The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soybeans Seeds
2.2. Heat Treatment of Soybean Seeds
- extruder,
- screw conveyor with a water vapour extraction hood,
- screw press,
- roller mill.
2.3. Soybean Extrusion
2.4. Extrudate Drying
2.5. Oil Pressing
2.6. Soybean Press Cake Grinding
2.7. Analyses
2.8. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sońta, M.; Rekiel, A.; Więcek, J.; Batorska, M.; Puppel, K. Alternative Protein Sources vs. GM Soybean Meal as Feedstuff for Pigs—Meat Quality and Health-Promoting Indicators. Animals 2021, 11, 177. [Google Scholar] [CrossRef]
- Badora, B. Polacy o bezpieczeństwie żywności i GMO (Opinions about Genetically Modified Crops (GMCs); Public Opinion Research Center): Warsaw, Poland, 2013; Available online: https://www.cbos.pl/SPISKOM.POL/2013/K_002_13.PDF (accessed on 27 May 2021).
- Zaworska-Zakrzewska, A.; Kasprowicz-Potocka, M.; Wiśniewska, Z.; Rutkowski, A.; Hejdysz, M.; Kaczmarek, S.; Nowak, P.; Zmudzińska, A.; Banaszak, M. The Chemical Composition of Domestic Soybean Seeds and the Effects of Partial Substitution of Soybean Meal by Raw Soybean Seeds in the Diet on Pigs’ Growth Performance and Pork Quality (M. Longissimus Lumborum). Ann. Anim. Sci. 2020, 20, 521–533. [Google Scholar] [CrossRef]
- Dzwonkowski, W. Krajowy Rynek pasz Wysokobiałkowych. W: Ekonomiczne Aspekty Substytucji Śruty Sojowej GM Krajowymi Roślinami Białkowymi; IERGiŻ-PIB: Warsaw, Poland, 2016; ISBN 978-83-7658-656-4. [Google Scholar]
- EUROSTAT Crop Production in EU Standard Humidity. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=apro_cpsh1&lang=en (accessed on 19 October 2020).
- Binkowski, M.; Osiecka, A. Wyniki Porejestrowych Doświadczeń Odmianowych. Bobowate Grubonasienne i Soja. 2018 and 2019. Available online: https://coboru.gov.pl/IB/Pliki/WPDO_Bobowate_2018.pdf and https://coboru.gov.pl/Publikacje_COBORU/Wyniki_PDO/WPDO_Bobowate_2019.pdf; (accessed on 22 March 2021).
- Rotundo, J.L.; Westgate, M.E. Meta-analysis of environmental effects on soybean seed composition. Field Crop. Res. 2009, 110, 147–156. [Google Scholar] [CrossRef]
- Piotrowska, M.; Slizewska, K.; Biernasiak, J. Mycotoxins in Cereal and Soybean-Based Food and Feed. In Soybean—Pest Resistance; InTech: West Palm Beach, FL, USA, 2013; Available online: https://www.intechopen.com/books/soybean-pest-resistance/mycotoxins-in-cereal-and-soybean-based-food-and-feed (accessed on 22 March 2021).
- Hoffmann, L.; Rawski, M.; Nogales-Merida, S.; Mazurkiewicz, J. Dietary Inclusion of Tenebrio Molitor Meal in Sea Trout Larvae Rearing: Effects on Fish Growth Performance, Survival, Condition, and GIT and Liver Enzymatic Activity. Ann. Anim. Sci. 2020, 20, 579–598. [Google Scholar] [CrossRef]
- Milczarek, A.; Osek, M. Effectiveness evaluation of use of various protein feeds for broiler chicken feeding. Ann. Anim. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of Duckweed (Lemna L.) in Sustainable Livestock Production and Aquaculture—A Review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Świątkiewicz, M.; Księżak, J.; Hanczakowska, E. The Effect of Feeding Native Faba Bean Seeds (Vicia faba L.) to Sows and Supplemented With Enzymes to Piglets and Growing Pigs. Ann. Anim. Sci. 2018, 18, 1007–1027. [Google Scholar] [CrossRef] [Green Version]
- Niwińska, B.; Witaszek, K.; Niedbała, G.; Pilarski, K. Seeds of n-GM Soybean Varieties Cultivated in Poland and Their Processing Products as High-Protein Feeds in Cattle Nutrition. Agriculture 2020, 10, 174. [Google Scholar] [CrossRef]
- Witaszek, K.; Pilarski, K.; Niedbała, G.; Pilarska, A.A.; Herkowiak, M. Energy Efficiency of Comminution and Extrusion of Maize Substrates Subjected to Methane Fermentation. Energies 2020, 13, 1887. [Google Scholar] [CrossRef]
- Ekielski, A.; Żelaziński, T.; Durczak, K. The use of wavelet analysis to assess the degree of wear of working elements of food extruders. Eksploat. i Niezawodn. Maint. Reliab. 2017, 19, 560–564. [Google Scholar] [CrossRef]
- ISO/TS 21098:2005 Foodstuffs—Nucleic Acid Based Methods of Analysis of Genetically Modified Organisms and Derived Products—Information to Be Supplied and Procedure for the Addition of Methods to ISO 21569, ISO 21570 or ISO 21571. Available online: https://www.iso.org/standard/40004.html (accessed on 22 March 2021).
- European Union Reference Laboratory for GM Food & Feed Joint Research Center Validation Materials. Available online: https://gmo-crl.jrc.ec.europa.eu/ (accessed on 22 March 2021).
- BS EN ISO 21569:2005+A1:2013 Foodstuffs. Methods of Analysis for the Detection of Genetically Modified Organisms and Derived Products. Qualitative Nucleic Acid Based Methods. Available online: https://shop.bsigroup.com/ProductDetail?pid=000000000030246279 (accessed on 22 March 2021).
- ISO 7954:1999, P.-I. Microbiology—General Guidance for Enumeration of Yeasts and Moulds—Colony Count Technique at 25 Degrees C. Available online: https://www.iso.org/standard/14931.html (accessed on 22 March 2021).
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- ISO 5510:1984 Animal Feeding Stuffs—Determination of Available Lysine. Available online: https://www.iso.org/standard/11561.html (accessed on 22 March 2021).
- ISO 6869:2000 Animal Feeding Stuffs—Determination of the Contents of Calcium, Copper, Iron, Magnesium, Manganese, Potassium, Sodium and Zinc—Method Using Atomic Absorption Spectrometry. Available online: https://www.iso.org/standard/33707.html (accessed on 22 March 2021).
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation And Purification Of Total Lipides From Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Brühl, L. Official Methods and Recommended Practices of the American Oil Chemist’s Society, Physical and Chemical Characteristics of Oils, Fats and Waxes, Section I. Ed. The AOCS Methods Editor and the AOCS Technical Department. 54 pages. AOCS Press, Champaign, 199. Fett/Lipid 1997, 99, 197. [Google Scholar] [CrossRef]
- Domaradzki, P.; Żółkiewski, P.; Litwińczuk, A.; Florek, M.; Dmoch, M. Profile and nutritional value of fatty acids in selected skeletal muscles of Polish Holstein-Friesian bu. Med. Weter. 2019, 75, 310–315. [Google Scholar] [CrossRef]
- Akande, K.E.; Abubakar, M.M.; Adegbola, T.A.; Bogoro, S.E. Nutritional and health implications of mycotoxins in animal feeds: A review. Pak. J. Nutr. 2006, 5, 398–403. [Google Scholar]
- Chelkowski, J. Fungal pathogens influencing cereal seed quality at harvest. Dev. Food Sci. 1991, 26, 53–66. [Google Scholar]
- Frisvald, J.C.; Samson, R.A. Filamentous fungi in foods and feeds: Ecology, spoilage and mycotoxin production. In Handbook of Applied Mycology: Food and Feeds; Arora, I.D.K., Mukerjii, K.G., Marth, E.H., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 31–38. [Google Scholar]
- Weidenbörner, M. Lebensmittel-Mykologie; Behr’s Verlag: Hamburg, Germany, 1999. [Google Scholar]
- Valenta, H.; Dänicke, S.; Blüthgen, A. Mycotoxins in Soybean Feedstuffs Used in Germany. Mycotoxin Res. 2002, 18, 208–211. [Google Scholar] [CrossRef]
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Yasothai, R. Antinutritional Factors in Soybean Meal and Its Deactivation. Int. J. Sci. Environ. 2016, 5, 3793–3797. [Google Scholar]
- Real-Guerra, R.; Stanisçuaski, F.; Carlini, C.R. A Comprehensive Survey of International Soybean Research—Genetics, Physiology, Agronomy and Nitrogen Relationships; InTech: West Palm Beach, FL, USA, 2013. [Google Scholar]
- Chen, J.; Wedekind, K.; Escobar, J.; Vazquez-Añón, M. Trypsin Inhibitor and Urease Activity of Soybean Meal Products from Different Countries and Impact of Trypsin Inhibitor on Ileal Amino Acid Digestibility in Pig. J. Am. Oil Chem. Soc. 2020, 97, 1151–1163. [Google Scholar] [CrossRef]
- Jaśkiewicz, T.; Sagan, A.; Maslowski, A. Wpływ czasu autoklawowania nasion krajowych odmian soi na zawartość lizyny reaktywnej. Zywn. Nauk. Technol. Jakosc/Food. Sci. Technol. Qual. 2010, 17, 73–80. [Google Scholar]
- Veum, T.L.; Serrano, X.; Hsieh, F.H. Twin- or single-screw extrusion of raw soybeans and preconditioned soybean meal and corn as individual ingredients or as corn-soybean product blends in diets for weanling swine1. J. Anim. Sci. 2017, 95, 1288–1300. [Google Scholar] [CrossRef] [PubMed]
- Pisulewska, E.; Lorenc-Kozik, A.-M.; Borowiec, F. Wpływ zróżnicowanego nawożenia azotem na plon, zawartość oraz skład kwasów tłuszczowych w nasionach dwóch odmian soi. Rośliny Oleiste 1999, 20, 511–520. [Google Scholar]
- Milczarek, A.; Osek, M.; Kwiecieñ, M.; Pachnik, M. Wpływ surowych lub ekstrudowanych nasion soi w mieszankach dla kurcząt brojlerów na parametry odchowu, wartość rzeźną i obraz histologiczny wątroby. Med. Weter. 2017, 73, 764–769. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L. The role of dietary fats in efficiency of ruminants. J. Nutr. 1994, 124, 1377S–1382S. [Google Scholar] [PubMed]
- Freitas, J.E.; Takiya, C.S.; Del Valle, T.A.; Barletta, R.V.; Venturelli, B.C.; Vendramini, T.H.A.; Mingoti, R.D.; Calomeni, G.D.; Gardinal, R.; Gandra, J.R.; et al. Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef]
- Śliwiński, B.; Furgał-Dierżuk, I.; Sosin-Bzducha, E.; Brzóska, F. Tabele Składu Chemicznego i Wartości Pokarmowej Pasz Krajowych; National Research Institute of Animal Production: Balice, Poland, 2020. [Google Scholar]
- Grela, E.R.; Skomiał, J. Normy Żywienia Świń. Zalecenia Żywieniowe i Wartość Pokarmowa Pasz dla Świń; The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences: Jabłonna, Poland, 2020; ISBN 978-83-951612-7-8. [Google Scholar]
- Fontaine, J.; Zimmer, U.; Moughan, P.J.; Rutherfurd, S.M. Effect of Heat Damage in an Autoclave on the Reactive Lysine Contents of Soy Products and Corn Distillers Dried Grains with Solubles. Use of the Results to Check on Lysine Damage in Common Qualities of These Ingredients. J. Agric. Food Chem. 2007, 55, 10737–10743. [Google Scholar] [CrossRef]
- Kim, J.C.; Mullan, B.P.; Pluske, J.R. Prediction of apparent, standardized, and true ileal digestible total and reactive lysine contents in heat-damaged soybean meal samples. J. Anim. Sci. 2012, 90, 137–139. [Google Scholar] [CrossRef] [Green Version]
- Urlić, M.; Urlić, I.; Urlić, H.; Mašek, T.; Benzon, B.; Vitlov Uljević, M.; Vukojević, K.; Filipović, N. Effects of Different n6/n3 PUFAs Dietary Ratio on Cardiac Diabetic Neuropathy. Nutrients 2020, 12, 2761. [Google Scholar] [CrossRef]
- Burdge, G. α-Linolenic acid metabolism in men and women: Nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 137–144. [Google Scholar] [CrossRef]
- Wilk, M. Soja źródłem cennych składników żywieniowych. Żywność Nauk. Technol. Jakość 2017, 24, 16–25. [Google Scholar] [CrossRef]
Test Type | Method |
---|---|
35S Promoter | PN-EN ISO 21569:2007+A1:2013-07 [18] |
NOS Terminator | PN-EN ISO 21569:2007+A1:2013-07 [18] |
Gen pat | PN-EN ISO 21569:2007+A1:2013-07 I-02/2 2nd edition of 20 July 2017 [18] |
Gen bar | PN-EN ISO 21569:2007+A1:2013-07 [18] |
CTP2-CP4-EPSPS construct | PN-EN ISO 21569:2007+A1:2013-07 [18] |
Soybean DP 356043 | PB/58/PS 1st edition of 4 January 2016 |
Soybean DP 305423 | PB/58/PS 1st edition of 4 January 2016 |
Soybean CV 127 | PB/58/PS 1st edition of 4 January 2016 |
Soybean MON 87708 | PB/58/PS 1st edition of 4 January 2016 |
Soybean MON 87701 | PB/58/PS 1st edition of 4 January 2016 |
Soybean MON 87769 | PB/58/PS 1st edition of 4 January 2016 |
Cauliflower mosaic virus CaMV | PB/58/PS 1st edition of 4 January 2016 |
Soybean Variety | Total Fungal Count (Moulds + Yeasts) | Total Mould Count | Total Yeast Count | Share of Mould Genera |
---|---|---|---|---|
Erica | <100 cfu/g (73 K) | <100 cfu/g (12 K) | <100 cfu/g (61 K) | Alternaria, Penicillium |
Petrina | 2.2 × 103 cfu/g (2245 K) | 2.2 × 103 cfu/g (2242 K) | <10 cfu/g (3 K) | 100% Eurotium |
Viola | <50 cfu/g (42 K) | <50 cfu/g (33 K) | <10 cfu/g (9 K) | Alternaria, Penicillium |
Soybean Variety | OTA (ppb) | Fumonisins B1, B2, B3 (ppb) | Aflatoxins B1, B2, G1, G2 (ppb) | DON (ppb) | NIV (ppb) | DAS (ppb) | Toxin T2 (ppb) | Toxin HT2 (ppb) | ZEN (ppb) |
---|---|---|---|---|---|---|---|---|---|
Erica | ND | ND | ND | <3.0 | ND | ND | ND | ND | <0.2 |
Petrina | ND | ND | ND | <3.0 | ND | ND | ND | ND | 0.31 |
Viola | ND | ND | ND | <3.0 | ND | ND | ND | ND | ND |
Soybean Varieties | |||
---|---|---|---|
Type of Material | Erica | Petrina | Viola |
Raw seeds | 16.2 ± 0.100 c | 18.43 ± 0.153 c | 16.80 ± 0.300 c |
Extrudate | 11.33 ± 0.305 b | 10.40 ± 0.200 b | 9.17 ± 0.153 b |
Press cake | 6.67 ± 0.058 a | 8.63 ± 0.058 a | 7.93 ± 0.252 a |
p-value | <0.001 | <0.001 | <0.001 |
Type of Material | Soybean Varieties | |||||
---|---|---|---|---|---|---|
Erica | Petrina | Viola | ||||
Urease Activity (mgN·g−1·min−1) | Decrease in Urease Activity (%) | Urease Activity (mgN·g−1·min−1) | Decrease in Urease Activity (%) | Urease Activity (mgN·g−1·min−1) | Decrease in Urease Activity (%) | |
Raw seeds | 4.51 ± 0.130 c | n/a * | 4.86 ± 0.095 b | n/a | 4.56 ± 0.085 b | n/a |
Extrudate | 0.05 ± 0.000 a | −98.9 | 0.05 ± 0.000 a | −98.9 | 0.08 ± 0.010 a | −98.3 |
Press cake | 0.31 ± 0.005 b | −93.1 | 0.05 ± 0.000 a | −98.9 | 0.05 ± 0.000 a | −98.9 |
p-value | <0.001 | <0.001 | <0.001 |
Components (g·kg−1 as Feed Basis) | Raw Seeds | Extrudate | Press Cake | p-Value |
---|---|---|---|---|
Dry matter | 906 ± 3.6 a | 939 ± 4.4 b | 953 ± 3.5 c | <0.001 |
Crude protein | 348 ± 3.3 a | 360 ± 4.3 b | 414 ± 5.1 c | <0.001 |
Crude fat | 175 ± 13.3 b | 216 ± 12.1 c | 88 ± 1.2 a | <0.001 |
Crude fibre | 79 ± 13.4 b | 44 ± 2.3 a | 53 ± 3.9 a | <0.001 |
Crude ash | 52 ± 1.7 a | 56 ± 1.4 b | 67 ± 2.3 c | <0.001 |
N-free extractives | 331 ± 12.1 a | 307 ± 7.5 a | 385 ± 4.1 b | <0.001 |
Feed Material | Total Lysine Content (g·kg−1) | Available Lysine (% Total Lysine) | Available Lysine Content (g·kg−1) | EAAI (%) |
---|---|---|---|---|
Raw seeds | 22.24 | - | - | 76.0 |
Extrudate | 22.77 | 91.5 | 20.83 | 78.5 |
Press cake | 26.14 | 91.6 | 23.94 | 77.8 |
Minerals (g·kg−1 as Feed Basis) | Raw Seeds | Extrudate | Press Cake | p-Value |
---|---|---|---|---|
Calcium | 2.427 ± 0.501 | 2.379 ± 0.517 | 2.823 ± 0.617 | 0.3329 |
Magnesium | 2.710 ± 0.058 a | 2.613 ± 0.069 a | 3.150 ± 0.107 b | <0.001 |
Potassium | 21.15 ± 1.550 | 20.42 ± 1.296 | 24.53 ± 1.581 | 0.0005 |
Sodium | 0.002 ± 0.001 | 0.003 ± 0.002 | 0.004 ± 0.002 | 0.1801 |
Phosphorus | 7.430 ± 0.830 a | 7.217 ± 0.679 a | 8.570 ± 0.737 b | 0.0190 |
Copper | 0.013 ± 0.002 | 0.013 ± 0.002 | 0.017 ± 0.003 | 0.0878 |
Manganese | 0.021 ± 0.003 | 0.021 ± 0.003 | 0.025 ± 0.003 | 0.1096 |
Iron | 0.093 ± 0.015 a | 0.111 ± 0.022 a | 0.150 ± 0.011 b | 0.0001 |
Zinc | 0.051 ± 0.009 | 0.049 ± 0.008 | 0.060 ± 0.009 | 0.1345 |
Iodine | 0.0003 ± 0.000 b | 0.0001± 0.000 a | 0.0001 ± 0.000 a | <0.001 |
Total content of minerals, g·kg−1 as feed basis | 33.88 ± 1.903 a | 32.84 ± 1.474 a | 39.33 ± 1.939 b | <0.001 |
Total content of minerals, g·kg−1 dry matter | 37.40 ± 2.197 a | 35.00 ± 1.551 a | 41.30 ± 1.968 b | 0.0001 |
Raw Seeds | Extrudate | Press Cake | p-Value | |
---|---|---|---|---|
SFA | 16.36 ± 0.228 a | 18.15 ± 0.412 b | 18.63 ± 0.580 b | <0.0001 |
UFA | 83.46 ± 0.320 b | 81.51 ± 0.416 a | 81.36 ± 0.579 a | <0.0001 |
MUFA | 26.47 ± 1.956 | 28.27 ± 2.073 | 27.83 ± 2.092 | 0.1930 |
PUFA | 57.17 ± 2.202 b | 53.58 ± 2.463 a | 53.54 ± 2.619 a | 0.0174 |
UFA/SFA | 5.10 ± 0.110 | 4.51 ± 0.123 | 4.37 ± 0.164 | <0.0001 |
MUFA/SFA | 1.61 ± 0.100 b | 1.56 ± 0.081 ab | 1.49 ± 0.073 a | 0.0423 |
PUFA/SFA | 3.49 ± 0.184 b | 2.95 ± 0.197 a | 2.88 ± 0.221 a | <0.0001 |
n-6/n-3 PUFA | 3.97 ± 0.222 b | 3.50 ± 0.236 a | 3.46 ± 0.242 a | 0.0009 |
Fat saturation index (S/p) | 0.19 ± 0.003 a | 0.21 ± 0.005 b | 0.22 ± 0.008 c | <0.0001 |
Iodine value (IV) | 131.82 ± 2.87 b | 128.25 ± 3.41 a | 127.24 ± 3.73 a | 0.0368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świątkiewicz, M.; Witaszek, K.; Sosin, E.; Pilarski, K.; Szymczyk, B.; Durczak, K. The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals. Agronomy 2021, 11, 1105. https://doi.org/10.3390/agronomy11061105
Świątkiewicz M, Witaszek K, Sosin E, Pilarski K, Szymczyk B, Durczak K. The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals. Agronomy. 2021; 11(6):1105. https://doi.org/10.3390/agronomy11061105
Chicago/Turabian StyleŚwiątkiewicz, Małgorzata, Kamil Witaszek, Ewa Sosin, Krzysztof Pilarski, Beata Szymczyk, and Karol Durczak. 2021. "The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals" Agronomy 11, no. 6: 1105. https://doi.org/10.3390/agronomy11061105
APA StyleŚwiątkiewicz, M., Witaszek, K., Sosin, E., Pilarski, K., Szymczyk, B., & Durczak, K. (2021). The Nutritional Value and Safety of Genetically Unmodified Soybeans and Soybean Feed Products in the Nutrition of Farm Animals. Agronomy, 11(6), 1105. https://doi.org/10.3390/agronomy11061105