Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Firmness
2.3. Total Soluble Solids (TSS), Titratable Acidity (TA), and Brix Acid Ratio (BAR)
2.4. Color Changes
2.5. Lycopene and β-Carotene Content
2.6. Ascorbic Acid
2.7. Total Phenolics and Flavonoids
2.8. Amino Acids Mainly γ-Aminobutyric Acid (GABA)
2.9. Antioxidant Activity
2.10. Statistical Analysis
3. Results and Discussion
3.1. Firmness
3.2. TSS, TA, and BAR
3.3. Color Values
3.4. Lycopene and β-Carotene Content
3.5. Ascorbic Acid
3.6. Total Phenolics and Flavonoids
3.7. Free Amino Acids and γ-Aminobutyric Acid (GABA)
3.8. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Costa, J.M.; Heuvelink, E. Introduction: The Tomato Crop and Industry. Oxford-CAB International: Wallingford, UK, 2015; ISBN 0851993966. [Google Scholar]
- FAOSTAT Food & Agriculture Organization of the United Nations Statistics Division. Available online: http://faost at3.fao.org/home/index.html (accessed on 20 December 2020).
- Nasir, M.U.; Hussain, S.; Jabbar, S. Tomato processing, lycopene and health benefits: A review. Sci. Lett. 2015, 3, 1–5. [Google Scholar]
- Burton-Freeman, B.; Reimers, K. Tomato Consumption and Health: Emerging Benefits. Am. J. Lifestyle Med. 2011, 5, 182–191. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. Afr. J. Pure Appl. Chem. 2010, 4, 142–151. [Google Scholar]
- Borguini, R.G.; Helena, D.; Bastos, M.; Moita-Neto, J.M.; Capasso, F.S.; Aparecida, E.; Da, F.; Torres, S. Brazilian Archives of Biology and Technology Antioxidant Potential of Tomatoes Cultivated in Organic and Conventional Systems. Arch. Biol. Technol. 2013, 56456, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C. Biochemical mechanism on GABA accumulation during fruit development in tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owens, D.F.; Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef]
- Takayama, M.; Ezura, H. How and why does tomato accumulate a large amount of GABA in the fruit? Front. Plant Sci. 2015, 6, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimeles, T.; Do, S.P.; Mu, H.S.; Cheon, S.J. Review on factors affecting the quality and antioxidant properties of tomatoes. Afr. J. Biotechnol. 2017, 16, 1678–1687. [Google Scholar] [CrossRef] [Green Version]
- Farneti, B. Tomato Quality: From the Field to the Consumer Interactions between Genotype, Cultivation Brian Farneti. Ph.D. Thesis, Wageningen University, Wageningen, Netherlands, 2014. [Google Scholar]
- Taye, A.M.; Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effects of 1-MCP on Quality and Storability of Cherry Tomato (Solanum lycopersicum L.). Horticulturae 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Fanasca, S.; Colla, G.; Maiani, G.; Venneria, E.; Rouphael, Y.; Azzini, E.; Saccardo, F. Changes in antioxidant content of tomato fruits in response to cultivar and nutrient solution composition. J. Agric. Food Chem. 2006, 54, 4319–4325. [Google Scholar] [CrossRef]
- Peixoto, J.V.M.; Garcia, L.G.C.; Nascimento, A.D.R.; Moraes, E.R.D.; Ferreira, T.A.P.D.C.; Fernandes, M.R.; Pereira, V.D.A. Post-harvest evaluation of tomato genotypes with dual purpose. Food Sci. Technol. 2018, 38, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, S.; Seo, M.H.; Park, D.S.; Jeong, C.S. Effect of cultivar and growing medium on the fruit quality attributes and antioxidant properties of tomato (Solanum lycopersicum L.). Hortic. Environ. Biotechnol. 2018, 59, 215–223. [Google Scholar] [CrossRef]
- Lenucci, M.S.; Cadinu, D.; Taurino, M.; Piro, G.; Dalessandro, G. Antioxidant composition in cherry and high-pigment tomato cultivars. J. Agric. Food Chem. 2006, 54, 2606–2613. [Google Scholar] [CrossRef] [PubMed]
- United States Standards for Grades of Fresh Tomatoes (USDA). 1997. Available online: https://hort.purdue.edu/prod_quality/quality/tomatfrh.pdf (accessed on 10 November 2020).
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effect of ripening conditions on the physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Food Sci. Biotechnol. 2017, 26, 473–479. [Google Scholar] [CrossRef]
- Choi, H.R.; Tilahun, S.; Park, D.S.; Lee, Y.M.; Choi, J.H.; Baek, M.W.; Jeong, C.S. Harvest time affects quality and storability of kiwifruit (Actinidia spp.): Cultivars during long-term cool storage. Sci. Hortic. 2019, 256, 108523. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Fish, W.W.; Perkins-Veazie, P.; Collins, J.K. A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. J. Food Compos. Anal. 2002, 15, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and β-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Kim, H.S.; Jung, J.Y.; Kim, H.K.; Ku, K.M.; Suh, J.K.; Park, Y.; Kang, Y.H. Influences of Meteorological Conditions of Harvest Time on Water-Soluble Vitamin Contents and Quality Attributes of Oriental Melon. Prot. Hortic. Plant Fact. 2011, 20, 290–296. [Google Scholar]
- Tilahun, S.; Park, D.S.; Taye, A.M.; Jeong, C.S. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Korean J. Hortic. Sci. Technol. 2017, 35, 88–97. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, accurate, sensitive and reproducible HPLC analysis of amino acids. Amino Acids 2000, 1100, 1–10. [Google Scholar]
- Pataro, G.; Sinik, M.; Capitoli, M.M.; Donsì, G.; Ferrari, G. The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innov. Food Sci. Emerg. Technol. 2015, 30, 103–111. [Google Scholar] [CrossRef]
- Wu, T.; Abbott, J.A. Firmness and force relaxation characteristics of tomatoes stored intact or as slices. Postharvest Biol. Technol. 2002, 24, 59–68. [Google Scholar] [CrossRef]
- Kabir, M.S.N.; Ali, M.; Lee, W.H.; Cho, S.I.; Chung, S.O. Physicochemical quality changes in tomatoes during delayed cooling and storage in a controlled chamber. Agriculture 2020, 10, 196. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Solomon, T.; Choi, H.R.; Jeong, C.S. Maturity stages affect nutritional quality and storability of tomato cultivars. CyTA-J. Food 2019, 17, 87–95. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Jones, R.A.; Scott, S.J. Improvement of tomato flavor by genetically increasing sugar and acid contents. Euphytica 1983, 32, 845–855. [Google Scholar] [CrossRef]
- Anthon, G.E.; Lestrange, M.; Barrett, D.M. Changes in pH, acids, sugars and other quality parameters during extended vine holding of ripe processing tomatoes. J. Sci. Food Agric. 2011, 91, 1175–1181. [Google Scholar] [CrossRef]
- Xu, S.; Sun, X.; Lu, H.; Yang, H.; Ruan, Q.; Huang, H.; Chen, M. Detecting and monitoring the flavor of tomato (Solanum lycopersicum) under the impact of postharvest handlings by physicochemical parameters and electronic nose. Sensors 2018, 18, 1847. [Google Scholar] [CrossRef] [Green Version]
- Tigist, M.; Workneh, T.S.; Woldetsadik, K. Effects of variety on the quality of tomato stored under ambient conditions. J. Food Sci. Technol. 2013, 50, 477–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadesse, T.N.; Ibrahim, A.M.; Abtew, W.G. Degradation and formation of fruit color in tomato (Solanum lycopersicum L.) in response to storage temperature. Am. J. Food Technol. 2015, 10, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Pék, Z.; Helyes, L.; Lugasi, A. Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience 2010, 45, 466–468. [Google Scholar] [CrossRef]
- Kaur, D.; Sharma, R.; Wani, A.A.; Gill, B.S.; Sogi, D.S. Physicochemical changes in seven tomato (Lycopersicon esculentum) cultivars during ripening. Int. J. Food Prop. 2006, 9, 747–757. [Google Scholar] [CrossRef] [Green Version]
- Rosati, C.; Aquilani, R.; Dharmapuri, S.; Pallara, P.; Marusic, C.; Tavazza, R.; Bouvier, F.; Camara, B.; Giuliano, G. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000, 24, 413–420. [Google Scholar] [CrossRef]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.R.; Fish, W.W.; Perkins-Veazie, P. A rapid hexane-free method for analyzing lycopene content in watermelon. J. Food Sci. 2003, 68, 328–332. [Google Scholar] [CrossRef]
- Alda, L.M.; Gogoa, I.; Bordean, D.; Gergen, I.; Alda, S.; Moldovan, C.; Ni, L. Lycopene content of tomatoes and tomato products. J. Agroaliment. Process Technol. 2009, 15, 540–542. [Google Scholar]
- Rubén, D.; Gullon, P.; Pateiro, M.; Munekata, P.E.S.; Zhang, W.; Lorenzo, J.M. Tomato as Potential Source of Natural Additives for. Antioxidants 2020, 9, 73. [Google Scholar]
- Dobrin, A.; Nedelus, A.; Bujor, O.; Mot, A.; Zugravu, M.; Badulescu, L. Nutritional Quality Parameters of the Fresh Red Tomato Varieties Cultivated in Organic System. Sci. Pap. Ser. B. Hortic. 2019, LXIII, 439–443. [Google Scholar]
- Thompson, K.A.; Marshall, M.R.; Sims, C.A.; Wei, C.I.; Sargent, S.A.; Scott, J.W. Cultivar, maturity, and heat treatment on lycopene content in tomatoes. J. Food Sci. 2000, 65, 791–795. [Google Scholar] [CrossRef]
- Baranska, M.; Schütze, W.; Schulz, H. Determination of lycopene and β-carotene content in tomato fruits and related products: Comparison of FT-raman, ATR-IR, and NIR spectroscopy. Anal. Chem. 2006, 78, 8456–8461. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Yahia, E.M.; Contreras-Padilla, M.; Gonzalez-Aguilar, G. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. LWT-Food Sci. Technol. 2001, 34, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Trandafir, I.; Ionica, M.E. Antioxidant compounds, mineral content and antioxidant activity of several tomato cultivars grown in Southwestern Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, A.; Ruggieri, V.; Sacco, A.; Rigano, M.M.; Carriero, F.; Bolger, A.; Fernie, A.R.; Frusciante, L.; Barone, A. Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Sci. 2013, 205–206, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Silva-Beltrán, N.P.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Ornelas-paz, J.D.J.; López-mata, M.A.; Del-toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Márquez-ríos, E. Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int. J. Anal. Chem. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taveira, M.; Ferreres, F.; Gil-Izquierdo, A.; Oliveira, L.; Valentão, P.; Andrade, P.B. Fast determination of bioactive compounds from Lycopersicon esculentum Mill. leaves. Food Chem. 2012, 135, 748–755. [Google Scholar] [CrossRef]
- Periago, M.J.; Martínez-Valverde, I.; Chesson, A.; Provan, G. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Slimestada, R.; Verheulb, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.R.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Fossen, T.; Verheul, M.J. The flavonoids of tomatoes. J. Agric. Food Chem. 2008, 56, 2436–2441. [Google Scholar] [CrossRef]
- Schijlen, E.; Ric De Vos, C.H.; Jonker, H.; Van Den Broeck, H.; Molthoff, J.; Van Tunen, A.; Martens, S.; Bovy, A. Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnol. J. 2006, 4, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Junbae Ahn Amino Acid, Amino Acid Metabolite, and GABA Content of Three Domestic Tomato Varieties. Culin. Sci. Hosp. Res. 2016, 22, 71–77. [CrossRef]
- Sorrequieta, A.; Ferraro, G.; Boggio, S.B.; Valle, E.M. Free amino acid production during tomato fruit ripening: A focus on L-glutamate. Amino Acids 2010, 38, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Pratta, G.; Zorzoli, R.; Boggio, S.B.; Picardi, L.A.; Valle, E.M. Glutamine and glutamate levels and related metabolizing enzymes in tomato fruits with different shelf-life. Sci. Hortic. 2004, 100, 341–347. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, H.Y.; Chang, C.Y.; Liu, Y.C. Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J. Food Eng. 2006, 77, 478–485. [Google Scholar] [CrossRef]
Varieties | Firmness (N) | TSS (°Bx) | TA (mg 100 g−1) | BAR |
---|---|---|---|---|
Tori | 10.54 ± 0.64 a | 4.86 ±0.05 b | 0.38 ± 0.01 ab | 12.79 ± 0.16 b |
TY VIP | 8.31 ± 0.63 b | 5.34 ± 0.08 a | 0.47 ± 0.03 ab | 11.36 ± 1.17 b |
Mamirio | 11.88 ± 0.47 a | 4.84 ± 0.12 b | 0.26 ± 0.06 b | 18.61 ± 1.72 a |
Arya | 11.45 ± 0.48 a | 4.46 ± 0.06 b | 0.59 ± 0.04 a | 7.56 ± 0.79 c |
Amino Acids | Tori | TY VIP | Mamirio | Arya | ||||
---|---|---|---|---|---|---|---|---|
mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | mg kg−1 (Dry Weight) | % of Total Amino Acids | |
Aspartic acid | 3062.49 d | 7.70 | 3781.79 a | 6.60 | 3322.94 b | 8.09 | 3309.36 c | 8.53 |
Glutamic acid | 15,587.17 c | 39.20 | 17,926.04 a | 31.28 | 17,293.17 b | 42.10 | 15,166.22 d | 39.07 |
Asparagine | 1870.43 c | 4.70 | 2481.90 a | 4.33 | 1596.54 d | 3.89 | 1945.60 b | 5.01 |
Serine | 525.38 c | 1.32 | 1448.11 a | 2.53 | 573.54 b | 1.40 | 427.40 d | 1.10 |
Glutamine | 12,146.58 b | 30.55 | 17,983.99 a | 31.38 | 11,429.39 d | 27.82 | 12,097.73 c | 31.17 |
Histidine (EAA) | 300.06 c | 0.75 | 383.90 a | 0.67 | 296.97 d | 0.72 | 353.42 b | 0.91 |
Glycine | 69.14 b | 0.17 | 303.31 a | 0.53 | 61.64 c | 0.15 | 46.66 d | 0.12 |
Threonine (EAA) | 503.59 c | 1.27 | 1210.25 a | 2.11 | 500.60 d | 1.22 | 569.08 b | 1.47 |
Arginine | 137.17 d | 0.34 | 571.49 a | 1.00 | 196.80 c | 0.48 | 208.68 b | 0.54 |
Alanine | 405.48 c | 1.02 | 784.19 a | 1.37 | 423.08 b | 1.03 | 242.64 d | 0.63 |
GABA | 3112.77 b | 7.83 | 4048.98 a | 7.06 | 2977.96 c | 7.25 | 2198.60 d | 5.66 |
Tyrosine | 199.67 c | 0.50 | 758.07 a | 1.32 | 165.02 d | 0.40 | 288.26 b | 0.74 |
Valine (EAA) | 110.40 c | 0.28 | 464.75 a | 0.81 | 110.99 b | 0.27 | 105.90 d | 0.27 |
Methionine (EAA) | 73.35 b | 0.18 | 259.57 a | 0.45 | 55.90 c | 0.14 | 48.18 d | 0.12 |
Tryptophane (EAA) | 142.95 d | 0.36 | 335.22 a | 0.58 | 146.62 c | 0.36 | 191.47 b | 0.49 |
Phenylalanine (EAA) | 745.75 d | 1.88 | 2046.38 a | 3.57 | 906.40 b | 2.21 | 819.14 c | 2.11 |
Isoleucine (EAA) | 195.06 d | 0.49 | 593.39 a | 1.04 | 213.93 c | 0.52 | 256.37 b | 0.66 |
Leucine (EAA) | 199.57 d | 0.50 | 932.48 a | 1.63 | 215.72 c | 0.53 | 261.92 b | 0.67 |
Lysine (EAA) | 150.95 d | 0.38 | 614.10 a | 1.07 | 161.15 c | 0.39 | 182.34 b | 0.47 |
Proline | 226.81 c | 0.57 | 387.54 b | 0.68 | 430.26 a | 1.05 | 94.60 d | 0.24 |
Total EAA | 2421.68 d | 6.09 | 6840.03 a | 11.93 | 2608.28 c | 6.35 | 2787.82 b | 7.18 |
Total amino acids | 39,764.76 c | 57,315.44 a | 41,078.61 b | 38,813.57 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilahun, S.; Choi, H.-R.; Baek, M.-W.; Cheol, L.-H.; Kwak, K.-W.; Park, D.-S.; Solomon, T.; Jeong, C.-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy 2021, 11, 1204. https://doi.org/10.3390/agronomy11061204
Tilahun S, Choi H-R, Baek M-W, Cheol L-H, Kwak K-W, Park D-S, Solomon T, Jeong C-S. Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy. 2021; 11(6):1204. https://doi.org/10.3390/agronomy11061204
Chicago/Turabian StyleTilahun, Shimeles, Han-Ryul Choi, Min-Woo Baek, Lee-Hee Cheol, Ki-Wung Kwak, Do-Su Park, Tifsehit Solomon, and Cheon-Soon Jeong. 2021. "Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars" Agronomy 11, no. 6: 1204. https://doi.org/10.3390/agronomy11061204
APA StyleTilahun, S., Choi, H. -R., Baek, M. -W., Cheol, L. -H., Kwak, K. -W., Park, D. -S., Solomon, T., & Jeong, C. -S. (2021). Antioxidant Properties, γ-Aminobutyric Acid (GABA) Content, and Physicochemical Characteristics of Tomato Cultivars. Agronomy, 11(6), 1204. https://doi.org/10.3390/agronomy11061204