The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Amendment, Soil and Pot Experiment Preparation
2.2. Plant Sampling and Biomass Determination
2.3. Soil Sampling and Preparation
2.4. Soil Chemical, Biological, and Statistical Analyses
3. Results
3.1. General Assessment of the Effects of Biochar on Soil and Plant Characteristics
3.2. Soil Nutrient Content, Plant Biomass
3.3. Microbial Biomass and Respiration Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Response Variable | F Test | Significance (p) |
---|---|---|
MBC | F (11,96) = 650.10 | <0.001 *** |
BR | F (11,132) = 17.35 | <0.001 *** |
Glc-SIR | F (11,132) = 42.68 | <0.001 *** |
Tre-SIR | F (11,132) = 24.47 | <0.001 *** |
NAG-SIR | F (11,132) = 27.25 | <0.001 *** |
Ala-SIR | F (11,132) = 29.89 | <0.001 *** |
Lys-SIR | F (11,132) = 29.99 | <0.001 *** |
Arg-SIR | F (11,132) = 23.79 | <0.001 *** |
TC | F (11,60) = 135.10 | <0.001 *** |
TN | F (11,60) = 614.18 | <0.001 *** |
AGB_dry | F (11,24) = 20.25 | <0.001 *** |
Root_dry | F (11,24) = 4.30 | 0.001 ** |
Response: TC | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 6.938 | 1.388 | 115.872 | <0.001 *** |
Biochar | 1 | 9.036 | 9.036 | 754.544 | <0.001 *** |
Sand:soil to Biochar | 5 | 0.069 | 0.014 | 1.144 | 0.347 |
Residuals | 60 | 0.719 | 0.012 | ||
Response: TN | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 0.217 | 0.043 | 664.444 | <0.001 *** |
Biochar | 1 | 0.002 | 0.002 | 31.577 | <0.001 *** |
Sand:soil to Biochar | 5 | 1.74 × 10−4 | 3.50 × 10−5 | 0.535 | 0.749 |
Residuals | 61 | 0.004 | 0.000 | ||
Response: MBC | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 11.994 | 2.399 | 1244.090 | <0.001 *** |
Biochar | 1 | 0.577 | 0.577 | 299.330 | <0.001 *** |
Sand:soil to Biochar | 5 | 2.153 | 0.431 | 223.280 | <0.001 *** |
Residuals | 96 | 0.185 | 0.002 | ||
Response: BR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 0.355 | 0.071 | 9.883 | <0.001 *** |
Biochar | 1 | 0.625 | 0.625 | 87.139 | <0.001 *** |
Sand:soil to Biochar | 5 | 0.372 | 0.074 | 10.365 | <0.001 *** |
Residuals | 132 | 0.947 | 0.007 | ||
Response: Glc-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 34.403 | 6.881 | 69.538 | <0.001 *** |
Biochar | 1 | 4.849 | 4.849 | 49.008 | <0.001 *** |
Sand:soil to Biochar | 5 | 5.578 | 1.116 | 11.274 | <0.001 *** |
Residuals | 132 | 13.061 | 0.099 | ||
Response: Tre-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 5.639 | 1.128 | 28.476 | <0.001 *** |
Biochar | 1 | 2.265 | 2.265 | 57.194 | <0.001 *** |
Sand:soil to Biochar | 5 | 2.632 | 0.526 | 13.292 | <0.001 *** |
Residuals | 132 | 5.228 | 0.040 | ||
Response: NAG-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 3.085 | 0.617 | 29.608 | <0.001 *** |
Biochar | 1 | 1.733 | 1.733 | 83.151 | <0.001 *** |
Sand:soil to Biochar | 5 | 1.315 | 0.263 | 12.623 | <0.001 *** |
Residuals | 132 | 2.751 | 0.021 | ||
Response: Ala-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 4.181 | 0.836 | 33.827 | <0.001 *** |
Biochar | 1 | 1.961 | 1.961 | 79.328 | <0.001 *** |
Sand:soil to Biochar | 5 | 1.575 | 0.315 | 12.740 | <0.001 *** |
Residuals | 132 | 3.263 | 0.025 | ||
Response: Lys-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 1.071 | 0.214 | 22.042 | <0.001 *** |
Biochar | 1 | 0.908 | 0.908 | 93.458 | <0.001 *** |
Sand:soil to Biochar | 5 | 0.839 | 0.168 | 17.263 | <0.001 *** |
Residuals | 132 | 1.283 | 0.010 | ||
Response: Arg-SIR | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 0.176 | 0.035 | 27.024 | <0.001 *** |
Biochar | 1 | 0.059 | 0.059 | 45.128 | <0.001 *** |
Sand:soil to Biochar | 5 | 0.069 | 0.014 | 10.669 | <0.001 *** |
Residuals | 132 | 0.172 | 0.001 | ||
Response: AGB dry | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 2.487 | 0.498 | 24.809 | < 0.001 *** |
Biochar | 1 | 0.021 | 0.021 | 1.820 | 0.190 |
Sand:soil to Biochar | 5 | 0.079 | 0.016 | 1.368 | 0.271 |
Residuals | 24 | 0.279 | 0.012 | ||
Response: Root dry | Df | Sum Sq | Mean Sq | F value | p (>F) |
Sand:soil | 5 | 0.020 | 0.004 | 3.736 | 0.012 * |
Biochar | 1 | 0.026 | 0.026 | 23.593 | <0.001 *** |
Sand:soil to Biochar | 5 | 0.005 | 0.001 | 0.998 | 0.440 |
Residuals | 24 | 0.026 | 0.001 |
References
- Van Veen, J.A.; Kuikman, P.J. Soil Structural Aspects of Decomposition of Organic Matter by Micro-Organisms. Biogeochemistry 1990, 11, 213–233. [Google Scholar] [CrossRef]
- Ladd, J.N.; Amato, M.; Parsons, J.W. Studies on nitrogen immobilization and mineralization in calcarerous, soils-III. Concentration and distribution of nitrogen derived from the soil biomass. In Proceedings of the IAEA/FAO/SSF Symposium, Braunschweig, Germany, 6–10 September 1976; pp. 301–310. [Google Scholar]
- Van Veen, J.A.; Ladd, J.N.; Amato, M. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C(U)] glucose and [15N](NH4) 2So4 under different moisture regimes. Soil Biol. Biochem. 1985, 17, 747–756. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Voroney, R.P.; Kachanoski, R.G. Turnover of carbon through the microbial biomass in soils with different texture. Soil Biol. Biochem. 1991, 23, 799–805. [Google Scholar] [CrossRef]
- Hassink, J. Effect of soil texture on the size of the microbial biomass and on the amount of C and N mineralized per unit of microbial biomass in dutch grassland soils. Soil Biol. Biochem. 1994, 26, 1573–1581. [Google Scholar] [CrossRef]
- Ajayi, A. Biochar-Induced Changes in Soil Resilience: Effects of Soil Texture and Biochar Dosage. Pedosphere 2017, 27, 236–247. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, A.F.; Ji, C.Y.; Joseph, S.; Bian, R.J.; Li, L.Q.; Pan, G.X.; Paz-Ferreiro, J. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 2013, 373, 583–594. [Google Scholar] [CrossRef]
- Ameloot, N.; De Neve, S.; Jegajeevagan, K.; Yildiz, G.; Buchan, D.; Funkuin, Y.N.; Prins, W.; Bouckaert, L.; Sleutel, S. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biol. Biochem. 2013, 57, 401–410. [Google Scholar] [CrossRef]
- Cheng, H.; Hill, P.W.; Bastami, M.S.; Jones, D.L. Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy 2017, 9, 1110–1121. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep. 2014, 4, 3687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Durenkamp, M.; Nobili, M.; Lin, Q.; Devonshire, B.J.; Brookes, P.C. Microbial biomass growth, following incorporation of biochars produced at 350 °C or 700 °C, in a silty-clay loam soil of high and low pH. Soil Biol. Biochem. 2013, 57, 513–523. [Google Scholar] [CrossRef]
- Dempster, D.N.; Gleeson, D.B.; Solaiman, Z.M.; Jones, D.L.; Murphy, D.V. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 2012, 354, 311–324. [Google Scholar] [CrossRef]
- Kolton, M.; Meller Harel, Y.; Pasternak, Z.; Graber, E.R.; Elad, Y.; Cytryn, E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 2011, 77, 4924–4930. [Google Scholar] [CrossRef] [Green Version]
- Khadem, A.; Raiesi, F. Responses of microbial performance and community to corn biochar in calcareous sandy and clayey soils. Appl. Soil Ecol. 2017, 114, 16–27. [Google Scholar] [CrossRef]
- Singh, G.; Mavi, M.S. Impact of addition of different rates of rice-residue biochar on C and N dynamics in texturally diverse soils. Arch. Agron. Soil Sci. 2018, 64, 1419–1431. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Zhou, H.M.; Zhang, D.X.; Wang, P.; Liu, X.Y.; Cheng, K.; Li, L.Q.; Zheng, J.W.; Zhang, X.H.; Zheng, J.F.; Crowley, D.; et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agric. Ecosyst. Environ. 2017, 239, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, Y.; Zong, Y.; Hu, Z.; Wu, S.; Zhou, J.; Jin, Y.; Zou, J. Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: A meta-analysis. Gcb Bioenergy 2016, 8, 392–406. [Google Scholar] [CrossRef]
- WRB Soil Classification, ISBN 978-92-5-108369-7 (print), E-ISBN 978-92-5-108370-3 (PDF). Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 22 April 2021).
- Sadowska, U.; Domagała-Świątkiewicz, I.; Żabiński, A. Biochar and Its Effects on Plant–Soil Macronutrient Cycling during a Three-Year Field Trial on Sandy Soil with Peppermint (Mentha piperita L.). Part I: Yield and Macro Element Content in Soil and Plant Biomass. Agronomy 2020, 10, 1950. [Google Scholar] [CrossRef]
- Przygocka-Cyna, K.; Grzebisz, W.; Biber, M. Evaluation of the potential of bio-fertilizers as a source of nutrients and heavy metals by means of the exhaustion lettuce test. J. Elem. 2018, 23. [Google Scholar] [CrossRef]
- Bankole, A.; Umebese, C.E.; Feyisola, R.T.; Bamise, O. Influence of salicylic acid on the growth of lettuce (Lactuca sativa var longifolia) during reduced leaf water potential. J. Appl. Sci. Environ. Manag. 2018, 22, 543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shi, Y.; Piao, F.; Sun, Z. Effects of different LED sources on the growth and nitrogen metabolism of lettuce. Plant Cell Tissue Organ Cult. (PCTOC) 2018, 134, 231–240. [Google Scholar] [CrossRef]
- Cervera-Mata, A.; Pastoriza, S.; Rufián-Henares, J.Á.; Párraga, J.; Martín-García, J.M.; Delgado, G. Impact of spent coffee grounds as organic amendment on soil fertility and lettuce growth in two Mediterranean agricultural soils. Arch. Agron. Soil Sci. 2018, 64, 790–804. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Xylia, P.; Anastasiou, M.; Pantelides, I.; Tzortzakis, N. Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. J. Sci. Food Agric. 2018, 98, 5861–5872. [Google Scholar] [CrossRef]
- Iocoli, G.A.; Zabaloy, M.C.; Pasdevicelli, G.; Gómez, M.A. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Sci. Total Environ. 2019, 647, 11–19. [Google Scholar] [CrossRef]
- Trinchera, A.; Baratella, V.; Rinaldi, S.; Renzaglia, M.; Marcucci, A.; Rea, E. Greenhouse Lettuce: Assessing Nutrient Use Efficiency Of Digested Livestock Manure As Organic N-Fertilizer. In Proceedings of the II International Symposium on Organic Greenhouse Horticulture; ISHS: Leuven, Belgium, 2018. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Holatko, J.; Hammerschmiedt, T.; Datta, R.; Baltazar, T.; Kintl, A.; Latal, O.; Pecina, V.; Sarec, P.; Novak, P.; Balakova, L.; et al. Humic Acid Mitigates the Negative Effects of High Rates of Biochar Application on Microbial Activity. Sustainability 2020, 12, 9524. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- ISO_10694. Soil Quality-Determination of Organic and Total Carbon after Dry Combustion (Elemental Analysis); International Organization for Standardization: Geneve, Switzerland, 1995. [Google Scholar]
- ISO_13878. Soil Quality-Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis); International Organization for Standardization: Geneve, Switzerland, 1998. [Google Scholar]
- Campbell, C.D.; Chapman, S.J.; Cameron, C.M.; Davidson, M.S.; Potts, J.M. A Rapid Microtiter Plate Method To Measure Carbon Dioxide Evolved from Carbon Substrate Amendments so as To Determine the Physiological Profiles of Soil Microbial Communities by Using Whole Soil. Appl. Environ. Microbiol 2003, 69, 3593–3599. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Herath, S.; Camps Arbestain, M.; Hedley, M.; Hale, R.; Kaal, J. Fate of biochar in chemically- and physically-defined soil organic carbon pools. Org. Geochem. 2014, 73. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Niedda, M.; Palumbo, A.D.; Ventrella, D. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Tillage Res. 2015, 154, 1–13. [Google Scholar] [CrossRef]
- Crane-Droesch, A.; Abiven, S.; Jeffery, S.; Torn, M.S. Heterogeneous global crop yield response to biochar: A meta-regression analysis. Environ. Res. Lett. 2013, 8, 8. [Google Scholar] [CrossRef]
- Huang, R.; Tian, D.; Liu, J.; Lu, S.; He, X.H.; Gao, M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric. Ecosyst. Environ. 2018, 265, 576–586. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Bruun, E.W.; Petersen, C.T.; Hansen, E.; Holm, J.K.; Hauggaard-Nielsen, H. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag. 2014, 30, 109–118. [Google Scholar] [CrossRef]
- Jahan, S.; Iqbal, S.; Rasul, F.; Jabeen, K. Efficacy of biochar as soil amendments for soybean (Glycine max L.) morphology, physiology, and yield regulation under drought. Arab. J. Geosci 2020, 13, 356. [Google Scholar] [CrossRef]
- Aller, D.; Rathke, S.; Laird, D.; Cruse, R.; Hatfield, J. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma 2017, 307, 114–121. [Google Scholar] [CrossRef]
- Jiang-shan, Z.; Jian-fen, G.; Guang-shui, C.; Wei, Q. Soil microbial biomass and its controls. J. For. Res. 2005, 16, 327–330. [Google Scholar] [CrossRef]
- Brtnicky, M.; Dokulilova, T.; Holatko, J.; Pecina, V.; Kintl, A.; Latal, O.; Vyhnanek, T.; Prichystalova, J.; Datta, R. Long-Term Effects of Biochar-Based Organic Amendments on Soil Microbial Parameters. Agronomy 2019, 9, 747. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.P.E.; Page, A.L.; Miller, R.H.; Keeney, D.R. Soil Respiration. In Methods of Soil Analysis, Part 2, 2nd ed.; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982; Volume 2, pp. 831–871. [Google Scholar]
- Anderson, J.P.E.; Domsch, K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 1978, 10, 215–221. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Hons, F.M.; Zuberer, D.A. Active fractions of organic matter in soils with different texture. Soil Biol. Biochem. 1996, 28, 1367–1372. [Google Scholar] [CrossRef]
Treatment | % Sand | % Soil | Biochar * | Abbreviation |
---|---|---|---|---|
(1) 100% sand | 100 | 0 | 0 g⋅kg−1 d.s. | 100:0, 100:0 no-BC |
(2) 80% sand + 20% soil | 80 | 20 | 0 g⋅kg−1 d.s. | 80:20, 80:20 no-BC |
(3) 60% sand + 40% soil | 60 | 40 | 0 g⋅kg−1 d.s. | 60:40, 60:40 no-BC |
(4) 40% sand + 60% soil | 40 | 60 | 0 g⋅kg−1 d.s. | 40:60, 40:60 no-BC |
(5) 20% sand + 80% soil | 20 | 80 | 0 g⋅kg−1 d.s. | 20:80, 20:80 no-BC |
(6) 100% soil | 0 | 100 | 0 g⋅kg−1 d.s. | 0:100, 0:100 no-BC |
(7) 100% sand + biochar | 100 | 0 | 32 g⋅kg−1 d.s. | 100:0 BC, 100:0 BC+ |
(8) 80% sand + 20% soil + biochar | 80 | 20 | 32 g⋅kg−1 d.s. | 80:20 BC, 80:20 BC+ |
(9) 60% sand + 40% soil + biochar | 60 | 40 | 32 g⋅kg−1 d.s. | 60:40 BC, 60:40 BC+ |
(10) 40% sand + 60% soil + biochar | 40 | 60 | 32 g⋅kg−1 d.s. | 40:60 BC, 40:60 BC+ |
(11) 20% sand + 80% soil + biochar | 20 | 80 | 32 g⋅kg−1 d.s. | 20:80 BC, 20:80 BC+ |
(12) 100% soil + biochar | 0 | 100 | 32 g⋅kg−1 d.s. | 0:100 BC, 0:100 BC+ |
Property | Method | Unit | Reference |
Total soil carbon | dry combustion using LECO TruSpec analyzer (MI USA) | mg⋅g−1 | [33] |
Total soil nitrogen | [34] | ||
Microbial biomass carbon | fumigation extraction method | mg⋅g−1 | [30] |
Basal soil respiration | MicroResp® device | μg CO2·g−1·h− 1 | (Technical Manual v2.1) [35] |
Substrate induced soil respiration | MicroResp® device + inducers (sugars, amino acids) | ||
Processing | Tool | Method | Reference |
Statistical analysis | Program R version 3.6.1. | Multivariate analysis of variance (MANOVA), principal component analysis (PCA), one-way analysis of variance (ANOVA), Duncan’s multiple range test, Pearson’s correlation analysis | [31] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brtnicky, M.; Hammerschmiedt, T.; Elbl, J.; Kintl, A.; Skulcova, L.; Radziemska, M.; Latal, O.; Baltazar, T.; Kobzova, E.; Holatko, J. The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content. Agronomy 2021, 11, 1174. https://doi.org/10.3390/agronomy11061174
Brtnicky M, Hammerschmiedt T, Elbl J, Kintl A, Skulcova L, Radziemska M, Latal O, Baltazar T, Kobzova E, Holatko J. The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content. Agronomy. 2021; 11(6):1174. https://doi.org/10.3390/agronomy11061174
Chicago/Turabian StyleBrtnicky, Martin, Tereza Hammerschmiedt, Jakub Elbl, Antonin Kintl, Lucia Skulcova, Maja Radziemska, Oldrich Latal, Tivadar Baltazar, Eliska Kobzova, and Jiri Holatko. 2021. "The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content" Agronomy 11, no. 6: 1174. https://doi.org/10.3390/agronomy11061174
APA StyleBrtnicky, M., Hammerschmiedt, T., Elbl, J., Kintl, A., Skulcova, L., Radziemska, M., Latal, O., Baltazar, T., Kobzova, E., & Holatko, J. (2021). The Potential of Biochar Made from Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils with Varying Sand Content. Agronomy, 11(6), 1174. https://doi.org/10.3390/agronomy11061174