Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming
Abstract
:1. Introduction
2. Soilless Farming
2.1. Definition and Types of Soilless Farming
2.1.1. Aerated Nutrient Solution
- Deep water culture (DWC): the most basic hydroponic method, which involves floating a plant on a recirculating solution of well-oxygenated nutrients via a floating platform (i.e., styrofoam).
- Wick system: the simplest hydroponic system in which a wick (bundle of fiber) connects and transports nutrients from the water reservoir to the crop’s growth pot/tray.
- Nutrient film technique (NFT): A pump continuously delivers an oxygenated nutrient solution to the root of the crop’s growth pot/tray. Suitable for crops with a small root mass (i.e., herbs, strawberries, and lettuce).
- Drip system: A pump continuously delivers an oxygenated nutrient solution to the stems of crops in an individual growth tray/pot. Appropriate for large root masses i.e., squash (Cucurbita maxima Duchesne), melon, and tomato.
- Ebb and flow systems: an oxygenated nutrient solution is flooded into a tray containing a single crop growth pot. Ideally suited for fruiting crops.
2.1.2. Soilless Substrate Culture
2.2. Soilless Farming versus Conventional Farming
2.3. Research Focus and Issues in Soilless Farming
3. Microgreen Farming
3.1. Definition, Nutritional Value, and Benefits of Microgreen Farming
3.2. Issues and Research Focus in Microgreen Farming
4. Nanotechnology Advancements in Agriculture
5. Nanotechnology Approaches in the Soilless Farming
5.1. R&D and Innovation on Nanotechnology Approaches in Aerated Soilless Farming
The Incorporation of Nanoparticles into Nutrient Solutions | Type of Crops | Method of Soilless Cultivation | Finding | Ref. |
---|---|---|---|---|
Fe2O3 nanoparticles (30–40 nm) at concentrations of 100, 150, and 200 mg are mixed with Hoagland nutrient solution | Spinach (Spinacia oleracea L.) | Hydroponic | According to the findings, adding nano Fe2O3 to spinach boost its growth rate in a dose- and time-dependent manner. After 45 days, the stems and roots of spinach grown in various Fe2O3 concentrations at 100, 150, and 200 mg, are approximately 1.45, 1.91, respectively, and 2.27 and 1.25, 1.38, and 1.75, respectively, times longer than the control spinach. | [99] |
ZnO nanoparticles (25 nm) at concentrations of 0.2, 1, 5 and 25 µg are mixed with Johnson nutrient solution | Tobacco (Nicotiana tabacum L.) | Hydroponic | When compared to the control, Nano-ZnO increased biomass indices such as root and shoot main and lateral lengths, as well as root and shoot weight. Low or middle levels of ZnO nanoparticles increased amino acids, phenolic compounds, proline, reducing sugars, and flavonoids whereas 25 µM ZnO nanoparticles did not increase proline or flavonoids. Nano-ZnO application increased the activity of superoxide dismutase, peroxidase, glutathione peroxidase, and polyphenol oxidase more than bulk-ZnO application. | [100] |
Se nanoparticles (8–15 nm) at concentrations of 1, 4, 8 and 12 µM are mixed with a nutrient solution mixture of N (116 mg L−1), P (21 mg L−1), K (82 mg L−1), Ca (125 mg L−1), Mg (21 mg L−1), S (28 mg L−1), Fe (6.8 mg L−1), Mn (1.97 mg L−1), Zn (0.25 mg L−1), B (0.70 mg L−1), Cu (0.07 mg L−1), and Mo (0.05 mg L−1) | tomato (Solanum lycopersicum L.) | Hydroponic | The study discovered that both bulk Se (at concentrations of 2.5, 5, and 8 µM) and Se nanoparticles (at concentrations of 4, 8, and 12 µM) had positive effects on tomato growth parameters by increasing the fresh and dry weight and diameter of the shoots, as well as the fresh and dry weight and volume of the roots. In terms of chlorophyll content of tomato leaves grown under low-temperature stress (10 °C for 24 h), Se nanoparticles (27.5%) outperformed bulk Se (19.2%). | [101] |
SiO2 nanoparticles (20–40 nm) at a concentration of 1% w/v is mixed with Hoagland nutrient solution | Maize (Zea mays L.) | Hydroponic | Hydroponically grown maize absorbed SiO2 nanoparticles at a rate of 18.2%, resulting in a 95.5% increase in germination, a 6.5 % increase in dry weight, and better nutrient alleviation in seeds exposed to SiO2 nanoparticles than in seeds exposed to bulk silicon of SiO2, Na2SiO3 and H4SiO4 and control. | [102] |
Zein nanoparticles (135 nm) at concentrations of 0.88 and 1.75 mg/mL are mixed with Hoagland nutrient solution | Sugar cane (Saccharum officinarum L.) | Hydroponic | After 12 h of exposure to zein nanoparticles, the concentration of nanoparticles adhering to sugar cane roots varied with dosage, with 110.2 µg NPs/mg dry weight of root in a low dose nanoparticle suspension (0.88 mg/mL) and 342.5 µg NPs/mg dry weight of root in a high dose nanoparticle suspension (1.75 mg/mL). The translocated nanoparticles were then observed in leaves with 4.8 µg NPs/mg dry weight of leaves in a low dose nanoparticle suspension (0.88 mg/mL) and 12.9 µg NPs/mg dry weight of leaves in a high dose nanoparticle suspension (1.75 mg/mL). | [103] |
Hoagland nutrient solution was used in the early phase, and after the third leaf had fully expanded, hydroxyapatite nanoparticles (94–163 nm) at concentrations of 2, 20, 200, 500, 1000, and 2000 mg L−1 were mixed with 1% w/v carboxymethylcellulose | Tomato (Solanum lycopersicum L.) | Hydroponic | There were no phytotoxic effects on tomato plants grown in hydroponics with hydroxyapatite nanoparticles and increasing the concentration of the nano-mixture induces root elongation. For 200 and 500 mg L−1, the increase in root length was +64% and +97%, respectively, when compared to the control. | [108] |
Fe3O4 nanoparticles or TiO2 nanoparticles (10–30 nm) at concentrations of 50 and 500 mg/L are mixed with nutrient solution mixture of N (11.0 mM), P (1.2 mM), Ca (4.0 mM), K (7.0 mM), S (2.41 µM), Fe (17.8 µM), Zn (5.0 µM), Mn (10.0 µM) and Cu (2.7 µM) | Tomato (Solanum lycopersicum L.) | Hydroponic | When compared to the control and seedlings exposed to Fe3O4 nanoparticles, seedlings grown with high concentrations of TiO2 nanoparticles displayed an irregular proliferation of root hairs one week after the start of the nanoparticle treatment. Tomato seedlings grown under different conditions had similar shoot morphology, and plants treated with nanoparticles showed no signs of toxicity. | [121] |
Cu-Fe2O4 nanoparticles at concentrations of 0.0, 0.04, 0.2, 1, and 5ppm are mixed with Hoagland nutrient solution | Cucumber (Cucumis sativus L.) | Hydroponic | After being exposed to Cu-Fe2O4 nanoparticles, cucumber plants’ fresh weight and protein content increased. The activities of superoxide dismutase and peroxidase were also substantially higher in cucumber shoots and roots. The use of Cu-Fe2O4 nanoparticles improved the absorption of Fe and Cu by cucumber tissues significantly. | [122] |
Chitosan nanoparticles (149 nm) or chitosan-indole-3-acetic acid nanoparticles (183 nm) at various ratio are mixed with La Molina nutrient solution | Lettuce (Latuca sativa L.) | Hydroponic | Hydroponically grown lettuce treated with chitosan nanoparticles and chitosan-indole-3-acetic acid nanoparticles exhibits significant increases of 42.6% and 30.9%, respectively, compared to the control. In terms of the effect on leaf size, chitosan nanoparticles outperformed other treatments with the largest leaves. | [123] |
Patent No./Year/Title | Method of Soilless Cultivation | Invention | Ref. |
---|---|---|---|
N102701844B/2012/Rich-selenium-germanium trace element nanometer nutrition fertilizer for vegetable and fruit soilless culture | Hydroponic | The invention describes the preparation and manufacture of nutritional fertilizer rich in selenium and germanium trace elements for vegetable and fruit cultivation in courtyards or balconies using soilless cultivation. | [124] |
CN206354136U/2017/A kind of indoor micro-nano bubble hydroponic device | Hydroponic | The current utility model’s cultivation cabinet is a semi-hermetic layer stereo system, with the bottom opening passage effectively carrying out indoor and cultivation cabinet air exchange with reference to the ventilation ventilating fan. Aeration will be used by the micro-nano bubble generator to generate the other micro/nano level water vapor bubbles. The amount of dissolved oxygen increases the nutrient solution essentially. | [125] |
JP2015097515A/2013/Hydroponic raising seedling method, and hydroponic culture method | Hydroponic | The invention is to provide a hydroponic seedling system capable of raising a strong seedling and shortening the seedling raising period by adding a hydroponic solution containing micro-nano bubbles during the plant seedling period. | [126] |
KR20130086099A/2012/The method manufacture silver nano antimicrobial & lacquer tree a composite in uses functionality crop | Hydroponic | The current innovation is a method of growing functional crops using a silver nano antibacterial agent and a lacquer composition through hydroponic cultivation. | [127] |
CN105417674A/2015/Preparation method and application of micro-nano sparkling water | Hydroponic | The invention reveals a method for preparing micro-nano sparkling water, which benefits the field of scientific and technological agriculture in areas such as soilless production, fruit and vegetable washing, biological repair, dirty water processing, and so on. | [128] |
WO2017101691A1/2015/The method for cultivation of plants using metal nanoparticles and the nutrient medium for its implementation | Hydroponic | Seed germination and subsequent plant cultivation on an aseptic agar nutrient medium containing a variety of organic and inorganic components important for plant growth, such as iron, zinc, and copper in the form of electro-neutral metal nanoparticles. Chitosan can also be added to the nutrient medium. This process improves seed germination as well as plant physiological and morphological indices such as root length and root behavior, chlorophyll content in leaves, sprout length, and green mass yield. | [118] |
KR20060055895A/2004/Silver nano-containing bean sprouts manufacturing equipment | Hydroponic | The present invention relates to the production of bean sprouts for cultivation with silver-containing water when the bean sprouts are cultivated. | [129] |
CN203482710U/2013/Oxygenation and disinfection device for soilless cultivation nutrient solution | Hydroponic | A filter, an oxygen generator, an ozone generator, a rapid micro-nano bubble generator, and an ultraviolet disinfector are all part of the soil-free nutrient solution oxygenation and disinfection system. | [130] |
AU2015370052B2/2014/Nano particulate delivery system | Hydroponic and aeroponic | The invention describes a system for delivering nano lipids, more specifically a nano concentrate, a nano lipid stable emulsion, a method for preparing nano lipid concentrates, and a system for delivering lipids for use as a carrier in manufacturing, medical, animal, horticultural, and agricultural chemistry. | [119] |
AU2016202162B2/2012/Plant nutrient coated nanoparticles and methods for their preparation and us | Hydroponic and aeroponic | The invention describes a nanofertilizer with at least one plant nutrient coated on a metal nanoparticle that is made by combining a metal salt and a plant nutrient in an aqueous medium and then adding a reducing agent to the solution to form a coated metal nanoparticle. | [131] |
TW201902343A/2017/Fish and vegetable symbiosis system including a support, at least one planting unit, a filtering unit, and a breeding unit | Aquaponic | The invention discloses a fish and vegetable symbiosis system comprising a support, at least one planting unit, one filtering unit, and one breeding unit. For water quality filling, the fish and vegetable symbiosis device is outfitted with an artificial closed form of composite filter material-activated carbon nano silver photocatalyst. | [132] |
CN104719233A/2015/Nano-catalysis aquaponics method | Aquaponic | The invention includes nano-catalyst aquaponics preparation steps involving the use of purple grit dust, tourmaline, nano-titanium, nano-magnesia, medical stone, and zeolite. | [120] |
5.2. Recent R&D and Innovation on Nanotechnology Approaches in Soilless Substrate Culture
6. Nanotechnology Approaches in the Microgreen Farming
7. Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- UN Food and Agriculture Organization (FAO). Sustainable Food and Agriculture. Available online: http://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 13 April 2021).
- UN Food and Agriculture Organization (FAO). Land Use. Available online: http://www.fao.org/faostat/en/#data/RL/visualize (accessed on 13 April 2021).
- World Data Atlas. Malaysia—Agricultural Land Area. Available online: https://knoema.com/atlas/Malaysia/Agricultural-land-area#:~:text=In%202016%2C%20agricultural%20land%20area,Malaysia%20increased%20from%2035%2C717%20sq (accessed on 14 April 2021).
- United Nations. Population. Available online: https://www.un.org/en/global-issues/population#:~:text=The%20world%20population%20is%20projected,surrounding%20these%20latest%20population%20projections (accessed on 29 April 2021).
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Scientific American. Only 60 Years of Farming Left If Soil Degradation Continues. Available online: https://www.scientificamerican.com/article/only-60-years-of-farming-left-if-soil-degradation-continues/#:~:text=ROME%20(Thom-son%20Reuters%20Foundation)%20%2D,UN%20official%20said%20on%20Friday.&text=Soils%20play%20a%20key%20role,filtering%20water%2C%20the%20FAO%20reported (accessed on 14 April 2021).
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- El-Kazzaz, K.; El-Kazzaz, A. Soilless agriculture a new and advanced method for agriculture development: An introduction. Agric. Res. Technol. 2017, 3, 63–72. [Google Scholar] [CrossRef]
- Priyamvada Chauhan, A.B. Analysis of soilless farming in urban agriculture. J. Pharmacogn. Phytochem. 2020, 9, 239–242. [Google Scholar]
- Riaz, A.; Younis, A.; Ghani, I.; Tariq, U.; Ahsan, M. Agricultural waste as growing media component for the growth and flowering of Gerbera jamesonii cv. hybrid mix. Int. J. Recycl. Org. Waste Agric. 2015, 4, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Sendi, H.; Mohamed, M.; Anwar, M.; Saud, H. Spent mushroom waste as a media replacement for peat moss in Kai-Lan (Brassica oleracea var. Alboglabra) production. Sci. World J. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zied, D.C.; de Abreu, C.G.; Alves, L.d.S.; Prado, E.P.; Pardo-Gimenez, A.; de Melo, P.C.; Dias, E.S. Influence of the production environment on the cultivation of lettuce and arugula with spent mushroom substrate. J. Environ. Manag. 2021, 281, 111799. [Google Scholar] [CrossRef] [PubMed]
- Greco, C.; Comparetti, A.; Fascella, G.; Febo, P.; La Placa, G.; Saiano, F.; Mammano, M.M.; Orlando, S.; Laudicina, V.A. Effects of Vermicompost, Compost and Digestate as Commercial Alternative Peat-Based Substrates on Qualitative Parameters of Salvia officinalis. Agronomy 2021, 11, 98. [Google Scholar] [CrossRef]
- Tavarwisa, D.M.; Govera, C.; Mutetwa, M.; Ngezimana, W. Evaluating the suitability of baobab fruit shells as substrate for growing oyster mushroom (Pleurotus ostreatus). Int. J. Agron. 2021. [Google Scholar] [CrossRef]
- AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. Am. Sci. Res. J. Eng. Technol. Sci. ASRJETS 2017, 27, 247–255. [Google Scholar]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.F.; Yu, H.; Yang, X.; Jiang, W. Deficit irrigation affects growth, yield, vitamin C content, and irrigation water use efficiency of hot pepper grown in soilless culture. HortScience 2014, 49, 722–728. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Igou, T.; Chen, Y. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resour. Conserv. Recycl. 2017, 122, 319–325. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Carmassi, G.; Campiotti, C.; Pardossi, A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric. Water Manag. 2010, 97, 971–980. [Google Scholar] [CrossRef]
- El-Sayed, S.; Hassan, H.; Mahmoud, S. Effect of some soilless culture techniques on sweet pepper growth, production, leaves chemical contents and water consumption under greenhouse conditions. Middle East J. 2015, 4, 682–691. [Google Scholar]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern plant cultivation technologies in agriculture under controlled environment: A review on aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Treftz, C.; Omaye, S.T. Nutrient analysis of soil and soilless strawberries and raspberries grown in a greenhouse. Food Nutr. Sci. 2015, 6, 805. [Google Scholar] [CrossRef] [Green Version]
- Biesalski, H.-K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, D.N.; Omaye, S.T. Comparative study of ascorbic acid and tocopherol concentrations in hydroponic-and soil-grown lettuces. Food Nutr. Sci. 2013. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; An, C.G.; Park, J.-S.; Lim, Y.P.; Kim, S. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods. Food Chem. 2016, 201, 64–71. [Google Scholar] [CrossRef]
- Parks, S. Pesticide Residues in Hydroponic Lettuce; Horticulture Australia Ltd.: Sydney, NSW, Australia, 2008. [Google Scholar]
- Valdez-Aguilar, L.A.; Reed, D.W. Growth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium, potassium, and sodium. J. Plant Nutr. 2010, 33, 1472–1488. [Google Scholar] [CrossRef]
- Tyson, R.V.; Simonne, E.H.; White, J.M.; Lamb, E.M. Reconciling water quality parameters impacting nitrification in aquaponics: The pH levels. In Proceedings of the Florida State Horticultural Society; Florida State Horticulture Society: Goldenrod, FL, USA, 2004; pp. 79–83. [Google Scholar]
- Nalwade, R.; Mote, T. Hydroponics farming. In Proceedings of the 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, India, 11–12 May 2017; pp. 645–650. [Google Scholar]
- Singh, H.; Bruce, D. Electrical conductivity and pH guide for hydroponics. In Oklahoma Cooperative Extension Fact Sheets, HLA-6722; OSU Extension, Division of Agricultural Sciences and Natural Resources, Oklahoma State University: Oklahoma City, OK, USA, 2016; Volume 5. [Google Scholar]
- Trejo-Téllez, L.I.; Gómez-Merino, F.C. Nutrient solutions for hydroponic systems. In Hydroponics—A Standard Methodology for Plant Biological Researches; BoD–Books: Norderstedt, Germany, 2012; pp. 1–22. [Google Scholar]
- Samarakoon, U.; Weerasinghe, P.; Weerakkody, W. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- De Rijck, G.; Schrevens, E. Elemental bioavailability in nutrient solutions in relation to precipitation reactions. J. Plant Nutr. 1998, 21, 2103–2113. [Google Scholar] [CrossRef]
- Nxawe, S.; Ndakidemi, P.A.; Laubscher, C. Possible effects of regulating hydroponic water temperature on plant growth, accumulation of nutrients and other metabolites. Afr. J. Biotechnol. 2010, 9, 9128–9134. [Google Scholar]
- Suzuki, N.; Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant 2006, 126, 45–51. [Google Scholar] [CrossRef]
- Calatayud, Á.; Gorbe, E.; Roca, D.; Martínez, P.F. Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ. Exp. Bot. 2008, 64, 65–74. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, J.; Lee, Y.; Chil, C. Solution temperature effects on potato growth and mineral uptake in hydroponic system. In Proceedings of the International Symposium on Growing Media and Hydroponics 548, Kassandra, Greece, 31 August–6 September 1999; pp. 517–522. [Google Scholar]
- Daskalaki, A.; Burrage, S. Solution temperature and the uptake of water and nutrients by cucumber (Cucumis sativus L.) in hydroponics. In Proceedings of the International Symposium on Water Quality & Quantity-Greenhouse 458, Tenerife, Spain, 5 November 1993; pp. 317–322. [Google Scholar]
- Sakamoto, M.; Suzuki, T. Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am. J. Plant Sci. 2015, 6, 2350. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, M.; Nagai, M.; Asao, T.; Matsui, Y. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 2000, 26, 1953–1967. [Google Scholar] [CrossRef]
- Othman, Y.; Bataineh, K.; Al-Ajlouni, M.; Alsmairat, N.; Ayad, J.; Shiyab, S.; Al-Qarallah, B.; St Hilaire, R. Soilless culture: Management of growing substrate, water, nutrient, salinity, microorganism and product quality. Fresen. Environ. Bull. 2019, 28, 3249–3260. [Google Scholar]
- Dede, O.; Dede, G.; Ozdemir, S.; Abad, M. Physicochemical characterization of hazelnut husk residues with different decomposition degrees for soilless growing media preparation. J. Plant Nutr. 2011, 34, 1973–1984. [Google Scholar] [CrossRef]
- Abad, M.; Fornes, F.; Carrión, C.; Noguera, V.; Noguera, P.; Maquieira, Á.; Puchades, R. Physical properties of various coconut coir dusts compared to peat. HortScience 2005, 40, 2138–2144. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M.; Kobayashi, Y.; Mondal, M.F.; Ban, T.; Matsubara, H.; Adachi, F.; Asao, T. Growing carrots hydroponically using perlite substrates. Sci. Hortic. 2013, 159, 113–121. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Bures, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Puchades, R.; Maquieira, A.; Noguera, V. Influence of particle size on physical and chemical properties of coconut coir dust as container medium. Commun. Soil Sci. Plant Anal. 2003, 34, 593–605. [Google Scholar] [CrossRef]
- Ingram, D.; Henley, R.W. Growth Media for Container Grown Ornamental Plants; UF-IFAS Extension, Ed.; University of Florida: Gainesville, FL, USA, 2003. [Google Scholar]
- López-Medina, J.; Peralbo, A.; Flores, F. Closed soilless growing system: A sustainable solution for strawberry crop in Huelva (Spain). In Proceedings of the Euro Berry Symposium-COST-Action 836 Final Workshop 649, Ancona, Italy, 9 October 2003; pp. 213–216. [Google Scholar]
- Roe, N.E. Growing microgreens: Maybe the ultimate specialty crop! In Proceedings of the Florida State Horticultural Society, Tampa, FL, USA, 4–6 June 2006; pp. 289–290. [Google Scholar]
- Weber, C.F. Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 2017, 4, 7. [Google Scholar] [CrossRef]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
- De la Fuente, B.; López-García, G.; Máñez, V.; Alegría, A.; Barberá, R.; Cilla, A. Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods 2019, 8, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renna, M.; Stellacci, A.M.; Corbo, F.; Santamaria, P. The Use of a Nutrient Quality Score is Effective to Assess the Overall Nutritional Value of Three Brassica Microgreens. Foods 2020, 9, 1226. [Google Scholar] [CrossRef] [PubMed]
- Khoja, K.K.; Buckley, A.; Aslam, M.F.; Sharp, P.A.; Latunde-Dada, G.O. In Vitro Bioaccessibility and Bioavailability of Iron from Mature and Microgreen Fenugreek, Rocket and Broccoli. Nutrients 2020, 12, 1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Strange, M.; Cahn, M.; Koike, S.; Smith, R. Broccoli Production in California; UCANR Publications: Davis, CA, USA, 2010. [Google Scholar]
- Rajan, P.; Lada, R.R.; MacDonald, M.T. Advancement in Indoor Vertical Farming for Microgreen Production. Am. J. Plant Sci. 2019, 10, 1397. [Google Scholar] [CrossRef] [Green Version]
- National Advisory Committee on Microbiological Criteria for Foods. Microbiological safety evaluations and recommendations on sprouted seeds. Int. J. Food Microbiol. 1999, 52, 123–153. [Google Scholar] [CrossRef]
- Alegbeleye, O.O.; Singleton, I.; Sant’Ana, A.S. Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: A review. Food Microbiol. 2018, 73, 177–208. [Google Scholar] [CrossRef] [PubMed]
- Riggio, G.M.; Wang, Q.; Kniel, K.E.; Gibson, K.E. Microgreens—A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Alum, A.; Enriquez, C.; Gerba, C.P. Impact of drip irrigation method, soil, and virus type on tomato and cucumber contamination. Food Environ. Virol. 2011, 3, 78–85. [Google Scholar] [CrossRef]
- Wang, Q.; Kniel, K.E. Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Appl. Environ. Microbiol. 2016, 82, 705–713. [Google Scholar] [CrossRef] [Green Version]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–115. [Google Scholar] [CrossRef]
- Lee, J.; Pill, W.; Cobb, B.; Olszewski, M. Seed treatments to advance greenhouse establishment of beet and chard microgreens. J. Hortic. Sci. Biotechnol. 2004, 79, 565–570. [Google Scholar] [CrossRef]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Hu, L.; Yu, J.; Liao, W.; Zhang, G.; Xie, J.; Lv, J.; Xiao, X.; Yang, B.; Zhou, R.; Bu, R. Moderate ammonium: Nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Sci. Hortic. 2015, 186, 143–153. [Google Scholar] [CrossRef]
- Kou, L.; Yang, T.; Luo, Y.; Liu, X.; Huang, L.; Codling, E. Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biol. Technol. 2014, 87, 70–78. [Google Scholar] [CrossRef]
- Bian, Z.H.; Yang, Q.C.; Liu, W.K. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. J. Sci. Food Agric. 2015, 95, 869–877. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Sakalauskienė, S.; Samuolienė, G.; Jankauskienė, J.; Viršilė, A.; Novičkovas, A.; Sirtautas, R.; Miliauskienė, J.; Vaštakaitė, V.; Dabašinskas, L. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef]
- Choi, M.-K.; Chang, M.-S.; Eom, S.-H.; Min, K.-S.; Kang, M.-H. Physicochemical composition of buckwheat microgreens grown under different light conditions. J. Korean Soc. Food Sci. Nutr. 2015, 44, 709–715. [Google Scholar] [CrossRef]
- Brazaityte, A.; Virsile, A.; Jankauskiene, J.; Sakalauskiene, S.; Samuoliene, G.; Sirtautas, R.; Novickovas, A.; Dabasinskas, L.; Miliauskiene, J.; Vastakaite, V. Effect of supplemental UV—A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. Int. Agrophys. 2015, 29. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaitytė, A.; Jankauskienė, J.; Viršilė, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskienė, S.; Sakalauskaitė, J.; Duchovskis, P. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Paradiso, V.M.; Castellino, M.; Renna, M.; Gattullo, C.E.; Calasso, M.; Terzano, R.; Allegretta, I.; Leoni, B.; Caponio, F.; Santamaria, P. Nutritional characterization and shelf-life of packaged microgreens. Food Funct. 2018, 9, 5629–5640. [Google Scholar] [CrossRef] [Green Version]
- Chandra, D.; Kim, J.G.; Kim, Y.P. Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic. Environ. Biotechnol. 2012, 53, 32–40. [Google Scholar] [CrossRef]
- Kou, L.; Luo, Y.; Yang, T.; Xiao, Z.; Turner, E.R.; Lester, G.E.; Wang, Q.; Camp, M.J. Postharvest biology, quality and shelf life of buckwheat microgreens. LWT Food Sci. Technol. 2013, 51, 73–78. [Google Scholar] [CrossRef]
- Marchiol, L. Nanotechnology in agriculture: New opportunities and perspectives. In New Visions in Plant Science; IntechOpen: London, UK, 2018; Volume 9, p. 161. [Google Scholar]
- Maluin, F.N.; Hussein, M.Z. Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules 2020, 25, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Zainol Hilmi, N.H.; Jeffery Daim, L.D. Preparation of chitosan–hexaconazole nanoparticles as fungicide nanodelivery system for combating Ganoderma disease in oil palm. Molecules 2019, 24, 2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, N.H.Z.; Jeffery Daim, L.D. A potent antifungal agent for basal stem rot disease treatment in oil palms based on chitosan-dazomet nanoparticles. Int. J. Mol. Sci. 2019, 20, 2247. [Google Scholar] [CrossRef] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Seman, I.A.; Hilmi, N.H.Z.; Daim, L.D.J. Enhanced fungicidal efficacy on Ganoderma boninense by simultaneous co-delivery of hexaconazole and dazomet from their chitosan nanoparticles. RSC Adv. 2019, 9, 27083–27095. [Google Scholar] [CrossRef] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Azah Yusof, N.; Fakurazi, S.; Idris, A.S.; Zainol Hilmi, N.H.; Jeffery Daim, L.D. Chitosan-based agronanofungicides as a sustainable alternative in the basal stem rot disease management. J. Agric. Food Chem. 2020, 68, 4305–4314. [Google Scholar] [CrossRef] [PubMed]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Idris, A.S.; Daim, L.D.J.; Sarian, M.N.; Rajab, N.F.; Ee Ling, S.; Rashid, N.; Fakurazi, S. Cytoprotection, Genoprotection, and Dermal Exposure Assessment of Chitosan-Based Agronanofungicides. Pharmaceutics 2020, 12, 497. [Google Scholar] [CrossRef]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, N.H.Z.; Daim, L.D.J. Phytotoxicity of chitosan-based agronanofungicides in the vegetative growth of oil palm seedling. PLoS ONE 2020, 15, e0231315. [Google Scholar] [CrossRef] [Green Version]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Maznah, Z.; Idris, A.S.; Hilmi, N.H.Z.; Daim, L.D.J. Residual analysis of chitosan-based agronanofungicides as a sustainable alternative in oil palm disease management. Sci. Rep. 2020, 10, 22323. [Google Scholar] [CrossRef]
- Saini, P.; Gani, M.; Kaur, J.J.; Godara, L.C.; Singh, C.; Chauhan, S.; Francies, R.M.; Bhardwaj, A.; Kumar, N.B.; Ghosh, M. Reactive oxygen species (ROS): A way to stress survival in plants. In Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective; Springer: Berlin/Heidelberg, Germany, 2018; pp. 127–153. [Google Scholar]
- Laware, S.; Raskar, S. Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 749–760. [Google Scholar]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Faisal, M.; Al Sahli, A.A. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem. 2014, 33, 2429–2437. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Song, F.; Guo, J.; Zhu, X.; Liu, S.; Liu, F.; Li, X. Nano-ZnO-induced drought tolerance is associated with melatonin synthesis and metabolism in maize. Int. J. Mol. Sci. 2020, 21, 782. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Das, B. Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants. In Abiotic and Biotic Stress in Plants; IntechOpen: London, UK, 2019. [Google Scholar]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in plant science: To make a long story short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, K.S.; Li, S.; Tzeng, K.; Cheng, T.C.; Chang, C.Y.; Chiu, C.; Liao, C.; Hsu, J.; Lin, Z. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv. Mater. Res. 2009, 79, 513–516. [Google Scholar] [CrossRef]
- Lau, H.Y.; Wu, H.; Wee, E.J.; Trau, M.; Wang, Y.; Botella, J.R. Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci. Rep. 2017, 7, 38896. [Google Scholar] [CrossRef]
- Khan, R.; Rehman, A.; Hayat, A.; Andreescu, S. Magnetic Particles-Based Analytical Platforms for Food Safety Monitoring. Magnetochemistry 2019, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Rawtani, D.; Khatri, N.; Tyagi, S.; Pandey, G. Nanotechnology-based recent approaches for sensing and remediation of pesticides. J. Environ. Manag. 2018, 206, 749–762. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Fahimirad, S. Plant nanobionics a novel approach to overcome the environmental challenges. In Medicinal Plants and Environmental Challenges; Springer: Berlin/Heidelberg, Germany, 2017; pp. 247–257. [Google Scholar]
- Han, J.-H.; Paulus, G.L.; Maruyama, R.; Heller, D.A.; Kim, W.-J.; Barone, P.W.; Lee, C.Y.; Choi, J.H.; Ham, M.-H.; Song, C. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nat. Mater. 2010, 9, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.; Giraldo, J.P.; Kwak, S.-Y.; Koman, V.B.; Sinclair, R.; Lew, T.T.S.; Bisker, G.; Liu, P.; Strano, M.S. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat. Mater. 2017, 16, 264–272. [Google Scholar] [CrossRef]
- Jeyasubramanian, K.; Thoppey, U.U.G.; Hikku, G.S.; Selvakumar, N.; Subramania, A.; Krishnamoorthy, K. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. Rsc Adv. 2016, 6, 15451–15459. [Google Scholar] [CrossRef]
- Tirani, M.M.; Haghjou, M.M.; Ismaili, A. Hydroponic grown tobacco plants respond to zinc oxide nanoparticles and bulk exposures by morphological, physiological and anatomical adjustments. Funct. Plant Biol. 2019, 46, 360–375. [Google Scholar] [CrossRef]
- Haghighi, M.; Abolghasemi, R.; da Silva, J.A.T. Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci. Hortic. 2014, 178, 231–240. [Google Scholar] [CrossRef]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr. Nanosci. 2012, 8, 902–908. [Google Scholar] [CrossRef]
- Prasad, A.; Astete, C.E.; Bodoki, A.E.; Windham, M.; Bodoki, E.; Sabliov, C.M. Zein nanoparticles uptake and translocation in hydroponically grown sugar cane plants. J. Agric. Food Chem. 2017, 66, 6544–6551. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, X.; Zhu, N.; Wang, L.; Li, Y.; Li, Y.-F.; Zheng, L.; Zhang, Z.; Gao, Y.; Chai, Z. Immobilization of mercury by nano-elemental selenium and the underlying mechanisms in hydroponic-cultured garlic plant. Environ. Sci. Nano 2020, 7, 1115–1125. [Google Scholar] [CrossRef]
- Sharifan, H.; Ma, X.; Moore, J.M.; Habib, M.R.; Evans, C. Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var. Longifolia). ACS Sustain. Chem. Eng. 2019, 7, 16401–16409. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Q.; Lin, L.; Li, F.-J.; Han, Y.; Song, Z.-G. Reduction of arsenic toxicity in two rice cultivar seedlings by different nanoparticles. Ecotoxicol. Environ. Saf. 2018, 159, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Gong, J.; Zeng, G.; Song, B.; Zhang, P.; Li, J.; Fang, S.; Qin, L.; Ye, J.; Cai, Z. Mutual effects of silver nanoparticles and antimony (iii)/(v) co-exposed to Glycine max (L.) Merr. in hydroponic systems: Uptake, translocation, physiochemical responses, and potential mechanisms. Environ. Sci. Nano 2020, 7, 2691–2707. [Google Scholar] [CrossRef]
- Marchiol, L.; Filippi, A.; Adamiano, A.; Degli Esposti, L.; Iafisco, M.; Mattiello, A.; Petrussa, E.; Braidot, E. Influence of hydroxyapatite nanoparticles on germination and plant metabolism of tomato (Solanum lycopersicum L.): Preliminary evidence. Agronomy 2019, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Rajput, V.D.; Minkina, T.; Sushkova, S.; Tsitsuashvili, V.; Mandzhieva, S.; Gorovtsov, A.; Nevidomskyaya, D.; Gromakova, N. Effect of nanoparticles on crops and soil microbial communities. J. Soils Sediments 2018, 18, 2179–2187. [Google Scholar] [CrossRef]
- Iavicoli, I.; Leso, V.; Beezhold, D.H.; Shvedova, A.A. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 2017, 329, 96–111. [Google Scholar] [CrossRef]
- Lin, S.; Yu, T.; Yu, Z.; Hu, X.; Yin, D. Nanomaterials safer-by-design: An environmental safety perspective. Adv. Mater. 2018, 30, 1705691. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xing, B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 2008, 42, 5580–5585. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, W.; He, Y.; Wang, L.; Li, W.; Yang, L.; Xing, G. Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere 2021, 263, 127943. [Google Scholar] [CrossRef]
- Zoufan, P.; Baroonian, M.; Zargar, B. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L., Zn uptake, and accumulation under hydroponic culture. Environ. Sci. Pollut. Res. 2020, 27, 11066–11078. [Google Scholar] [CrossRef]
- Xu, F.; Wang, P.; Bian, S.; Wei, Y.; Kong, D.; Wang, H. A Co-Nanoparticles Modified Electrode for On-Site and Rapid Phosphate Detection in Hydroponic Solutions. Sensors 2021, 21, 299. [Google Scholar] [CrossRef]
- Luo, X.L.; Rauan, A.; Xing, J.X.; Sun, J.; Wu, W.Y.; Ji, H. Influence of dietary Se supplementation on aquaponic system: Focusing on the growth performance, ornamental features and health status of Koi carp (Cyprinus carpio var. Koi), production of Lettuce (Lactuca sativa) and water quality. Aquac. Res. 2021, 52, 505–517. [Google Scholar] [CrossRef]
- Roosta, H.; Hosseinkhani, M.; Shahrbabaki, M.V. Effects of foliar application of nano-fertile fertilizer containing humic acid on growth, yield and nutrient concentration of mint (Mentha sativa) in aquaponic system. J. Sci. Technol. Greenh. Cult. 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Liu, M.; Chen, Y.; Lu, J.; Li, H.; Sun, Q.; Semenovna, N.G.; Nikolaevich, Z.A.; Ovseevich, L.I.; Aleksandrovna, R.A.; et al. The Method for Cultivation of Plants Using Metal Nanoparticles and the Nutrient Medium for Its Implementation. WO2017101691A1, 17 December 2015. [Google Scholar]
- Berg, P.S.; Pullen, M.D. Nano Particulate Delivery System; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Yao, C. Nano-Catalysis Aquaponics Method. CN104719233A, 14 March 2015. [Google Scholar]
- Giordani, T.; Fabrizi, A.; Guidi, L.; Natali, L.; Giunti, G.; Ravasi, F.; Cavallini, A.; Pardossi, A. Response of tomato plants exposed to treatment with nanoparticles. EQA Int. J. Environ. Qual. 2012, 8, 27–38. [Google Scholar] [CrossRef]
- Abu-Elsaad, N.I.; Abdel hameed, R.E. Copper ferrite nanoparticles as nutritive supplement for cucumber plants grown under hydroponic system. J. Plant Nutr. 2019, 42, 1645–1659. [Google Scholar] [CrossRef]
- Valderrama, A.; Lay, J.; Flores, Y.; Zavaleta, D.; Delfín, A.R. Factorial design for preparing chitosan nanoparticles and its use for loading and controlled release of indole-3-acetic acid with effect on hydroponic lettuce crops. Biocatal. Agric. Biotechnol. 2020, 26, 101640. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, G. Rich-Selenium-Germanium Trace Element Nanometer Nutrition Fertilizer for Vegetable and Fruit Soilless culture. CN102701844B, 21 May 2012. [Google Scholar]
- Zhang, T.; Chen, X. A Kind of Indoor Micro-Nano Bubble Hydroponic Device. CN206354136U, 6 January 2017. [Google Scholar]
- Harutaro Hidaka, S.H.; Akitoshi, N.; Masahiro, K. Hydroponic Raising Seedling Method, and Hydroponic Culture Method. JP2015097515A, 20 November 2013. [Google Scholar]
- Moongyu Choi, G.P. The Method Manufacture Silver Nano Antimicrobial & Lacquer Tree a Composite in Uses Functionality Crop. KR20130086099A, 18 January 2012. [Google Scholar]
- Yao, J. Preparation Method and Application of Micro-Nano Sparkling Water. CN105417674A, 23 November 2015. [Google Scholar]
- Jung-oh, A. Silver Nano-Containing Bean Sprouts Manufacturing Equipment. KR20060055895A, 19 November 2004. [Google Scholar]
- Lin, S.; Xue, X.; Liu, L.; Zhang, T.; Yang, W.; Fan, D.; Li, Z.; Yan, M.T.; Fang, X.; Bao, P. Oxygenation and Disinfection Device for Soilless Cultivation Nutrient Solution. CN-203482710-U, 11 October 2013. [Google Scholar]
- Deb, N. Plant Nutrient Coated Nanoparticles and Methods for Their Preparation and Use. US9359265B2, 15 February 2012. [Google Scholar]
- Zhang, Z. Aquaponics System. TW201902343A, 6 June 2017. [Google Scholar]
- Imalia, C.; Selviana, G.; Chafidz, A. The Development of Hydrogel Polymer from Diapers Waste with the addition of Straw Nano Fibers as The Growing Media of Green Beans Plant. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Chennai, India, 16–17 September 2020; p. 012041. [Google Scholar]
- Duo, L.; Zhao, S.; He, L. A Kind of Modified Nano Carbon is to the Multifarious Regulate and Control Method of Soil Nematodes. CN103814744B, 11 March 2014. [Google Scholar]
- Xuesong, L. A kind of Greening Soilless Culture Substrate and Preparation Method Thereof. CN103493718B, 29 August 2013. [Google Scholar]
- Liu, W.; Zhang, M.; Bhandari, B. Nanotechnology—A shelf life extension strategy for fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2020, 60, 1706–1721. [Google Scholar] [CrossRef]
- Yan, W.Q.; Zhang, M.; Huang, L.L.; Tang, J.; Mujumdar, A.S.; Sun, J.C. Studies on different combined microwave drying of carrot pieces. Int. J. Food Sci. Technol. 2010, 45, 2141–2148. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Jiang, Y.; Ding, Y.; Yun, J.; Tang, Y.; Zhang, P. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’apple. Int. J. Food Sci. Technol. 2011, 46, 1947–1955. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, Y.; Jiang, L.; Xu, X. Effect of nano-CaCO3-LDPE packaging on quality and browning of fresh-cut yam. LWT Food Sci. Technol. 2015, 60, 1155–1161. [Google Scholar] [CrossRef]
- Lacroix, M.; Vu, K.D. Edible coating and film materials: Proteins. In Innovations in Food Packaging; Elsevier: Amsterdam, The Netherlands, 2014; pp. 277–304. [Google Scholar]
- Zhu, Y.; Li, D.; Belwal, T.; Li, L.; Chen, H.; Xu, T.; Luo, Z. Effect of nano-SiOx/chitosan complex coating on the physicochemical characteristics and preservation performance of green Tomato. Molecules 2019, 24, 4552. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, M.; Bhandari, B.; Kachele, R. ZnO nanoparticles combined radio frequency heating: A novel method to control microorganism and improve product quality of prepared carrots. Innov. Food Sci. Emerg. Technol. 2017, 44, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Liu, Y.; Shan, X.; Wang, S. Evaluation of 1-methylcyclopropene (1-MCP) treatment combined with nano-packaging on quality of pleurotus eryngii. J. Food Sci. Technol. 2018, 55, 4424–4431. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, M.; Fang, Z.x.; Rong, X.h. Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum-packaged Caixin. J. Sci. Food Agric. 2014, 94, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- EPA. Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions (accessed on 28 April 2021).
- Dubois, O. The State of the World’s Land and Water Resources for Food and Agriculture: Managing Systems at Risk; Earthscan: Amsterdam, The Netherlands, 2011. [Google Scholar]
Crops | pH | EC (d/Sm−1) |
---|---|---|
African Violet (Saintpaulia ionantha H. Wendl.) | 6.0–6.8 | 1.4–1.8 |
Asparagus (Asparagus officinalis L.) | 6.0–7.0 | 6.0–6.8 |
Banana (Musa acuminata Colla) | 5.5–6.5 | 1.8–2.2 |
Basil (Ocimum basilicum L.) | 5.5–6.0 | 1.0–1.6 |
Bean (Phaseolus vulgaris L.) | 6.0 | 2.0 to 4.0 |
Broccoli (Brassica oleracea L. var. italica) | 6.0 to 6.8 | 2.8 to 3.5 |
Cabbage (Brassica oleracea L.) | 6.5 to 7.0 | 2.5 to 3.0 |
Carnation (Dianthus caryophyllus L.) | 6.0 | 2.0 to 3.5 |
Celery (Apium graveolens L.) | 6.5 | 1.8 to 2.4 |
Cucumber (Cucumis sativus L.) | 5.0 to 5.5 | 1.7 to 2.0 |
Eggplant (Solanum melongena L.) | 6.0 | 2.5 to 3.5 |
Fig (Ficus benjamina L.) | 5.5 to 6.0 | 1.6 to 2.4 |
Leek (Allium porrum L.) | 6.5 to 7.0 | 1.4 to 1.8 |
Lettuce (Lactuca sativa L.) | 6.0 to 7.0 | 1.2 to 1.8 |
Marrow (Cucurbita pepo L.) | 6.0 | 1.8 to 2.4 |
Okra (Abelmoschus esculentus L.) | 6.5 | 2.0 to 2.4 |
Pak Choi (Brassica rapa L.) | 7.0 | 1.5 to 2.0 |
Peppers (Capsicum annuum L.) | 5.5 to 6.0 | 0.8 to 1.8 |
Parsley (Petroselinum crispum (Mill.) Fuss) | 6.0 to 6.5 | 1.8 to 2.2 |
Rhubarb (Rheum × rhabarbarum L.) | 5.5 to 6.0 | 1.6 to 2.0 |
Rose (Rosa abietina Gren.) | 5.5 to 6.0 | 1.5 to 2.5 |
Spinach (Spinacia oleracea L.) | 6.0 to 7.0 | 1.8 to 2.3 |
Strawberry (Fragaria ananassa L.) | 6.0 | 1.8 to 2.2 |
Sage (Salvia officinalis L.) | 5.5 to 6.5 | 1.0 to 1.6 |
Tomato (Solanum lycopersicum L.) | 6.0 to 6.5 | 2.0 to 4.0 |
Zucchini (Cucurbita pepo L.) | 6.0 | 1.8 to 2.4 |
Nutrients | Plant-Absorbable Ionic Forms of Nutrients | The Influence of pH on Its Availability |
---|---|---|
Nitrogen | NH4+ | Available to form at pH 2 to 7, while above pH 7 will decrease its concentration |
NO3− | pH 6.5 is ideal; pH 8.5 increases unionized ammonia levels, which are harmful to fish, and reduces plant nutrient uptake from micronutrient precipitation. | |
Phosphorus | PO43− HPO42− H2PO4− | The dominant orthophosphate ions are H2PO42− and HPO42−, with the latter being the dominant species at pH levels of 5 and 10, respectively. |
Potassium | K+ | Available to form at pH 2 to 9 with a minimal amount of it can form a soluble complex with SO42− or bind with Cl−. |
Calcium and magnesium | Ca2+ Mg2+ | Available to form at pH 2 to 9, but may complex with other nutrient ions. At pH greater than 8.3, Ca+ and Mg+ can easily react with CO32− (present in water) to form carbonate precipitate. Ca+ (if more than 2.2 mol m−3) can react with HPO42− when the pH rises above 7.3. The formation of soluble complexes with SO42− increases as the pH rises from 2 to 9. |
Copper, manganese, zinc, boron, and iron | Cu2+, Mn2+, Zn2+, B3+, Fe2+, Fe3+ | When the pH rises above 6.5, it reacts with OH− and precipitates. |
Properties | Suggested Optimum Range |
---|---|
Particle size/coarseness index | 0.5–2.0 mm |
Total pore space | >85% vol |
Bulk density | <0.4 g/cm3 |
Air capacity | 20–30% vol |
Total water-holding capacity | 600–1000 mL/L |
pH | 5.3–6.5 |
Electrical conductivity | ≤0.5 dS/m |
Total organic matter | >80% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maluin, F.N.; Hussein, M.Z.; Nik Ibrahim, N.N.L.; Wayayok, A.; Hashim, N. Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming. Agronomy 2021, 11, 1213. https://doi.org/10.3390/agronomy11061213
Maluin FN, Hussein MZ, Nik Ibrahim NNL, Wayayok A, Hashim N. Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming. Agronomy. 2021; 11(6):1213. https://doi.org/10.3390/agronomy11061213
Chicago/Turabian StyleMaluin, Farhatun Najat, Mohd Zobir Hussein, Nik Nor Liyana Nik Ibrahim, Aimrun Wayayok, and Norhayati Hashim. 2021. "Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming" Agronomy 11, no. 6: 1213. https://doi.org/10.3390/agronomy11061213
APA StyleMaluin, F. N., Hussein, M. Z., Nik Ibrahim, N. N. L., Wayayok, A., & Hashim, N. (2021). Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming. Agronomy, 11(6), 1213. https://doi.org/10.3390/agronomy11061213