R.S.; Kavousi, A.; Enkegaard, A.; Chi, H. Demography and Mass Rearing of Amblyseius Swirskii (Acari: Phytoseiidae) Fed on Two Species of Stored-Product Mites and Their Mixture. J. Econ. Entomol. 2020, 113, 2604–2612. [Google Scholar] [CrossRef]
- Hafeez, M.; Jan, S.; Nawaz, M.; Ali, E.; Ali, B.; Qasim, M.; Fernández-Grandon, G.M.; Shahid, M.; Wang, M. Sub-Lethal Effects of Lufenuron Exposure on Spotted Bollworm Earias Vittella (Fab): Key Biological Traits and Detoxification Enzymes Activity. Environ. Sci. Pollut. Res. 2019, 26, 14300–14312. [Google Scholar] [CrossRef]
- Jaleel, W.; Saeed, S.; Saeed, Q.; Naqqash, M.N.; Sial, M.U.; Aine, Q.U.; Yanyuan, L.; Rui, Z.; He, Y.; Lu, L. Effects of Three Different Cultivars of Cruciferous Plants on the Age-Stage, Two-Sex Life Table Traits of Plutella Xylostella (L.) (Lepidoptera: Plutellidae). Entomol. Res. 2019, 49, 151–157. [Google Scholar] [CrossRef]
- Aljetlawi, A.A.; Sparrevik, E.; Leonardsson, K. Prey–Predator Size-Dependent Functional Response: Derivation and Rescaling to the Real World. J. Anim. Ecol. 2004, 73, 239–252. [Google Scholar] [CrossRef]
- Kalinoski, R.M.; DeLong, J.P. Beyond Body Mass: How Prey Traits Improve Predictions of Functional Response Parameters. Oecologia 2016, 180, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.R.; Santos, F.; Soliman, E.P.; Rodrigues, A.P.; Wilcken, C.F.; Campos, J.M.; Zanuncio, A.J.V.; Zanuncio, J.C. Biological Parameters, Life Table and Thermal Requirements of Thaumastocoris Peregrinus (Heteroptera: Thaumastocoridae) at Different Temperatures. Sci. Rep. 2019, 9, 10174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos Aguila, L.C.; Hussain, M.; Huang, W.; Lei, L.; Bamisile, B.S.; Wang, F.; Chi, H.; Wang, L. Temperature-Dependent Demography and Population Projection of Tamarixia Radiata (Hymenoptera: Eulophidea) Reared on Diaphorina Citri (Hemiptera: Liviidae). J. Econ. Entomol. 2020, 113, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tazerouni, Z.; Talebi, A.A.; Fathipour, Y.; Soufbaf, M. Age-Specific Functional Response of Aphidius Matricariae and Praon Volucre (Hymenoptera: Braconidae) on Myzus Persicae (Hemiptera: Aphididae). Neotrop. Entomol. 2016, 45, 642–651. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sørensen, J.G.; Loeschcke, V. Adaptation of Drosophila to Temperature Extremes: Bringing Together Quantitative and Molecular Approaches. J. Therm. Biol. 2003, 28, 175–216. [Google Scholar] [CrossRef]
- Broufas, G.D.; Pappas, M.L.; Koveos, D.S. Effect of Relative Humidity on Longevity, Ovarian Maturation, and Egg Production in the Olive Fruit Fly (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 2009, 102, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-C.; Zhu, F.; Zheng, X.-L.; Lei, C.-L.; Zhou, X.-M. Survival and Developmental Characteristics of the Predatory Bug Orius Similis (Hemiptera: Anthocoridae) Fed on Tetranychus Cinnabarinus (Acari: Tetranychidae) at Three Constant Temperatures. Eur. J. Entomol. 2013, 109, 503–508. [Google Scholar] [CrossRef] [Green Version]
- Kakimoto, K.; Urano, S.; Noda, T.; Matuo, K.; Sakamaki, Y.; Tsuda, K.; Kusigemati, K. Comparison of the Reproductive Potential of Three Orius Species, O. Strigicollis, O. Sauteri, and O. Minutus (Heteroptera: Anthocoridae), Using Eggs of the Mediterranean Flour Moth as a Food Source. Appl. Entomol. Zool. 2005, 40, 247–255. [Google Scholar] [CrossRef]
- Yosoff, S.F.; Mohamed, M.T.M.; Parvez, A.; Ahmad, S.H.; Ghazali, F.M.; Hassan, H. Production System and Harvesting Stage Influence on Nitrate Content and Quality of Butterhead Lettuce. Bragantia 2015, 74, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Bonte, M.; Clercq, P. De Influence of Predator Density, Diet and Living Substrate on Developmental Fitness of Orius Laevigatus. J. Appl. Entomol. 2011, 135, 343–350. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Manduca Quinquemaculata’s Optimization of Intra-Plant Oviposition to Predation, Food Quality, and Thermal Constraints. Ecology 2002, 83, 2346–2354. [Google Scholar] [CrossRef]
- Notter-Hausmann, C.; Dorn, S. Relationship between Behavior and Physiology on an Invasive Pest Species: Oviposition Site Selection and Temperature-Dependent Development of the Oriental Fruit Moth (Lepidoptera: Tortricidae). Environ. Entomol. 2010, 39, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeed, S.; Jaleel, W.; Naqqash, M.N.; Saeed, Q.; Zaka, S.M.; Sarwar, Z.M.; Ishtiaq, M.; Qayyum, M.A.; Sial, M.U.; Batool, M.; et al. Fitness Parameters of Plutella Xylostella (L.) (Lepidoptera; Plutellidae) at Four Constant Temperatures by Using Age-Stage, Two-Sex Life Tables. Saudi J. Biol. Sci. 2019, 26, 1661–1667. [Google Scholar] [CrossRef]
Developmental Time (days) | |||||
---|---|---|---|---|---|
Biological Parameters | Gaeolaelaps aculeifer | Stratiolaelaps scimitus | p | ||
N | Mean ± SE | N | Mean ± SE | ||
Egg (d) | 41 | 3.71 ± 0.11 a | 36 | 2.89 ± 0.096 b | <0.0001 |
Larva (d) | 41 | 1.05 ± 0.034 a | 36 | 1.11 ± 0.053 a | 0.2783 |
Protonymph (d) | 41 | 3.32 ± 0.101 a | 36 | 3.06 ± 0.112 a | 0.3577 |
Deutonymph (d) | 41 | 3.44 ± 0.093 a | 36 | 3.64 ± 0.15 a | 0.6078 |
Preadult (d) | 41 | 11.51 ± 0.18 a | 36 | 10.69 ± 0.25 b | 0.0064 |
Adult longevity (d) | 41 | 66.24 ± 2.20 a | 36 | 57.19 ± 2.61 b | 0.0072 |
Female adult | 26 | 80.31 ± 2.75 a | 24 | 69.71 ± 3.08 b | 0.0165 |
Male adult | 15 | 73.33 ± 3.55 a | 12 | 64.25 ± 4.78 a | 0.1242 |
Total longevity (d) | 41 | 77.76 ± 2.21 a | 36 | 67.89 ± 2.61 b | 0.0035 |
APOP (d) | 26 | 3.23 ± 0.19 a | 24 | 6.04 ± 0.47 b | 0.0035 |
TPOP (d) | 26 | 14.88 ± 0.34 a | 24 | 16.42 ± 0.60 b | 0.0285 |
Oviposition days (d) | 26 | 24.50 ± 0.73 a | 24 | 19.12 ± 1.29 b | 0.0288 |
Fecundity (offspring/individual) | 26 | 74.88 ± 2.25 a | 24 | 28.46 ± 2.00 b | 0.0285 |
Fecundity (eggs/day) | 26 | 3.06 ± 0.07 a | 24 | 1.49 ± 0.04 b | <0.0001 |
Population Parameters a | Bootstrap (Mean ± SE b,c) | p | |
---|---|---|---|
Gaeolaelaps aculeifer | Stratiolaelaps scimitus | ||
r (d−1) | 0.1733 ± 0.0071 a | 0.1079 ± 0.0071 b | <0.0001 |
λ (d−1) | 1.1893 ± 0.0084 a | 1.1139 ± 0.0068 b | <0.0001 |
R0 (offspring/female) | 47.49 ± 5.80 a | 18.97 ± 2.59 b | <0.0001 |
T (d) | 22.27 ± 0.44 a | 27.29 ± 0.83 b | <0.0001 |
GRR (offspring/female) | 47.53 ± 5.81 a | 22.03 ± 3.12 b | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Mostafiz, M.M.; Hwang, H.-S.; Jung, D.-O.; Lee, K.-Y. Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory. Agronomy 2021, 11, 1062. https://doi.org/10.3390/agronomy11061062
Park J, Mostafiz MM, Hwang H-S, Jung D-O, Lee K-Y. Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory. Agronomy. 2021; 11(6):1062. https://doi.org/10.3390/agronomy11061062
Chicago/Turabian StylePark, Jihye, Md Munir Mostafiz, Hwal-Su Hwang, Duck-Oung Jung, and Kyeong-Yeoll Lee. 2021. "Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory" Agronomy 11, no. 6: 1062. https://doi.org/10.3390/agronomy11061062
APA StylePark, J., Mostafiz, M. M., Hwang, H. -S., Jung, D. -O., & Lee, K. -Y. (2021). Comparing the Life Table and Population Projection of Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae) Based on the Age-Stage, Two-Sex Life Table Theory. Agronomy, 11(6), 1062. https://doi.org/10.3390/agronomy11061062