Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Characterization of Soil Sample
2.2. Collection and Characterization of Biochar
2.3. Experimental Design and Treatment
2.4. Pot Trial
2.5. Measurement of Soil CO2 Flux Emission
2.6. Biomass Production Measurement and Nutrient Analysis in Plant and Soil
2.7. Percent Relative Data
2.8. Statistical Analysis
3. Results
3.1. Effect of Treatments on Nutrients of the Post-Harvest Soil
3.2. Effect of Treatments on Maize Plant Growth and Yield Contributing Characteristics
3.3. Effect of Treatments on Maize Plant Nutrients’ Concentration and Total Uptake
3.4. Effect of Treatments on Soil CO2 Emission in Maize Field
3.5. Relationship between Plant Parameters, Nutrient Uptake, Soil pH, and Nutrients
4. Discussion
4.1. Biochar and Lime Treatment Affects Soil Properties
4.2. Combined Application of Biochar and Lime Increased Crop Performance
4.3. Combined Application of Biochar and Lime Increased Nutrient Uptake
4.4. Combined Application of Biochar and Lime Accelerated Soil CO2 Emission
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Kalkhoran, S.S.; Pannell, D.J.; Thamo, T.; White, B.; Polyakov, M. Soil acidity, lime application, nitrogen fertility, and greenhouse gas emissions: Optimizing their joint economic management. Agric. Syst. 2019, 176, 102684. [Google Scholar] [CrossRef]
- Sumner, M.; Noble, A. Handbook of Soil Acidity; Rengel, Z., Ed.; Marcel Dekker: New York, NY, USA, 2003; pp. 1–28. [Google Scholar]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Filippi, P.; Cattle, S.R.; Bishop, T.F.A.; Odeh, I.O.A.; Pringle, M.J. Digital soil monitoring of top and sub-soil pH with bivariate linear mixed models. Geoderma 2018, 322, 149–162. [Google Scholar] [CrossRef]
- Ryan, P.R. Assessing the role of genetics for improving the yield of Australia’s major grain crops on acid soils. Crop. Pasture Sci. 2018, 69, 242–264. [Google Scholar] [CrossRef]
- Raboin, L.M.; Razafimahafaly, A.H.D.; Rabenjarisoa, M.B.; Rabary, B.; Dusserre, J.; Becquer, T. Improving the fertility of tropical acid soils, Liming versus biochar application? A long term comparison in the highlands of Madagascar. Field Crop. Res. 2016, 199, 99–108. [Google Scholar] [CrossRef]
- Xun, W.; Xiong, W.; Huang, T.; Ran, W.; Li, D.; Shen, Q.; Li, Q.; Zhang, R. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil. Appl. Soil Ecol. 2016, 100, 38–44. [Google Scholar] [CrossRef]
- Narendrula-Kotha, R.; Nkongolo, K.K. Microbial response to soil liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses. PLoS ONE 2017, 12, 0168497. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, X.-J. Effects of applying lime and calcium montmorillonite on nitrification dynamics in acidic soil. J. Agric. Resour. Environ. 2017, 34, 47–53. [Google Scholar] [CrossRef]
- Huber, C.; Baier, R.; Göttlein, A.; Weis, W. Changes in soil, seepage water and needle chemistry between 1984 and 2004 after liming an N-saturated Norway spruce stand at the Höglwald, Germany. For. Ecol. Manag. 2006, 233, 11–20. [Google Scholar] [CrossRef]
- Hardy, B.; Sleutel, S.; Dufey, J.E.; Cornelis, J.T. The Long-Term Effect of Biochar on Soil Microbial Abundance, Activity and Community Structure Is Overwritten by Land Management. Front. Environ. Sci. 2019, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Adekiya, A.O.; Agbede, T.M.; Olayanju, A.; Ejue, W.S.; Adekanye, T.A.; Adenusi, T.T.; Ayeni, J.F. Effect of Biochar on Soil Properties, Soil Loss, and Cocoyam Yield on a Tropical Sandy Loam Alfisol. Sci. World J. 2020, 2020, 9391630. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef] [Green Version]
- Mia, S.; Dijkstra, F.A.; Singh, B. Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium. Environ. Sci. Technol. 2017, 51, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.; Lee, S.S.; Awad, Y.M.; Yang, X.; Ryu, C.; Rizwan, M.; Rinklebe, J.; Tsang, D.C.; Ok, Y.S. Influence of soil properties and feedstocks on biochar potential for carbon mineralization and improvement of infertile soils. Geoderma 2018, 332, 100–108. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A.; Jalloh, M.B. Improving soil phosphorus availability and yield of Zea mays L. using biochar and compost derived from agro-industrial waste. Ital. J. Agron. 2019, 14, 1107. [Google Scholar] [CrossRef] [Green Version]
- Purakayastha, T.J.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H.; et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- Li, H.; Dong, X.; da Silva, E.B.; de Oliveira, L.M.; Chen, Y.; Ma, L.Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere 2017, 178, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Syuhada, A.B.; Shamshuddin, J.; Fauziah, C.I.; Rosenani, A.B.; Arifin, A. Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol. Can. J. Soil Sci. 2016, 96, 400–412. [Google Scholar] [CrossRef]
- Ullah, Z.; Akmal, M.; Ahmed, M.; Ali, M.; Jamali, A.Z. Effect of biochar on soil chemical properties and nutrient availability in sandstone and shale derived soils. J. Biol. Environ. Sci. 2018, 12, 96–103. Available online: http://www.innspub.net (accessed on 15 May 2021).
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; van Groenigen, J.W.; Bruce, A.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Mensah, A.K.; Frimpong, K.A. Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. Int. J. Agron. 2018, 2018, 6837404. [Google Scholar] [CrossRef] [Green Version]
- Piash, M.I.; Iwabuchi, K.; Itoh, T.; Uemura, K. Release of essential plant nutrients from manure- and wood-based biochars. Geoderma 2021, 397, 115100. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Shafi, M.I.; Beamont, E.; Anawar, H.M. Poultry litter biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture 2020, 10, 480. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Pow, D.; Dawson, K.; Rust, J.; Munroe, P.; Taherymoosavi, S.; Mitchell, D.R.G.; Robb, S.; Solaiman, Z.M. Biochar increases soil organic carbon, avocado yields and economic return over 4 years of cultivation. Sci. Total Environ. 2020, 724, 138153. [Google Scholar] [CrossRef] [PubMed]
- Schofield, H.K.; Pettitt, T.R.; Tappin, A.D.; Rollinson, G.K.; Fitzsimons, M.F. Biochar incorporation increased nitrogen and carbon retention in a waste-derived soil. Sci. Total Environ. 2019, 690, 1228–1236. [Google Scholar] [CrossRef]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Wallace, H. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wang, X.; Zhang, R. Decomposition temperature sensitivity of biochars with different stabilities affected by organic carbon fractions and soil microbes. Soil Tillage Res. 2019, 186, 322–332. [Google Scholar] [CrossRef]
- Zaidun, S.W.; Jalloh, M.B.; Awang, A.; Sam, L.M.; Besar, N.A.; Musta, B.; Ahmed, O.H.; Omar, L. Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). Eurasian J. Soil Sci. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Kumar, D.; Jhariya, N.A. Nutritional, medicinal and economical importance of corn: A mini- review. Res. J. Pharm. Sci. 2013, 2, 7–8. [Google Scholar] [CrossRef]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, L.; Li, Y.; Brookes, P.C.; Xu, J.; Luo, Y. The effects of combinations of biochar, lime, and organic fertilizer on nitrification and nitrifiers. Biol. Fertil. Soils 2017, 53, 77–87. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analysis of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Benton, J.J. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780429132117. [Google Scholar]
- Douglas, L.A.; Bremner, J.M. Extraction and colorimetric determination of urea in soils. Soil Sci. Soc. Am. 1970, 34, 859–862. [Google Scholar] [CrossRef]
- Schollenberger, C.J.; Simon, R.H. Determination of exchange capacity and exchangeable bases in soil-ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Elisa, A.A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application. Solid Earth 2016, 7, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.H. Soil and plant test. In Soil Sampling, Preparation, and Analysis, 2nd ed.; Tan, K.H., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 98–134. [Google Scholar]
- Ahmedna, M.; Marshall, W.E.; Rao, R.M. Production of granular activated carbon from select agricultural by-products and evaluation of their physical, chemical, and adsorption properties. Bioresour. Technol. 1998, 71, 113–123. [Google Scholar] [CrossRef]
- Cottenie, A. Soil testing and plant testing as a basis of fertilizer recommendation FAO. Soil Bull. 1980, 38, 70–73. [Google Scholar]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperature. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Pedram, K. Genetic Potential of Selected Sweet Corn Inbred Lines and Analysis of Their Combining Ability Assisted by Microsatellite DNA Markers. Ph.D. Thesis, Universiti Putra Malaysia, Selangor, Malaysia, 2012. [Google Scholar]
- Mosharrof, M.; Uddin, M.K.; Jusop, S.; Sulaiman, M.F.; Shamsuzzaman, S.M.; Haque, A.N.A. Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture 2021, 11, 219. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.G.; Feng, M.; Lin, S.; Malghani, S.; Ali, I.M. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agric. Ecosyst. Environ. 2010, 137, 294–307. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, L.; Cheng, H.; Yue, S.; Li, S. Effects of biochar application on CO2 emissions from a cultivated soil under semiarid climate conditions in Northwest China. Sustainability 2017, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Rabileh, M.A.; Shamshuddin, J.; Panhwar, Q.A.; Rosenani, A.B.; Anuar, A.R. Effects of biochar and/or dolomitic limestone application on the properties of Ultisol cropped to maize under glasshouse conditions. Can. J. Soil Sci. 2015, 95, 37–47. [Google Scholar] [CrossRef]
- Ashraf, M.; Waheed, A. 1990. Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant Soil 1990, 128, 167–176. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of Biochar on Chemical Properties of Acidic Soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Shi, R.Y.; Ni, N.; Nkoh, J.N.; Li, J.Y.; Xu, R.K.; Qian, W. Beneficial dual role of biochars in inhibiting soil acidification resulting from nitrification. Chemosphere 2019, 234, 43–51. [Google Scholar] [CrossRef]
- Eduah, J.O.; Nartey, E.K.; Abekoe, M.K.; Henriksen, S.W.; Andersen, M.N. Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. Environ. Technol. Innov. 2020, 17, 100572. [Google Scholar] [CrossRef]
- Hiemstra, T.; Mia, S.; Duhaut, P.B.; Molleman, B. Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate. Environ. Sci Technol. 2013, 47, 9182–9189. [Google Scholar] [CrossRef]
- Mia, S.; Singh, B.; Dijkstra, F.A. Chemically oxidized biochar increases ammonium-15 N recovery and phosphorus uptake in a grassland. Biol. Fertil. Soils 2019, 55, 577–588. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Naher, U.A.; Shamshuddin, J.; Ismail, M.R. Effects of biochar and ground magnesium limestone application, with or without bio-Fertilizer addition, on biochemical properties of an acid sulfate soil and rice yield. Agronomy 2020, 10, 1100. [Google Scholar] [CrossRef]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Zaibon, S.; Mosharrof, M. Assessing the increase in soil moisture storage capacity and nutrient enhancement of different organic amendments in paddy soil. Agriculture 2021, 11, 44. [Google Scholar] [CrossRef]
- Singh, A.; Singh, A.P.; Purakayastha, T.J. Characterization of biochar and their influence on microbial activities and potassium availability in an acid soil. Arch. Agron. Soil Sci. 2019, 65, 1302–1315. [Google Scholar] [CrossRef]
- Maru, A.; Haruna, A.O.; Asap, A.; Majid, N.M.A.; Maikol, N.; Jeffary, A.V. Reducing acidity of tropical acid soil to improve phosphorus availability and Zea mays L. Productivity through efficient use of chicken litter biochar and triple superphosphate. Appl. Sci. 2020, 10, 2127. [Google Scholar] [CrossRef] [Green Version]
- Gautam, D.K.; Bajracharya, R.M.; Sitaula, B.K. Effects of biochar and farm yard manure on soil properties and crop growth in an agroforestry system in the Himalaya. Sustain. Agric. Res. 2017, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Nigussie, A.; Kissi, E.; Misaganaw, M.; Ambaw, G. Effects of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in polluted soils. Am. Eurasian J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wary, B.; Karien, D. Impact of biochar amendments on the quality of typical midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Martinsen, V.; Schmidt, H.P.; Cornelissen, G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci. Total Environ. 2018, 625, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Ch’ng, H.Y.; Ahmed, O.H.; Majid, N.M.A. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments 649 Produced from Agroindustrial Wastes. Sci. World J. 2014, 2014, 506356. [Google Scholar] [CrossRef]
- Masud, M.M.; Abdulaha-Al Baquyb, M.; Akhtera, S.; Sena, R.; Barmana, A.; Khatuna, M.R. Liming effects of poultry litter de-612 rived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 2020, 202, 110865. [Google Scholar] [CrossRef] [PubMed]
- Abewa, A.; Yitaferu, B.; Selassie, Y.G.; Amare, T. The role of biochar on acid soil reclamation and yield of teff (Eragrostis tef (Zucc) Trotter) in Northwestern Ethiopia. J. Agric. Sci. 2014, 6, 1–12. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Berek, A.K.; Hue, N.V. Characterization of biochars and their use as an amendment to acid soils. Soil Sci. 2016, 181, 412–426. [Google Scholar] [CrossRef]
- Masulili, A.; Sudarso, J.K.Y.; Utomo, W.H.; Veteran, J.; Syechfani, M.S. Rice husk biochar for rice-based cropping system in acid soil. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. J. Agric. Sci. 2010, 2, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Steiner, C.; Teixeira, W.G.; Lehmann, J.; Nehls, T.; Vasconcelos de Macêdo, J.L.; Blum, W.E.H.; Zech, W. Long-term effect of manure, charcoal and mineral fertilization on crop production and fertility on highly weathered central amazonian upland soil. Plant Soil 2007, 291, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Xie, Q.; Shi, Q.; Li, M. Rice uptake and recovery of nitrogen with different methods of applying 15N-labeled chicken manure and ammonium sulphate. Plant Product. Sci. 2008, 11, 271–277. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of biochar from slow pyrolysis of paper mill waste on agronomic performance and soil fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Fuentes, J.P.; Bezdicek, D.F.; Flury, M.; Albrecht, S.; Smith, J.L. Microbial activity affected by lime in a long-term no-till soil. Soil Tillage Res. 2006, 88, 123–131. [Google Scholar] [CrossRef]
- Ahmad, W.; Singh, B.; Dijkstra, F.A.; Dalal, R.C. Inorganic and organic carbon dynamics in a limed acid soil are mediated by plants. Soil Biol. Biochem. 2013, 57, 549–555. [Google Scholar] [CrossRef]
- Ahmad, W.; Singh, B.; Dijkstra, F.A.; Dalal, R.C.; Geelan-Small, P. Temperature sensitivity and carbon release in an acidic soil amended with lime and mulch. Geoderma 2014, 214, 168–176. [Google Scholar] [CrossRef]
- Grover, S.P.; Butterly, C.R.; Wang, X.; Tang, C. The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biol. Fert. Soils 2017, 53, 431–443. [Google Scholar] [CrossRef]
- Mohan, D.; Abhishek, K.; Sarswat, A.; Patel, M.; Singh, P.; Pittman, C.U. Biochar production and applications in soil fertility and carbon sequestration—A sustainable solution to crop-residue burning in India. RSC Adv. 2018, 8, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Hamilton, S.K.; Kurzman, A.L.; Arango, C.; Jin, L.; Robertson, G.P. Evidence for carbon sequestration by agricultural liming. Glob. Biogeochem. Cycles 2007, 21, GB2021. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Watanabe, M.; Nagano, H.; Watanabe, K.; Yashima, M.; Inubushi, K. Effects of land-use type and nitrogen addition on nitrous oxide and carbon dioxide production potentials in Japanese Andosols. Soil Sci. Plant Nutr. 2013, 59, 790–799. [Google Scholar] [CrossRef]
- Wang, J.; Pan, X.; Liu, Y.; Zhang, X.; Xiong, Z. Effects of biochar amendment in two soils on greenhouse gas emissions and crop production. Plant Soil 2012, 360, 287–298. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gagnon, B.; Bertrand, N. In situ mineralization of dairy cattle manure as determined using soil-surface carbon dioxide fluxes. Soil Sci. Soc. Am. J. 2006, 70, 744–752. [Google Scholar] [CrossRef]
- Fidel, R.B.; Laird, D.A.; Parkin, T.B. Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Syst. 2019, 3, 8. [Google Scholar] [CrossRef] [Green Version]
Properties | Soil |
---|---|
Textural Class | Sandy clay loam |
% Sand | 69.27 |
% Silt | 2.28 |
% Clay | 28.44 |
pH | 4.61 ± 0.017 |
CEC (cmolc kg−1) | 5.77 ± 0.013 |
Total C (%) | 1.41 ± 0.009 |
Total N (%) | 0.07 ± 0.004 |
Total S (%) | 0.05 ± 0.004 |
Exchangeable K (cmolc kg−1) | 0.22 ± 0.016 |
Exchangeable Ca (cmolc kg−1) | 1.46 ± 0.013 |
Exchangeable Mg (cmolc kg−1) | 0.42 ± 0.018 |
Exchangeable Al (cmolc kg−1) | 2.49 ± 0.021 |
Available P (mg kg−1) | 5.21 ± 0.019 |
Extractable Fe (mg kg−1) | 99.44 ± 1.48 |
Extractable Mn (mg kg−1) | 4.64 ± 0.422 |
NH4-N (mg kg−1) | 16.41 ± 0.50 |
NO3-N (mg kg−1) | 11.37 ± 0.86 |
Treatment | pH | P (mg kg−1) | K (cmolc kg−1) | Ca (cmolc kg−1) | Mg (cmolc kg−1) | Al (cmolc kg−1) | Fe (mg kg−1) | Mn (mg kg−1) |
---|---|---|---|---|---|---|---|---|
T1 | 4.54 f ± 0.02 | 5.31 f ± 0.04 | 0.27 e ± 0.02 | 1.41 g ± 0.02 | 0.41 e ± 0.01 | 2.49 a ± 0.02 | 78.88 a ± 1.67 | 4.58 e ± 0.01 |
T2 | 4.58 f ± 0.03 | 5.66 e ± 0.04 | 0.42 d ± 0.03 | 1.54 f ± 0.02 | 0.44 e ± 0.01 | 2.45 a ± 0.02 | 78.71 a ± 1.57 | 4.66 e ± 0.02 |
T3 | 5.50 e ± 0.02 | 5.93 e ± 0.03 | 0.56 c ± 0.02 | 3.23 e ± 0.02 | 1.28 d ± 0.02 | 0.84 b ± 0.01 | 54.73 c ± 1.63 | 5.06 d ± 0.02 |
T4 | 6.16 a ± 0.01 | 11.03 b ± 0.06 | 1.41 a ± 0.03 | 4.21 a ± 0.02 | 1.55 ab ± 0.01 | 0.13 ef ± 0.01 | 46.10 d ± 1.15 | 6.05 a ± 0.03 |
T5 | 6.11 ab ± 0.02 | 11.04 b ± 0.07 | 1.42 a ± 0.02 | 4.06 bc ± 0.02 | 1.51 bc ± 0.02 | 0.08 f ± 0.01 | 47.48 d ± 1.74 | 6.08 a ± 0.03 |
T6 | 6.06 bc ± 0.02 | 12.58 a ± 0.11 | 1.37 ab ± 0.02 | 4.07 b ± 0.02 | 1.47 c ± 0.03 | 0.17 e ± 0.01 | 45.93 d ± 1.20 | 6.18 a ± 0.02 |
T7 | 6.03 bc ± 0.02 | 7.75 d ± 0.04 | 1.30 ab ± 0.03 | 4.00 bc ± 0.02 | 1.61 a ± 0.01 | 0.25 d ± 0.01 | 57.24 bc ± 1.39 | 5.46 c ± 0.03 |
T8 | 5.71 d ± 0.02 | 8.01 d ± 0.04 | 1.26 b ± 0.02 | 3.84 d ± 0.02 | 1.46 c ± 0.01 | 0.34 c ± 0.01 | 63.36 b ± 0.78 | 5.53 c ± 0.03 |
T9 | 6.00 c ± 0.01 | 8.82 c ± 0.06 | 1.33 ab ± 0.02 | 3.97 c ± 0.03 | 1.50 bc ± 0.02 | 0.16 e ± 0.01 | 54.37 c ± 0.99 | 5.79 b ± 0.04 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatment | Plant Height (cm) | Stem Diameter (cm) | Root Length (cm) | Dry Biomass (g) | Cob Length (cm) | Fresh Cob Weight (g) | No. of Grains per Cob | Cob Yield (t ha−1) |
---|---|---|---|---|---|---|---|---|
T1 | 172.65 c ± 1.95 | 1.50 f ± 0.06 | 49.44 c ± 2.44 | 24.45 ± 1.88 | 17.25 b ± 0.39 | 164.75 e ± 2.78 | 312.25 f ± 6.61 | 8.79 e ± 0.148 |
T2 | 184.08 bc ± 2.18 | 1.98 e ± 0.03 | 55.55 c ± 2.03 | 41.50 d ± 1.74 | 17.68 b ± 0.45 | 176.25 e ± 1.75 | 356.25 e ± 7.66 | 9.40 e ± 0.094 |
T3 | 193.75 b ± 3.33 | 2.26 d ± 0.02 | 63.11 bc ± 3.14 | 58.79 c ± 0.57 | 22.95 a ± 0.41 | 263.75 d ± 2.66 | 458.25 d ± 7.22 | 14.07 d ± 0.142 |
T4 | 228.11 a ± 1.61 | 2.62 b ± 0.02 | 80.41 a ± 4.00 | 86.63 a ± 2.37 | 23.35 a ± 0.39 | 283.75 ab ± 2.66 | 607.25 a ± 4.80 | 15.14 ab ± 0.141 |
T5 | 227.44 a ± 3.75 | 2.52 bc ± 0.03 | 89.05 a ± 2.13 | 90.90 a ± 2.57 | 23.08 a ± 0.43 | 285.25 ab ± 2.66 | 614.25 a ± 3.57 | 15.21 ab ± 0.142 |
T6 | 226.83 a ± 2.26 | 2.77 a ± 0.02 | 85.56 a ± 3.66 | 87.31 a ± 1.60 | 23.75 a ± 0.25 | 292.75 a ± 2.02 | 620.75 a ± 3.59 | 15.61 a ± 0.107 |
T7 | 218.23 a ± 1.96 | 2.55 bc ± 0.02 | 79.61 a ± 4.09 | 74.04 b ± 1.04 | 22.98 a ± 0.30 | 276.00 bc ± 2.08 | 538.75 c ± 4.11 | 14.72 bc ± 0.112 |
T8 | 221.29 a ± 3.93 | 2.45 c ± 0.03 | 77.66 ab ± 3.45 | 79.27 b ± 1.36 | 22.20 a ± 0.29 | 266.00 cd ± 2.35 | 481.00 d ± 5.82 | 14.19 cd ± 0.124 |
T9 | 217.26 a ± 1.78 | 2.59 b ± 0.02 | 79.03 a ± 3.13 | 72.85 b ± 1.02 | 22.83 a ± 0.48 | 283.75 ab ± 2.43 | 573.00 b ± 4.26 | 15.14 ab ± 0.130 |
Treatment | N (%) | P (%) | K (%) | Ca (%) | Mg (%) |
---|---|---|---|---|---|
T1 | 0.75 i ± 0.013 | 0.138 ef ± 0.009 | 0.32 i ± 0.004 | 0.10 f ± 0.008 | 0.053 f ± 0.005 |
T2 | 1.24 f ± 0.011 | 0.160 e ± 0.009 | 0.83 h ± 0.008 | 0.12 ef ± 0.005 | 0.060 ef ± 0.004 |
T3 | 1.03 g ± 0.006 | 0.123 f ± 0.005 | 0.98 g ± 0.009 | 0.13 e ± 0.005 | 0.070 e ± 0.004 |
T4 | 2.25 b ± 0.006 | 0.270 b ± 0.004 | 2.20 b ± 0.005 | 0.39 b ± 0.004 | 0.265 c ± 0.003 |
T5 | 2.14 c ± 0.004 | 0.243 c ± 0.003 | 1.88 d ± 0.005 | 0.37 b ± 0.004 | 0.288 b ± 0.003 |
T6 | 2.56 a ± 0.003 | 0.305 a ± 0.003 | 2.44 a ± 0.005 | 0.57 a ± 0.004 | 0.318 a ± 0.003 |
T7 | 2.07 d ± 0.005 | 0.263 bc ± 0.005 | 1.84 e ± 0.006 | 0.21 d ± 0.003 | 0.243 d ± 0.003 |
T8 | 2.14 c ± 0.004 | 0.208 d ± 0.003 | 1.60 f ± 0.004 | 0.24 c ± 0.003 | 0.248 d ± 0.003 |
T9 | 1.85 e ± 0.005 | 0.288 ab ± 0.005 | 1.97 c ± 0.006 | 0.23 cd ± 0.003 | 0.253 cd ± 0.003 |
Treatment | N (mg plant−1) | P (mg plant−1) | K (mg plant−1) | Ca (mg plant−1) | Mg (mg plant−1) |
---|---|---|---|---|---|
T1 | 182.50 i ± 3.36 | 34.04 g ± 1.42 | 77.93 i ± 1.22 | 24.73 i ± 0.98 | 13.02 i ± 0.75 |
T2 | 514.56 h ± 4.30 | 66.41 f ± 2.58 | 344.56 h ± 1.21 | 49.88 h ± 1.09 | 26.12 h ± 0.73 |
T3 | 604.24 g ± 3.12 | 73.12 f ± 1.78 | 576.033 g ± 0.99 | 77.81 g ± 1.05 | 40.96 g ± 0.74 |
T4 | 1905.44 c ± 5.43 | 227.16 b ± 2.27 | 1866.50 b ± 1.20 | 331.58 c ± 0.82 | 223.61 ± 0.98 |
T5 | 1945.95 b ± 3.18 | 220.87 b ± 1.85 | 1704.59 c ± 0.78 | 337.00 b ± 0.85 | 261.98 b ± 0.88 |
T6 | 2232.22 a ± 2.82 | 265.71 a ± 1.72 | 2133.19 a ± 1.56 | 498.33 a ± 0.92 | 277.57 a ± 0.43 |
T7 | 1531.46 e ± 3.95 | 194.78 d ± 1.87 | 1353.03 e ± 1.28 | 151.24 f ± 0.87 | 178.41 f ± 0.59 |
T8 | 1695.06 d ± 3.38 | 164.93 e ± 1.68 | 1265.99 f ± 1.13 | 187.80 d ± 0.87 | 196.78 d ± 1.06 |
T9 | 1345.91 f ± 3.48 | 208.08 c ± 2.04 | 1426.88 d ± 1.26 | 163.42 e ± 1.09 | 183.00 e ± 0.86 |
Parameters | pH | Av. P | Exch. K | Exch. Ca | Exch. Mg | Exch. Al | Exct. Fe | Exct. Mn | Plant Biomass | Root Length | Grain Yield | N Uptake | P Uptake | K Uptake | Ca Uptake | Mg Uptake | CO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | |||||||||||||||||
Av. P | −0.10 | ||||||||||||||||
Exch. K | 0.02 | 0.06 | |||||||||||||||
Exch. Ca | 0.20 | 0.05 | 0.25 | ||||||||||||||
Ex. Mg | 0.15 | −0.05 | −0.06 | 0.52 | |||||||||||||
Exch. Al | −0.18 | −0.37 | 0.06 | −0.14 | −0.43 | ||||||||||||
Exct. Fe | −0.26 | 0.21 | 0.18 | −0.12 | −0.08 | 0.07 | |||||||||||
Exct. Mn | −0.08 | 0.16 | −0.02 | 0.37 | −0.69 | −0.42 | −0.19 | ||||||||||
Plant biomass | −0.14 | 0.08 | 0.36 | −0.44 | 0.48 | 0.04 | −0.14 | 0.40 | |||||||||
Root length | 0.05 | 0.26 | 0.20 | −0.02 | 0.16 | 0.33 | −0.07 | 0.31 | −0.16 | ||||||||
Grain yield | −0.03 | 0.09 | −0.27 | 0.31 | −0.40 | −0.36 | −0.08 | −0.38 | 0.44 | 0.36 | |||||||
N uptake | −0.22 | −0.51 | −0.08 | 0.46 | −0.36 | −0.22 | 0.14 | −0.47 | 0.56 | 0.44 | −0.32 | ||||||
P uptake | 0.07 | −0.01 | 0.21 | −0.22 | −0.04 | 0.00 | −0.16 | −0.29 | −0.03 | 0.40 | 0.00 | −0.36 | |||||
K uptake | 0.17 | 0.53 | 0.12 | 0.01 | 0.21 | 0.39 | −0.01 | 0.39 | −0.23 | −0.59 | 0.16 | 0.73 | 0.69 | ||||
Ca uptake | 0.01 | 0.77 | −0.36 | −0.20 | 0.17 | 0.38 | −0.34 | −0.03 | −0.13 | −0.13 | 0.10 | 0.47 | −0.16 | −0.19 | |||
Mg uptake | 0.11 | 0.16 | 0.34 | −0.36 | 0.19 | −0.25 | 0.20 | 0.35 | −0.43 | −0.22 | 0.08 | 0.70 | 0.44 | −0.54 | 0.08 | ||
CO2 | −0.26 | −0.80 | 0.05 | 0.09 | 0.02 | −0.50 | 0.33 | 0.03 | −0.08 | 0.20 | 0.20 | −0.33 | 0.15 | 0.37 | 0.62 | −0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosharrof, M.; Uddin, M.K.; Sulaiman, M.F.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy 2021, 11, 1313. https://doi.org/10.3390/agronomy11071313
Mosharrof M, Uddin MK, Sulaiman MF, Mia S, Shamsuzzaman SM, Haque ANA. Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy. 2021; 11(7):1313. https://doi.org/10.3390/agronomy11071313
Chicago/Turabian StyleMosharrof, Mehnaz, Md. Kamal Uddin, Muhammad Firdaus Sulaiman, Shamim Mia, Shordar M. Shamsuzzaman, and Ahmad Numery Ashfaqul Haque. 2021. "Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil" Agronomy 11, no. 7: 1313. https://doi.org/10.3390/agronomy11071313
APA StyleMosharrof, M., Uddin, M. K., Sulaiman, M. F., Mia, S., Shamsuzzaman, S. M., & Haque, A. N. A. (2021). Combined Application of Biochar and Lime Increases Maize Yield and Accelerates Carbon Loss from an Acidic Soil. Agronomy, 11(7), 1313. https://doi.org/10.3390/agronomy11071313