Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Agroclimatic Data
2.3. Evaluation Criteria
- The coefficients of regression and determination, relating the observed and simulated data, b and R2, respectively, are defined as:
- The root mean square error, RMSE, and its normalization, NRMSE, which characterizes the variance of the estimation error:
- The mean bias error, MBE, and its normalization, NMBE, that measures the systematic error between the predicted and observed values:
- The Nash and Sutcliffe [29] modelling efficiency, EF, that is the ratio of the mean square error to the variance in the observed data, subtracted from unity:
2.4. Correction of Bias
3. Results
3.1. Bias Correction Equations
3.2. Evaluation of Maximum Temperature Accuracy
3.3. Evaluation of Minimum Temperature
3.4. Evaluation of Solar Radiation
3.5. Evaluation of Relative Humidity
3.6. Evaluation of Wind Speed
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboelkhair, H.; Mostafa, M.; El Afandi, G. Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Adv. Space Res. 2019, 64, 129–142. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Toshio, K.; Kazutoshi, O. Progress and prospects for reanalysis for weather and climate. Eos Trans. Am. Geophys. Union 2008, 89, 234–235. [Google Scholar] [CrossRef]
- Sheffield, J.; Gopi, G.; Eric, F.W. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Ziegler, A.D.; Wood, E.F.; Chen, Y. Correction of the high-latitude rain day anomaly in the NCEP–NCAR reanalysis for land surface hydrological modeling. J. Clim. 2004, 17, 3814–3828. [Google Scholar] [CrossRef] [Green Version]
- Schneider, D.P.; Deser, C.; Fasullo, J.; Trenberth, K.E. Climate data guide spurs discovery and understanding. Eos Trans. Am. Geophys. Union 2013, 94, 121–122. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kobayashi, S.; Yukinari, O.T.A.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Miyaoka, K.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. Ncep–doe amip-ii reanalysis (r-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Chandler, W.S.; Stackhouse, P.W., Jr.; Hoell, J.M.; Westberg, D.; Zhang, T. NASA prediction of worldwide energy resource high resolution meteorology data for sustainable building design. In Proceedings of the Solar 2013 Conference of American Solar Energy Society, Baltimore, Maryland, 16–20 April 2013. [Google Scholar]
- Bao, X.; Zhang, F. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Clim. 2013, 26, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [Google Scholar] [CrossRef]
- Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Gan, T.Y.; Tan, X.; Shao, D.; Zhu, J. Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim. Dyn. 2019, 53, 737–757. [Google Scholar] [CrossRef]
- Solman, S.A.; Sanchez, E.; Samuelsson, P.; Da Rocha, R.P.; Li, L.; A Marengo, J.; Pessacg, N.L.; Remedio, A.R.; Chou, S.C.; Berbery, H.; et al. Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Clim. Dyn. 2013, 41, 1139–1157. [Google Scholar] [CrossRef]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; Cadima, J.; Pires, C. Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Chen, G.; Iwasaki, T.; Qin, H.; Sha, W. Evaluation of the warm-season diurnal variability over East Asia in recent reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J. Clim. 2014, 27, 5517–5537. [Google Scholar] [CrossRef]
- Tsujino, H.; Urakawa, S.; Nakano, H.; Small, R.J.; Kim, W.M.; Yeager, S.G.; Danabasoglu, G.; Suzuki, T.; Bamber, J.L.; Bentsen, M.; et al. JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Model. 2018, 130, 79–139. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Guillemot, C.J. Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim. Dyn. 1998, 14, 213–231. [Google Scholar] [CrossRef]
- Maurer, E.P.; O’Donnell, G.M.; Lettenmaier, D.P.; Roads, J.O. Evaluation of the land surface water budget in NCEP/NCAR and NCEP/DOE reanalyses using an off-line hydrologic model. J. Geophys. Res. Atmos. 2001, 106, 17841–17862. [Google Scholar] [CrossRef] [Green Version]
- Reichle, R.H.; Draper, C.S.; Liu, Q.; Girotto, M.; Mahanama, S.P.; Koster, R.D.; De Lannoy, G.J. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 2017, 30, 2937–2960. [Google Scholar] [CrossRef] [Green Version]
- Draper, C.S.; Reichle, R.H.; Koster, R.D. Assessment of MERRA-2 land surface energy flux estimates. J. Clim. 2018, 31, 671–691. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Stackhouse, P.W.; Hoell, J.M. Evaluation of NASA satellite- and assimilation model-derived longterm daily temperature data over the continental US. Agric. For. Meteorol. 2008, 148, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Chen, X.; Dobermann, A.; Yang, H.; Cassman, K.; Zhang, F. Evaluation of NASA satellite- and model-derived weather data for simulation of maize yield potential in China. Agron. J. 2010, 102, 9–16. [Google Scholar] [CrossRef]
- Negm, A.; Jabro, J.; Provenzano, G. Assessing the suitability of American National Aeronautics and Space Administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agric. For. Meteorol. 2017, 244–245, 111–121. [Google Scholar] [CrossRef]
- Monteiro, A.L.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1571–1581. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.; Sinkovics, R. The use of partial least squares path modeling in international marketing. Adv. Int. Mark. 2009, 20, 277–320. [Google Scholar]
- Willmott, C.J.; Matsuura, K. On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int. J. Geogr. Inf. Sci. 2006, 20, 89–102. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Berg, A.A.; Famiglietti, J.S.; Walker, J.P.; Houser, P.R. Impact of bias correction to reanalysis products on simulations of North American soil moisture and hydrological fluxes. J. Geophys. Res. 2003, 108, 4490. [Google Scholar] [CrossRef] [Green Version]
- Leander, R.; Buishand, T.A. Resampling of regional climate model output for the simulation of extreme river flows. J. Hydrol. 2007, 332, 487–496. [Google Scholar] [CrossRef]
Weather Station | Latitude (N) | Longitude (W) | Elevation (m) | Date Range |
---|---|---|---|---|
Aljustrel | 37° 58′ 17′′ | 08° 11′ 25′′ | 104 | Sep/2001–Sep/2020 |
Alvalade do Sado | 37° 55′ 44′′ | 08° 20′ 45′′ | 79 | Sep/2001–Sep/2020 |
Beja | 38° 02′ 15′′ | 07° 53′ 06′′ | 206 | Sep/2001–Sep/2020 |
Castro Verde | 37° 45′ 21′′ | 08° 04′ 35′′ | 200 | Oct/2001–Sep/2020 |
Elvas | 38° 54′ 56′′ | 07° 05′ 56′′ | 202 | Sep/2001–Sep/2020 |
Estremoz | 38° 52′ 20′′ | 07° 35′ 49′′ | 404 | Feb/2006–Sep/2020 |
Évora | 38° 44′ 16′′ | 07° 56′ 10′′ | 246 | Feb/2002–Sep/2020 |
Ferreira do Alentejo | 38° 02′ 42′′ | 08° 15′ 59′′ | 74 | Sep/2001–Sep/2020 |
Moura | 38° 05′ 15′′ | 07° 16′ 39′′ | 172 | Sep/2001–Sep/2020 |
Odemira | 37° 30′ 06′′ | 08° 45′ 12′′ | 92 | Jul/2002–Sep/2020 |
Redondo | 38° 31′ 41′′ | 07° 37′ 40′′ | 236 | Sep/2001–Sep/2020 |
Serpa | 37° 58′ 06′′ | 07° 33′ 03′′ | 190 | May/2004–Sep/2020 |
Viana do Alentejo | 38° 21′ 39′′ | 08° 07′ 32′′ | 138 | Mar/2006–Sep/2020 |
Vidigueira | 38° 10′ 37′′ | 07° 47′ 35′′ | 155 | Nov/2007–Sep/2020 |
Weather Station | T Max (°C) | T Min (°C) | RH (%) | Rs (MJ m–2 day−1) | Ws (m s–1) |
---|---|---|---|---|---|
Aljustrel | 24.5 (±7.5) | 9.9 (±5.1) | 72.3 (±14.8) | 16.4 (±7.7) | 1.9 (±0.9) |
Alvalade do Sado | 24.8 (±7.3) | 10.3 (±5.1) | 73.1 (±13.2) | 16.9 (±8.1) | 2.1 (±0.9) |
Beja | 24.0 (±7.8) | 10.4 (±4.8) | 70.2 (±15.8) | 18.1 (±8.6) | 2.0 (±0.8) |
Castro Verde | 24.2 (±7.7) | 9.9 (±4.9) | 72.3 (±16.1) | 17.5 (±8.0) | 2.7 (±1.2) |
Elvas | 24.5 (±8.4) | 9.5 (±5.7) | 67.9 (±18.0) | 16.9 (±8.1) | 1.8 (±0.9) |
Estremoz | 22.5 (±8.1) | 9.4 (±4.9) | 70.2 (±17.3) | 16.9 (±8.5) | 1.4 (±0.7) |
Évora | 23.8 (±7.9) | 9.0 (±5.3) | 71.3 (±14.7) | 16.0 (±7.7) | 2.0 (±1.3) |
Ferreira do Alentejo | 24.8 (±7.4) | 9.8 (±5.2) | 72.4 (±14.3) | 16.7 (±7.9) | 1.6 (±0.7) |
Moura | 25.0 (±8.2) | 8.5 (±6.0) | 69.1 (±17.7) | 16.4 (±7.8) | 1.3 (±0.7) |
Odemira | 21.3 (±4.8) | 11.1 (±3.9) | 76.7 (±10.9) | 17.9 (±8.0) | 2.0 (±0.9) |
Redondo | 24.2 (±8.1) | 10.4 (±5.2) | 68.4 (±16.8) | 16.5 (±7.9) | 2.5 (±1.3) |
Serpa | 25.2 (±7.9) | 10.5 (±5.1) | 69.4 (±15.7) | 16.8 (±8.1) | 1.4 (±0.8) |
Viana do Alentejo | 23.7 (±7.8) | 10.0 (±4.7) | 72.3 (±16.1) | 16.8 (±7.9) | 2.2 (±0.9) |
Vidigueira | 25.0 (±7.9) | 10.0 (±5.2) | 69.0 (±16.9) | 17.3 (±8.3) | 1.6 (±0.8) |
Location | Equation | ||||
---|---|---|---|---|---|
Alentejo | Tmax’ = 0.96 × Tmax + 1.56 | Tmin’ = 0.95 × Tmin − 0.57 | Rs’ = 0.99 × Rs − 0.44 | RH’ = 0.85 × RH + 16.01 | Ws’ = 0.88 × Ws − 0.64 |
Aljustrel | Tmax’ = 0.97 × Tmax + 1.89 | Tmin’ = 1.01 × Tmin − 1.35 | Rs’ = 0.97 × Rs − 1.06 | RH’ = 0.82 × RH + 17.88 | Ws’ = 0.78 × Ws − 0.57 |
Alvalade | Tmax’ = 0.95 × Tmax + 2.51 | Tmin’ = 0.99 × Tmin − 0.76 | Rs’ = 1.01 × Rs − 1.25 | RH’ = 0.74 × RH + 24.87 | Ws’ = 0.81 × Ws − 0.45 |
Beja | Tmax’ = 0.94 × Tmax + 1.60 | Tmin’ = 0.86 × Tmin + 1.09 | Rs’ = 1.04 × Rs + 0.08 | RH’ = 0.82 × RH + 18.01 | Ws’ = 0.73 × Ws − 0.05 |
Castro Verde | Tmax’ = 1.00 × Tmax + 0.59 | Tmin’ = 0.98 × Tmin − 1.06 | Rs’ = 1.02 × Rs − 0.72 | RH’ = 0.91 × RH + 11.54 | Ws’ = 1.02 × Ws − 0.23 |
Elvas | Tmax’ = 0.96 × Tmax + 2.36 | Tmin’ = 0.95 × Tmin − 0.28 | Rs’ = 0.99 × Rs − 0.18 | RH’ = 0.87 × RH + 12.62 | Ws’ = 0.83 × Ws − 0.44 |
Estremoz | Tmax’ = 0.97 × Tmax − 0.36 | Tmin’ = 0.89 × Tmin + 0.06 | Rs’ = 1.03 × Rs − 1.22 | RH’ = 0.91 × RH + 11.54 | Ws’ = 0.62 × Ws − 0.62 |
Évora | Tmax’ = 0.95 × Tmax + 1.82 | Tmin’ = 0.93 × Tmin − 0.63 | Rs’ = 0.93 × Rs − 0.28 | RH’ = 0.76 × RH + 22.88 | Ws’ = 1.07 × Ws − 0.75 |
Ferreira do Alentejo | Tmax’ = 0.95 × Tmax + 2.41 | Tmin’ = 1.02 × Tmin − 1.31 | Rs’ = 0.96 × Rs + 0.01 | RH’ = 0.82 × RH + 19.02 | Ws’ = 0.70 × Ws − 0.73 |
Moura | Tmax’ = 0.95 × Tmax + 2.52 | Tmin’ = 1.01 × Tmin − 2.38 | Rs’ = 0.94 × Rs + 0.19 | RH’ = 0.86 × RH + 15.85 | Ws’ = 0.67 × Ws − 0.81 |
Odemira | Tmax’ = 0.79 × Tmax + 3.95 | Tmin’ = 0.92 × Tmin − 0.82 | Rs’ = 1.00 × Rs − 0.11 | RH’ = 0.86 × RH + 15.09 | Ws’ = 0.67 × Ws − 0.78 |
Redondo | Tmax’ = 0.97 × Tmax + 1.56 | Tmin’ = 0.94 × Tmin + 0.77 | Rs’ = 0.96 × Rs + 0.00 | RH’ = 0.87 × RH + 12.07 | Ws’ = 1.23 × Ws − 0.70 |
Serpa | Tmax’ = 0.96 × Tmax + 1.78 | Tmin’ = 0.91 × Tmin + 0.34 | Rs’ = 1.03 × Rs − 1.51 | RH’ = 0.80 × RH + 19.47 | Ws’ = 0.69 × Ws − 0.67 |
Viana do Alentejo | Tmax’ = 1.01 × Tmax − 0.28 | Tmin’ = 0.92 × Tmin − 0.39 | Rs’ = 0.97 × Rs − 0.18 | RH’ = 0.93 × RH + 11.12 | Ws’ = 0.80 × Ws − 0.13 |
Vidigueira | Tmax’ = 0.95 × Tmax + 2.17 | Tmin’ = 0.94 × Tmin − 0.02 | Rs’ = 1.02 × Rs − 0.39 | RH’ = 0.89 × RH + 12.63 | Ws’ = 0.77 × Ws − 0.67 |
Bias Correction Scheme | b | R2 | RMSE | NRMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | |
No Bias Correction | 0.98 | 0.02 | 0.95 to 1.03 | 0.95 | 0.04 | 0.82 to 0.97 | 1.91 | 0.31 | 1.36 to 2.67 | 7.95 | 1.53 | 5.73 to 12.55 |
Regional Bias Correction | 1.00 | 0.03 | 0.97 to 1.06 | 0.95 | 0.04 | 0.82 to 0.97 | 1.74 | 0.34 | 1.38 to 2.8 | 7.25 | 1.81 | 5.70 to 13.12 |
Local Bias Correction | 1.00 | 0.00 | 0.98 to 1.00 | 0.95 | 0.04 | 0.82 to 0.97 | 1.59 | 0.18 | 1.36 to 2.04 | 6.60 | 1.00 | 5.64 to 9.59 |
Bias Correction Scheme | MBE | NMBE | EF | |||||||||
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | ||||
No Bias Correction | −0.64 | 0.65 | −1.40 to 0.57 | −2.56 | 2.69 | −5.71 to 2.68 | 0.92 | 0.07 | 0.68 to 0.97 | |||
Regional Bias Correction | 0.03 | 0.65 | −0.72 to 1.30 | 0.22 | 2.84 | −2.93 to 6.12 | 0.93 | 0.08 | 0.65 to 0.97 | |||
Local Bias Correction | −0.02 | 0.12 | −0.42 to 0.08 | −0.08 | 0.52 | −1.85 to 0.31 | 0.95 | 0.04 | 0.81 to 0.97 |
Bias Correction Scheme | b | R2 | RMSE | NRMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | |
No Bias Correction | 1.08 | 0.04 | 0.99 to 1.15 | 0.90 | 0.02 | 0.85 to 0.93 | 2.01 | 0.38 | 1.57 to 3.17 | 20.51 | 5.28 | 14.98 to 37.05 |
Regional Bias Correction | 0.99 | 0.03 | 0.90 to 1.05 | 0.90 | 0.02 | 0.85 to 0.93 | 1.68 | 0.28 | 1.28 to 2.50 | 17.10 | 3.90 | 12.93 to 29.2 |
Local Bias Correction | 0.99 | 0.01 | 0.98 to 1.00 | 0.90 | 0.02 | 0.85 to 0.93 | 1.58 | 0.25 | 1.29 to 2.25 | 16.12 | 3.53 | 12.36 to 26.35 |
Bias Correction Scheme | MBE | NMBE | EF | |||||||||
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | ||||
No Bias Correction | 1.03 | 0.54 | −0.15 to 2.24 | 10.65 | 6.05 | −1.41 to 26.22 | 0.84 | 0.07 | 0.65 to 0.91 | |||
Regional Bias Correction | −0.05 | 0.53 | −1.20 to 1.16 | −0.35 | 5.52 | −11.52 to 13.59 | 0.89 | 0.03 | 0.82 to 0.93 | |||
Local Bias Correction | −0.02 | 0.05 | −0.15 to 0.08 | −0.19 | 0.52 | −1.33 to 0.76 | 0.90 | 0.03 | 0.84 to 0.93 |
Bias Correction Scheme | b | R2 | RMSE | NRMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | |
No Bias Correction | 1.03 | 0.03 | 0.95 to 1.08 | 0.94 | 0.02 | 0.91 to 0.97 | 2.10 | 0.31 | 1.51 to 2.73 | 12.44 | 1.92 | 8.75 to 16.12 |
Regional Bias Correction | 1.00 | 0.03 | 0.92 to 1.05 | 0.94 | 0.02 | 0.91 to 0.97 | 1.99 | 0.30 | 1.48 to 2.53 | 11.72 | 1.64 | 8.92 to 14.87 |
Local Bias Correction | 1.00 | 0.00 | 0.99 to 1.01 | 0.94 | 0.02 | 0.91 to 0.97 | 1.89 | 0.27 | 1.43 to 2.50 | 11.15 | 1.53 | 8.62 to 14.73 |
Bias Correction Scheme | MBE | NMBE | EF | |||||||||
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | ||||
No Bias Correction | 0.65 | 0.59 | −0.84 to 1.62 | 3.93 | 3.51 | −0.65 to 9.86 | 0.93 | 0.02 | 0.89 to 0.97 | |||
Regional Bias Correction | −0.01 | 0.59 | −1.49 to 0.96 | 0.06 | 3.39 | −8.24 to 5.84 | 0.94 | 0.02 | 0.9 to 0.96 | |||
Local Bias Correction | 0.01 | 0.07 | −0.11 to 0.16 | 0.05 | 0.44 | −0.68 to 0.97 | 0.94 | 0.02 | 0.9 to 0.97 |
Bias correction scheme | b | R2 | RMSE | NRMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | |
No Bias Correction | 0.93 | 0.01 | 0.92 to 0.96 | 0.82 | 0.12 | 0.40 to 0.88 | 9.24 | 0.84 | 7.81 to 11.18 | 13.00 | 0.98 | 11.41 to 14.57 |
Regional Bias Correction | 1.01 | 0.01 | 0.99 to 1.04 | 0.82 | 0.12 | 0.40 to 0.88 | 6.58 | 0.92 | 5.50 to 9.24 | 9.25 | 1.18 | 7.60 to 12.04 |
Local Bias Correction | 1.01 | 0.01 | 1.00 to 1.02 | 0.82 | 0.12 | 0.40 to 0.88 | 6.47 | 0.99 | 5.44 to 9.30 | 9.10 | 1.26 | 7.45 to 12.12 |
Bias Correction Scheme | MBE | NMBE | EF | |||||||||
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | ||||
No Bias Correction | −5.17 | 0.88 | −6.23 to −2.93 | −7.27 | 1.22 | −9.02 to −4.28 | 0.61 | 0.21 | −0.08 to 0.79 | |||
Regional Bias Correction | 0.74 | 0.90 | −0.17 to 3.04 | 1.07 | 1.33 | −0.24 to 4.45 | 0.80 | 0.15 | 0.26 to 0.88 | |||
Local Bias Correction | 0.78 | 0.41 | 0.09 to 1.51 | 1.09 | 0.57 | 0.13 to 2.07 | 0.80 | 0.15 | 0.25 to 0.88 |
Bias Correction Scheme | b | R2 | RMSE | NRMSE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | |
No Bias Correction | 1.40 | 0.24 | 0.96 to 1.79 | 0.67 | 0.07 | 0.52 to 0.79 | 1.10 | 0.29 | 0.62 to 1.63 | 62.50 | 25.93 | 23.08 to 105.62 |
Regional Bias Correction | 0.95 | 0.17 | 0.65 to 1.2 | 0.67 | 0.07 | 0.52 to 0.79 | 0.69 | 0.17 | 0.52 to 1.14 | 36.60 | 6.92 | 27.22 to 46.37 |
Local Bias Correction | 0.86 | 0.10 | 0.64 to 0.98 | 0.67 | 0.08 | 0.51 to 0.79 | 0.60 | 0.11 | 0.4 to 0.79 | 32.51 | 8.41 | 19.59 to 50.46 |
Bias Correction Scheme | MBE | NMBE | EF | |||||||||
Mean | St. Dev. | Range | Mean | St. Dev. | Range | Mean | St. Dev. | Range | ||||
No Bias Correction | 0.85 | 0.39 | 0.12 to 1.44 | 49.86 | 28.01 | 4.54 to 94.54 | −0.88 | 1.21 | −3.03 to 0.71 | |||
Regional Bias Correction | −0.12 | 0.38 | −0.84 to 0.38 | −2.85 | 18.26 | −33.15 to 22.75 | 0.41 | 0.14 | 0.23 to 0.67 | |||
Local Bias Correction | −0.20 | 0.17 | −0.5 to 0.04 | −12.25 | 10.50 | −32.68 to 2.03 | 0.53 | 0.17 | 0.16 to 0.73 |
Variable | Bias Correction | Accuracy Metric | |||||
---|---|---|---|---|---|---|---|
b | RMSE | NRMSE | MBE | NMBE | EF | ||
Maximum Temp. | No Bias Correction | 0.98 (±0.02) | 1.91 (±0.31) | 7.95 (±1.53) | −0.64 (±0.65) | −2.56 (±2.69) | 0.92 (±0.07) |
Regional Bias Correction | 1.00 (±0.03) | 1.74 (±0.34) | 7.25 (±1.81) | 0.03 (±0.65) | 0.22 (±2.84) | 0.93 (±0.08) | |
Local Bias Correction | 1.00 (±0.00) | 1.59 (±0.18) | 6.60 (±1.00) | −0.02 (±0.12) | −0.08 (±0.52) | 0.95 (±0.04) | |
Minimum Temp. | No Bias Correction | 1.08 (±0.04) | 2.01 (±0.38) | 20.51 (±5.28) | 1.03 (±0.54) | 10.65 (±6.05) | 0.84 (±0.07) |
Regional Bias Correction | 0.99 (±0.03) | 1.68 (±0.28) | 17.10 (±3.9) | −0.05 (±0.53) | −0.35 (±5.52) | 0.89 (±0.03) | |
Local Bias Correction | 0.99 (±0.01) | 1.58 (±0.25) | 16.12 (±3.53) | −0.02 (±0.05) | −0.19 (±0.52) | 0.90 (±0.03) | |
SolarRadiation | No Bias Correction | 1.03 (±0.03) | 2.10 (±0.31) | 12.44 (±1.92) | 0.65 (±0.59) | 3.93 (±3.51) | 0.93 (±0.02) |
Regional Bias Correction | 1.00 (±0.03) | 1.99 (±0.30) | 11.72 (±1.64) | −0.01 (±0.59) | 0.06 (±3.39) | 0.94 (±0.02) | |
Local Bias Correction | 1.00 (±0.00) | 1.89 (±0.27) | 11.15 (±1.53) | 0.01 (±0.07) | 0.05 (±0.44) | 0.94 (±0.02) | |
Relative Humidity | No Bias Correction | 0.93 (±0.01) | 9.24 (±0.84) | 13.00 (±0.98) | −5.17 (±0.88) | −7.27 (±1.22) | 0.61 (±0.21) |
Regional Bias Correction | 1.01 (±0.01) | 6.58 (±0.92) | 9.25 (±1.18) | 0.74 (±0.9) | 1.07 (±1.33) | 0.80 (±0.15) | |
Local Bias Correction | 1.01 (±0.01) | 6.47 (±0.99) | 9.10 (±1.26) | 0.78 (±0.41) | 1.09 (±0.57) | 0.8 (±0.15) | |
Wind Speed | No Bias Correction | 1.40 (±0.24) | 1.10 (±0.29) | 62.50 (±25.93) | 0.85 (±0.39) | 49.86 (±28.01) | −0.88 (±1.21) |
Regional Bias Correction | 0.95 (±0.17) | 0.69 (±0.17) | 36.60 (±6.92) | −0.12 (±0.38) | −2.85 (±18.26) | 0.41 (±0.14) | |
Local Bias Correction | 0.86 (±0.10) | 0.60 (±0.11) | 32.51 (±8.41) | −0.20 (±0.17) | −12.25 (±10.5) | 0.53 (±0.17) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, G.C.; Braga, R.P. Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate. Agronomy 2021, 11, 1207. https://doi.org/10.3390/agronomy11061207
Rodrigues GC, Braga RP. Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate. Agronomy. 2021; 11(6):1207. https://doi.org/10.3390/agronomy11061207
Chicago/Turabian StyleRodrigues, Gonçalo C., and Ricardo P. Braga. 2021. "Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate" Agronomy 11, no. 6: 1207. https://doi.org/10.3390/agronomy11061207
APA StyleRodrigues, G. C., & Braga, R. P. (2021). Evaluation of NASA POWER Reanalysis Products to Estimate Daily Weather Variables in a Hot Summer Mediterranean Climate. Agronomy, 11(6), 1207. https://doi.org/10.3390/agronomy11061207