Volume Rate Adjustment for Pesticide Applications against Aonidiella aurantii in Citrus: Validation of CitrusVol in the Growers’ Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plots
2.2. Experimental Design
2.3. Sprayers and Spray Applications
- Foliar density: Medium;
- Pruning level: Normal, Severe or Without pruning (based on Table 1);
- Pest/disease: Armored scales (California red scale, oleander scale…);
- Product: the active ingredient used in each case (see Table A1 of Appendix A).
2.4. Effects on Spray Distribution on the Canopy
2.5. Effects on Control of A. aurantii
2.5.1. Monitoring of A. aurantii Male Flight
2.5.2. Number of A. aurantii per Fruit
2.6. Economic and Environmental Advantages with CitrusVol
2.7. Data Analysis
3. Results
3.1. Effects on Spray Distribution on the Canopy
3.2. Effects on Control of A. aurantii
3.2.1. Monitoring of A. aurantii Male Flight
3.2.2. Number of A. aurantii per Fruit
3.3. Economic and Environmental Advantages with CitrusVol
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plot | Application Date | Commercial PPP | Active Ingredient |
---|---|---|---|
P1 | 27 May 2016 | Dursban 48 | Chlorpyrifos |
Promex | Pyriproxyfen | ||
27 July 2016 | Movento 150 O-Teq | Spirotetramat | |
7 June 2017 | Dursban 48 | Chlorpyrifos | |
8 September 2017 | Reldan E | Chlorpyrifos-methyl | |
P2 | 26 May 2016 | Dursban 48 | Chlorpyrifos |
Promex | Pyriproxyfen | ||
9 August 2016 | Movento 150 O-Teq | Spirotetramat | |
22 August 2017 | Movento 150 O-Teq | Spirotetramat | |
P3 | 9 June 2016 | Movento 150 O-Teq | Spirotetramat |
23 June 2017 | Movento 150 O-Teq | Spirotetramat | |
P4 | 31 May 2016 | Movento Gold | Spirotetramat |
26 June 2017 | Movento Gold | Spirotetramat | |
P5 | 31 May 2016 | Clorifos 48 EC | Chlorpyrifos |
Atominal 10 EC | Pyriproxyfen | ||
27 June 2017 | Movento Gold | Spirotetramat | |
P6 | 13 June 2016 | Dursban 48 | Chlorpyrifos |
Juvinal 10 EC | Pyriproxyfen | ||
12 August 2016 | Movento 150 O-Teq | Spirotetramat | |
P7 | 14 June 2016 | Dursban 48 | Chlorpyrifos |
Juvinal 10 EC | Pyriproxyfen | ||
11 August 2016 | Movento 150 O-Teq | Spirotetramat | |
30 June 2017 | Movento 150 O-Teq | Spirotetramat |
Plot | Coverage Evaluation | PPP Application | Date | Temperature (°C) | Relative Humidity (%) | Solar Irradiance (W/m2) | Wind Speed (m/s) | Wind Direction | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VC | VA | VC | VA | VC | VA | VC | VA | VC | VA | ||||
P1 | ● | ● | 27 May 2016 | 23 | 24 | 57 | 59 | 731 | 893 | 1.11 | 2.50 | SE-S | E |
● | 27 July 2016 | 25 | 27 | 63 | 67 | 337 | 474 | 0.56 | 1.39 | NW-N-NE | N | ||
● | ● | 7 June 2017 | 23 | 21 | 62 | 81 | 590 | 208 | 1.67 | 0.28 | NE | NW-SE | |
● | 8 September 2017 | 24 | 22 | 79 | 89 | 265 | 89 | 0.56 | 0.56 | N-E | NW-W-SE | ||
P2 | ● | ● | 26 May 2016 | 22 | 22 | 66 | 68 | 811 | 609 | 1.94 | 1.94 | E | E |
● | 9 August 2016 | 31 | 28 | 26 | 31 | 690 | 499 | 1.39 | 1.11 | SE | SE | ||
● | ● | 22 August 2017 | 28 | 24 | 52 | 64 | 546 | 310 | 1.11 | 0.28 | SE | W | |
P3 | ● | ● | 9 June 2016 | 26 | 26 | 58 | 58 | 902 | 721 | 1.94 | 1.67 | E-SE | E |
● | ● | 23 June 2017 | 29 | 27 | 50 | 50 | 712 | 353 | 1.39 | 0.28 | SE | SE-E | |
P4 | ● | ● | 31 May 2016 | 24 | 24 | 58 | 41 | 696 | 966 | 1.39 | 2.22 | NE-E | E |
● | ● | 26 June 2017 | 24 | 30 | 77 | 54 | 241 | 846 | 0.28 | 1.67 | SE-E | E-NE-N | |
P5 | ● | ● | 31 May 2016 | 23 | 24 | 42 | 41 | 748 | 910 | 1.67 | 1.67 | E | E |
● | 27 June 2017 | 30 | 30 | 50 | 55 | 604 | 395 | 0.56 | 1.39 | SE-E | E-NE | ||
● | 19 September 2017 | 25 | 19 | 51 | 88 | 694 | 209 | 1.39 | 0.56 | E-NE | SE-E | ||
P6 | ● | ● | 13 June 2016 | 33 | 32 | 27 | 29 | 909 | 828 | 1.39 | 1.11 | S-SE | W-SW |
● | 12 August 2016 | 23 | 22 | 72 | 79 | 323 | 236 | 0.56 | 0.56 | SW | W-S | ||
P7 | ● | ● | 14 June 2016 | 28 | 27 | 45 | 41 | 916 | 724 | 2.22 | 1.39 | SE-E | S-SE |
● | 11 August 2016 | 22 | 25 | 69 | 54 | 451 | 770 | 0.83 | 1.11 | SW-S | S-SE | ||
● | 30 June 2017 | 26 | 21 | 22 | 32 | 863 | 484 | 2.22 | 0.83 | W | SW-NW | ||
● | 4 August 2017 | 27 | 29 | 55 | 40 | 295 | 438 | 0.56 | 1.11 | SE-N-SW | E-SE-S |
References
- Tena, A.; Garcia-Marí, F. Current situation of citrus pests and diseases in the Mediterranean basin. IOBC Bull. 2011, 62, 365–368. [Google Scholar]
- Urbaneja, A.; Grout, T.G.; Gravena, S.; Wu, F.; Cen, Y.; Stansly, P.A. Citrus pests in a global world. In The Genus Citrus; Talón, M., Caruso, M., Gmitter, F.G., Jr., Eds.; Elsevier: Amsterdam, The Netherlands; Woodhead Publishing: Sawston, UK, 2020; pp. 333–348. [Google Scholar]
- Walker, G.P.; Richards, C.B.; Jones, W.G.; Aitken, D.C.G. Toxicity of five insecticides used to control California red scale (Homoptera: Diaspididae) against susceptible red scale strains. J. Econ. Entomol. 1991, 84, 17–24. [Google Scholar] [CrossRef]
- Alfaro, F.; Cuenca, F.J.; Esquiva, M. Problemática actual del piojo rojo de California en la Comunidad Valenciana. Comunidad Valencia. Agrar. 2003, 13, 21–28. (In Spanish) [Google Scholar]
- Vanaclocha, P.; Urbaneja, A.; Verdú, M.J. Mortalidad natural del piojo rojo de California, Aonidiella aurantii, en cítricos de la Comunidad Valenciana y sus parasitoides asociados. Bol. San. Veg. Plagas 2009, 35, 59–71. (In Spanish) [Google Scholar]
- Grafton-Cardwell, E.E.; Faber, B.A.; Haviland, D.R.; Kallsen, C.E.; Morse, J.G.; O’Connell, N.V.; Phillips, P.A.; Adaskaveg, J.E.; Becker, J.O.; Lovatt, C.J.; et al. UC IPM Pest Management Guidelines Citrus; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 2019; Available online: http://ipm.ucanr.edu/PMG/selectnewpest.citrus.html (accessed on 7 April 2021).
- CABI. Aonidiella aurantii. In Invasive Species Compendium; CAB International: Wallingford, UK, 2021; Available online: https://www.cabi.org/isc/datasheet/5849 (accessed on 7 April 2021).
- Garcia-Marí, F. Biología y control del “poll roig” de California en los cítricos valencianos. Phytoma España 2003, 153, 120–123. (In Spanish) [Google Scholar]
- Campos-Rivela, J.M.; Martínez-Ferrer, M.T.; Fibla-Queralt, J.M. Population dynamics and seasonal trend of California red scale (Aonidiella aurantii Maskell) in citrus in Northern Spain. Span. J. Agric. Res. 2012, 10, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo, M.E.; Garcia-Marí, F.; Rodríguez-Reina, J.M.; Olmeda, T. Colonization of growing fruit by the armored scales Lepidosaphes beckii, Parlatoria pergandii and Aonidiella aurantii (Hom., Diaspididae). J. Appl. Entomol. 2004, 128, 569–575. [Google Scholar] [CrossRef]
- MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente). Gestión Integrada de Plagas de Cítricos; Centro de Publicaciones del MAGRAMA: Madrid, Spain, 2014; p. 159. (In Spanish) [Google Scholar]
- Forster, L.D.; Luck, R.F.; Grafton-Cardwell, E.E. Life Stages of California Red Scale and Its Parasitoids; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1995. [Google Scholar]
- Moreno, D.S.; Luck, R.F. Augmentative releases of Aphytis melinus (Hymenoptera: Aphelinidae) to suppress California redscale (Homoptera: Diaspididae) in southern California lemon orchards. J. Econ. Entomol. 1992, 85, 1112–1119. [Google Scholar] [CrossRef]
- Tena, A.; Pekas, A.; Cano, D.; Wäckers, F.L.; Urbaneja, A. Sugar provisioning maximizes the biocontrol service of parasitoids. J. Appl. Ecol. 2015, 52, 795–804. [Google Scholar] [CrossRef]
- Bouvet, J.P.R.; Urbaneja, A.; Pérez-Hedo, M.; Monzó, C. Contribution of predation to the biological control of a key herbivorous pest in citrus agroecosystems. J. Anim. Ecol. 2019, 88, 915–926. [Google Scholar] [CrossRef]
- Vacas, S.; Alfaro, C.; Navarro-Llopis, V.; Primo, J. The first account of the mating disruption technique for the control of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae) using new biodegradable dispensers. Bull. Entomol. Res. 2009, 99, 415–423. [Google Scholar] [CrossRef]
- Vacas, S.; Alfaro, C.; Navarro-Llopis, V.; Primo, J. Mating disruption of California red scale, Aonidiella aurantii Maskell (Homoptera: Diaspididae), using biodegradable mesoporous pheromone dispensers. Pest Manag. Sci. 2010, 66, 745–751. [Google Scholar] [CrossRef]
- Levitin, E.; Cohen, E. The involvement of acetylcholinesterase in resistance of the California red scale Aonidiella aurantii to organophosphorus pesticides. Entomol. Exp. Appl. 1998, 88, 115–121. [Google Scholar] [CrossRef]
- Grafton-Cardwell, E.E.; Ouyang, Y.; Striggow, R.A.; Christiansen, J.A.; Black, C.S. Role of esterase enzymes in monitoring for resistance of California red scale, Aonidiella aurantii (Homoptera: Diaspididae), to organophosphate and carbamate insecticides. J. Econ. Entomol. 2004, 97, 606–613. [Google Scholar] [CrossRef]
- Cunningham, G.P.; Harden, J. Sprayers to reduce spray volumes in mature citrus trees. Crop Prot. 1999, 18, 275–281. [Google Scholar] [CrossRef]
- Garcerá, C. Racionalización de las Aplicaciones de Productos Fitosanitarios para el Control de Aonidiella aurantii Maskell (Hemiptera: Diaspididae) en Cítricos. Ph.D. Thesis, Universitat Politècnica de València, Valencia, Spain, 30 July 2013. (In Spanish). [Google Scholar]
- Garcerá, C.; Ouyang, Y.; Scott, S.; Moltó, E.; Grafton-Cardwell, E.E. Effects of spirotetramat on California red scale, Aonidiella aurantii (Homoptera: Diaspididae), and its parasitoid, Aphytis melinus (Hymenopera: Aphelinidae). J. Econ. Entomol. 2013, 105, 2126–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcerá, C.; Moltó, E.; Chueca, P. Factors influencing the efficacy of two organophosphate insecticides in controlling California red scale, Aonidiella aurantii (Maskell). A basis for reducing spray application volume in Mediterranean conditions. Pest Manag. Sci. 2014, 70, 28–38. [Google Scholar] [CrossRef]
- Chueca, P.; Grafton-Cardwell, E.E.; Moltó, E. Influence of spray equipment and water volume on coverage of citrus and control of citricola scale, Coccus pseudomagnoliarum (Hemiptera: Coccidae) with mineral oil. J. Econ. Entomol. 2009, 102, 296–303. [Google Scholar] [CrossRef]
- Stansly, P.A.; Qureshi, J.A.; Kostyk, B.C. Effect of spray volume and sprayer type on efficacy of insecticides for control of Asian citrus psyllid and citrus leafminer on oranges: 2010. Arthrop. Manag. Tests 2011, 36, D16. [Google Scholar] [CrossRef]
- Salyani, M.; McCoy, C.W.; Hedden, S.L. Spray volume effects on deposition and citrus rust mite control. In Pesticide Formulations and Application Systems; Hovde, D., Beestman, G., Eds.; ASTM International: West Conshohocken, PA, USA, 1989; Volume 8, pp. 254–263. [Google Scholar]
- McCoy, C.W.; Lye, B.H.; Salyani, M. Spray volume and acaricide rate effects on the control of the citrus rust mite. Proc. Fla. State Hort. Soc. 1989, 102, 36–40. [Google Scholar]
- Fonte, A.; Garcerá, C.; Tena, A.; Chueca, P. CitrusVol Validation for the Adjustment of Spray Volume in Treatments Against Tetranychus urticae in Clementines. Agronomy 2020, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Silva Junior, G.J.; Scapin, M.S.; Silva, F.P.; Silva, A.R.P.; Behlau, F.; Ramos, H.H. Spray volume and fungicide rates for citrus black spot control based on tree canopy volume. Crop Prot. 2016, 85, 38–45. [Google Scholar] [CrossRef]
- Scapin, M.S.; Behlau, F.; Scandelai, L.H.M.; Fernandes, R.S.; Silva Junior, G.J.; Ramos, H.H. Tree-row-volume-based sprays of copper bactericide for control of citrus canker. Crop Prot. 2015, 77, 119–126. [Google Scholar] [CrossRef]
- Humann-Guilleminot, S.; Binkowski, Ł.J.; Jenni, L.; Hilke, G.; Glauser, G.; Helfenstein, F. A nationwide survey of neonicotinoid insecticides in agricultural land with implications for agrienvironment schemes. J. Appl. Ecol. 2019, 56, 1502–1514. [Google Scholar] [CrossRef]
- EU. European Green Deal. 2021. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal (accessed on 7 April 2021).
- Byers, R.E. Tree-row-volume spraying rate calculator for apples. HortScience 1987, 22, 506–507. [Google Scholar]
- Siegfried, W.; Holliger, E.; Raisigl, U. Eine neue methode zur bestimmung der brühe- und präparatemenge im obstbau. Schweiz. Z. Obs. Weinbau 1995, 6, 144–147. (In German) [Google Scholar]
- Viret, O.; Siegfried, W.; Wohlhauser, R.; Raisigl, U. Dosage des fongicides en fonction du volume foliaire de la vigne. Revue Suisse Vitic. Arboric. Hortic. 2005, 37, 59–62. (In French) [Google Scholar]
- Gil, E.; Campos, J.; Ortega, P.; Llop, P.; Gras, A.; Armengol, E.; Salcedo, R.; Gallart, M. DOSAVIÑA: Tool to calculate the optimal volume rate and pesticide amount in vineyard spray applications based on a modified leaf wall area method. Comput. Electron. Agric. 2019, 160, 117–130. [Google Scholar] [CrossRef]
- Garcerá, C.; Fonte, A.; Moltó, E.; Chueca, P. Sustainable use of pesticide applications in citrus: A support tool for volume rate adjustment. Int. J. Environ. Res. Public Health 2017, 14, 715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda-Fuentes, A.; Godoy-Nieto, A.; Gamarra-Diezma, J.L.; Rodríguez-Lizana, A.; González-Sánchez, E.J.; Lara del Río, F.; Bejarano-Cabanás, J.M.; Román-Vázquez, J.; Blanco-Roldán, G.L.; Gil-Ribes, J.A. New developments to help farmers correctly dosing pesticides in olive orchards. In Proceedings of the SuproFruit 2019—the 15th Workshop on Spray Application and Precision Technology in Fruit Growing, West Malling, UK, 16–18 July 2019; Available online: https://www.emr.ac.uk/wp-content/uploads/2019/07/26-Miranda.pdf (accessed on 7 April 2021).
- Planas, S.; Roman, C.; Sanz, R.; Rosell, J.R. A proposal for dose expression & dose adjustment in the EU-Southern Zone—DOSA3D system. In Proceedings of the EPPO Workshop on Harmonized Dose Expression for the Zonal Evaluation of Plant Protection Products in High Growing Crops, Vienna, Austria, 18–20 October 2016. [Google Scholar]
- Garcerá, C.; Moltó, E.; Chueca, P. Effect of spray volume of two organophosphate pesticides on coverage and mortality of Aonidiella aurantii Maskell. Crop Prot. 2011, 30, 693–697. [Google Scholar] [CrossRef]
- Garcerá, C.; Moltó, E.; Zarzo, M.; Chueca, P. Modelling the spray deposition and efficacy of two mineral oil-based products for the control of California red scale, Aonidiella aurantii (Maskell). Crop Prot. 2012, 31, 78–84. [Google Scholar] [CrossRef]
- Chueca, P.; Garcerá, C.; Moltó, E. CitrusVol, Racionalización de los Tratamientos Fitosanitarios en Cítricos; IVIA: Valencia, Spain, 2021; Available online: https://citrusvol.com (accessed on 7 April 2021). (In Spanish)
- Albert, F.; Aleixos, N.; Blasco, J.; Cubero, S. Food Color Inspector. 2013. Available online: http://www.cofilab.com/registered-software/ (accessed on 7 April 2021).
- DOGV (Diari Oficial de la Generalitat Valenciana). RESOLUCIÓN de 12 de Marzo de 2017 del Director General de Agricultura, Ganadería y Pesca, por la que Se Establecen las Normas para la Producción Integrada en Cítricos, en el Ámbito de la Comunitat Valenciana; Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural: Valencia, Spain, 2017; pp. 18275–18301. (In Spanish) [Google Scholar]
- Fernández, M.A. Instituto Valenciano de Investigaciones Agrarias; Personal Communication: Valencia, Spain, 2021. [Google Scholar]
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Plataforma de Conocimiento para el Medio Rural y Pesquero—Observatorio de Tecnologías Probadas—Maquinaria Agrícola—Atomizadores (Pulverizadores Hidroneumáticos)—Costes. Available online: https://www.mapa.gob.es/es/ministerio/servicios/informacion/Atomizador_tcm30-58257.xls (accessed on 18 June 2021). (In Spanish).
- GEOPORTAL (Geoportal de Hidrocarburos). Available online: https://geoportalgasolineras.es (accessed on 18 June 2021).
- Generalitat de Catalunya. Guía Práctica para el Cálculo de Emisiones de Gases de Efecto Invernadero (GEI). Versión 2011; Generalitat de Catalunya, Comisión Interdepartamental del Cambio Climático: Barcelona, Spain, 2011; p. 66. (In Spanish) [Google Scholar]
- Grafton-Cardwell, E.E.; Reagan, C. California red scale insecticide efficacy trial, 2007. Arthropod Manag. Tests 2009, 34, D3. [Google Scholar] [CrossRef]
- Derksen, R.C.; Zhu, H.; Fox, R.D.; Brazee, R.D.; Krause, C.R. Coverage and drift produced by air induction and conventional hydraulic nozzles used for orchard applications. Trans. ASABE 2007, 50, 1493–1501. [Google Scholar] [CrossRef]
- Jamar, L.; Mostade, O.; Huyghebaert, B.; Pigeon, O.; Lateur, M. Comparative performance of recycling tunnel and conventional sprayers using standard and drift-mitigating nozzles in dwarf apple orchards. Crop Prot. 2010, 29, 561–566. [Google Scholar] [CrossRef]
- Garcerá, C.; Román, C.; Moltó, E.; Abad, R.; Insa, J.A.; Torrent, X.; Planas, S.; Chueca, P. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part II. Effects on canopy spray distribution, control efficacy of Aonidiella aurantii (Maskell), beneficial parasitoids and pesticide residues on fruit. Crop Prot. 2017, 94, 83–96. [Google Scholar] [CrossRef] [Green Version]
- EU. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; Official Journal of the European Union, European Commission: Brussels, Belgium, 2009; Available online: https://eur-lex.europa.eu/eli/reg/2009/1107/2019-07-15 (accessed on 7 April 2021).
- Mironet, V. Compilation Questionnaires “Dose expression”. Southern zone: France, Spain, Portugal, Greece, Italy and Croatia. Presented at EPPO Workshop on Harmonized Dose Expression for the Zonal Evaluation of Plant Protection Products in High Growing Crops, Vienna, Austria, 18–20 October 2016; Available online: https://www.eppo.int/MEETINGS/2016_meetings/wk_dose_expression (accessed on 17 June 2021).
- Cunningham, G.P.; Harden, J. Reducing spray volumes applied to mature citrus trees. Crop Prot. 1998, 17, 289–292. [Google Scholar] [CrossRef]
- Mateu, G.; Caballero, P.; Torregrosa, A.; Segura, B.; Juste, F.; Chueca, P. Análisis de la influencia de las operaciones de cultivo sobre los costes de producción en la citricultura de la Comunidad Valenciana. Levante Agrícola Rev. Int. Cítricos 2018, 440, 60–64. (In Spanish) [Google Scholar]
- SIAR (Sistema de Información Agroclimática para el Regadío de la Conselleria Valenciana d’Agricultura, Pesca, Alimentació i Aigua y el Ministerio de Agricultura, Pesca y Alimentación). Available online: http://riegos.ivia.es/ (accessed on 7 April 2021). (In Spanish).
Plot | Area (ha) | Planting Pattern 1 (m) | Vegetation Density 2 (m2/m3) | Year | Canopy Dimensions 3 (m) | Canopy Volume 4 (m3) | TRV 5 (m3/ha) | Pruning Level |
---|---|---|---|---|---|---|---|---|
P1 | 1.6 | 6 × 3 | 13.56 | 2016 | 2.51 × 4.33 × 3.08 | 17.53 | 18,114 | Normal |
2017 | 2.60 × 4.03 × 3.05 | 16.73 | 17,463 | |||||
P2 | 0.8 | 7 × 2 | 11.56 | 2016 | 2.12 × 4.26 × 2.30 | 10.88 | 12,902 | Normal |
2017 | 2.04 × 3.70 × 2.19 | 8.66 | 10,783 | |||||
P3 | 1.7 | 6.5 × 5 | 10.36 | 2016 | 2.15 × 3.39 × 3.34 | 12.75 | 11,213 | Severe |
2017 | 1.93 × 3.10 × 3.16 | 9.90 | 9205 | |||||
P4 | 2 | 5.5 × 5 | 14.55 | 2016 | 2.38 × 4.28 × 4.57 | 24.37 | 18,521 | Normal |
2017 | 2.19 × 4.17 × 4.40 | 20.99 | 16,604 | |||||
P5 | 2.2 | 6 × 2 | 13.46 | 2016 | 1.99 × 2.93 × 1.96 | 5.98 | 9718 | Without pruning |
2017 | 2.08 × 2.85 × 2.10 | 6.50 | 9880 | Normal | ||||
P6 | 1 | 6.5 × 2.5 | 15.09 | 2016 | 2.47 × 3.90 × 2.60 | 13.11 | 14,820 | Normal |
P7 | 2.7 | 6.5 × 3.5 | 17.94 | 2016 | 2.45 × 4.84 × 3.70 | 22.97 | 18,243 | Severe |
2017 | 2.43 × 4.74 × 3.72 | 22.49 | 17,720 | Normal |
Plot | Year | Airblast Sprayer | Tank Capacity (L) | Number of Nozzles | Trademark and Model of Nozzles | Type of Fan | Fan Diameter (cm) | Air-Jet Emission System |
---|---|---|---|---|---|---|---|---|
P1 & P2 | 2016 & 2017 | Ilemo-Hardi Arrow XF90 | 1500 | 38 | Hardi 1553 | Axial | 92 | Circular |
P3 | 2016 & 2017 | Mañez y Lozano Twister | 2000 | 30 | Albuz TVI | Axial | 92 | Triangular |
P4 & P5 | 2016 | Marisan Duplex Tornado | 2000 | 36 | Albuz AMT | Double (axial and inverted) | 90 | Circular |
2017 | Fede Futur | 1000 | 26 | TeeJet Disc-Core | Axial | 90 | Circular | |
P6 & P7 | 2016 & 2017 | Fede Futur | 3000 | 26 | Hardi 1553 | Axial | 90 | Circular |
Plot | Application Date | Working Pressure (bar) | Forward Speed (km/h) | Air Flow Rate (m3/h) | Number of Open Nozzles | Water Volume (L/ha) | Spray Volume Reduction and PPP Saving (%) | ||
---|---|---|---|---|---|---|---|---|---|
VC | VA | VC | VA | ||||||
P1 | 27 May 2016 | 8 | 1.32 | 55,342 | 38 | 30 | 4905 | 3255 | 33.64 |
27 July 2016 | 8 | 1.32 | 55,342 | 38 | 30 | 4905 | 3255 | 33.64 | |
7 June 2017 | 8 | 1.32 | 74,894 | 38 | 30 | 4899 | 3487 | 28.82 | |
8 September 2017 | 8 | 1.32 | 74,894 | 38 | 30 | 4899 | 3153 | 35.64 | |
P2 | 26 May 2016 | 8 | 1.32 | 55,342 | 38 | 28 | 4204 | 2800 | 33.40 |
9 August 2016 | 8 | 1.32 | 55,342 | 38 | 28 | 4204 | 2800 | 33.40 | |
22 August 2017 | 8 | 1.32 | 74,894 | 38 | 30 | 4199 | 2070 | 50.70 | |
P3 | 9 June 2016 | 13 | 1.75 | 101,248 | 26 | 18 | 3264 | 2294 | 29.72 |
23 June 2017 | 13 | 2.01 | 46,467 | 26 | 18 | 3395 | 1461 | 56.97 | |
P4 | 31 May 2016 | 9 | 1.92 | 54,828 | 34 | 14 | 7311 | 3011 | 58.82 |
26 June 2017 | 10 | 1.96 | 69,385 | 26 | 18 | 4262 | 2998 | 29.66 | |
P5 | 31 May 2016 | 9 | 1.92 | 54,828 | 34 | 18 | 6702 | 1737 | 74.08 |
27 June 2017 | 10 | 1.96 | 69,385 | 24 | 16 | 3674 | 1811 | 50.71 | |
P6 | 13 June 2016 | 8 | 1.53 | 89,268 | 26 | 22 | 3201 | 2535 | 20.81 |
12 August 2016 | 8 | 1.48 | 89,268 | 26 | 22 | 3318 | 2628 | 20.80 | |
P7 | 14 June 2016 | 8 | 1.53 | 89,268 | 26 | 26 | 3468 | 3065 | 11.62 |
11 August 2016 | 8 | 1.48 | 89,268 | 26 | 26 | 3595 | 3177 | 11.63 | |
30 June 2017 | 10 | 1.42 | 82,644 | 26 | 26 | 3932 | 3290 | 16.33 |
Plot | Application Date | Water Volume (L/ha) | Sprayer Tank Capacity (L) | Tank Refill Time 1 (h) | Number of Tanks/ha | Time Savings of Tank Refill (h/ha) | Number of Tanks/10 ha | Time Savings of Tank Refill (h/10 ha) | Number of Tanks/100 ha | Time Savings of Tank Refill (h/100 ha) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VC | VA | VC | VA | VC | VA | VC | VA | |||||||
P1 | 27 May 2016 | 4905 | 3255 | 1500 | 0.27 | 4 | 3 | 0.27 | 33 | 22 | 2.96 | 327 | 217 | 29.58 |
27 July 2016 | 4905 | 3255 | 4 | 3 | 0.27 | 33 | 22 | 2.96 | 327 | 217 | 29.58 | |||
7 June 2017 | 4899 | 3487 | 4 | 3 | 0.27 | 33 | 24 | 2.42 | 327 | 233 | 25.28 | |||
8 September 2017 | 4899 | 3153 | 4 | 3 | 0.27 | 33 | 22 | 2.96 | 327 | 211 | 31.20 | |||
P2 | 26 May 2016 | 4204 | 2800 | 1500 | 0.30 | 3 | 2 | 0.30 | 29 | 19 | 2.98 | 281 | 187 | 28.02 |
9 August 2016 | 4204 | 2800 | 3 | 2 | 0.30 | 29 | 19 | 2.98 | 281 | 187 | 28.02 | |||
22 August 2017 | 4199 | 2070 | 3 | 2 | 0.30 | 28 | 14 | 4.17 | 280 | 138 | 42.33 | |||
P3 | 9 June 2016 | 3264 | 2294 | 2000 | 0.34 | 2 | 2 | 0.00 | 17 | 12 | 1.68 | 164 | 115 | 16.51 |
23 June 2017 | 3395 | 1461 | 2 | 1 | 0.34 | 17 | 8 | 3.03 | 170 | 74 | 32.34 | |||
P4 | 31 May 2016 | 7311 | 3011 | 2000 | 0.35 | 4 | 2 | 0.70 | 37 | 16 | 7.33 | 366 | 151 | 75.06 |
26 June 2017 | 4262 | 2998 | 1000 | 0.25 | 5 | 3 | 0.50 | 43 | 30 | 3.25 | 427 | 300 | 31.74 | |
P5 | 31 May 2016 | 6702 | 1737 | 2000 | 0.39 | 4 | 1 | 1.17 | 34 | 9 | 9.77 | 336 | 87 | 97.36 |
27 June 2017 | 3674 | 1811 | 1000 | 0.29 | 4 | 2 | 0.58 | 37 | 19 | 5.25 | 368 | 182 | 54.27 | |
P6 | 13 June 2016 | 3201 | 2535 | 3000 | 0.46 | 2 | 1 | 0.46 | 11 | 9 | 0.93 | 107 | 85 | 10.19 |
12 August 2016 | 3318 | 2628 | 2 | 1 | 0.46 | 12 | 9 | 1.39 | 111 | 88 | 10.65 | |||
P7 | 14 June 2016 | 3468 | 3065 | 3000 | 0.42 | 2 | 2 | 0.00 | 12 | 11 | 0.42 | 116 | 103 | 5.42 |
11 August 2016 | 3595 | 3177 | 2 | 2 | 0.00 | 12 | 11 | 0.42 | 120 | 106 | 5.84 | |||
30 June 2017 | 3932 | 3290 | 2 | 2 | 0.00 | 14 | 11 | 1.25 | 132 | 110 | 9.17 |
Plot | Application Date | Cost Savings of PPP Application Service 1 (€/ha) | Cost Savings of Fuel Consumption (€/ha) | CO2 Emission Reduction of Diesel B (kg CO2/ha) | Cost Savings of PPP Application Service 1 (€/10 ha) | Cost Savings of Fuel Consumption (€/10 ha) | CO2 Emission Reduction of Diesel B (kg CO2/10 ha) | Cost Savings of PPP Application Service 1 (€/100 ha) | Cost Savings of Fuel Consumption (€/100 ha) | CO2 Emission Reduction of Diesel B (kg CO2/100 ha) |
---|---|---|---|---|---|---|---|---|---|---|
P1 | 27 May 2016 | 6.12 | 1.60 | 5.09 | 67.37 | 17.60 | 55.95 | 673.70 | 175.99 | 559.48 |
27 July 2016 | 6.12 | 1.60 | 5.09 | 67.37 | 17.60 | 55.95 | 673.70 | 175.99 | 559.48 | |
7 June 2017 | 6.12 | 1.60 | 5.09 | 55.12 | 14.40 | 45.78 | 575.71 | 150.39 | 478.10 | |
8 September 2017 | 6.12 | 1.60 | 5.09 | 67.37 | 17.60 | 55.95 | 710.45 | 185.59 | 590.00 | |
P2 | 26 May 2016 | 7.09 | 1.85 | 5.89 | 70.88 | 18.52 | 58.86 | 666.29 | 174.05 | 553.32 |
9 August 2016 | 7.09 | 1.85 | 5.89 | 70.88 | 18.52 | 58.86 | 666.29 | 174.05 | 553.32 | |
22 August 2017 | 7.09 | 1.85 | 5.89 | 99.23 | 25.92 | 82.41 | 1006.52 | 262.93 | 835.87 | |
P3 | 9 June 2016 | 0.00 | 0.00 | 0.00 | 41.84 | 10.93 | 34.75 | 410.06 | 107.12 | 340.53 |
23 June 2017 | 8.37 | 2.19 | 6.95 | 75.32 | 19.67 | 62.55 | 803.38 | 209.86 | 667.17 | |
P4 | 31 May 2016 | 17.54 | 4.58 | 14.57 | 184.19 | 48.12 | 152.96 | 1885.79 | 492.62 | 1566.06 |
26 June 2017 | 11.00 | 2.87 | 9.13 | 71.47 | 18.67 | 59.35 | 698.20 | 182.39 | 579.83 | |
P5 | 31 May 2016 | 30.46 | 7.96 | 25.29 | 253.82 | 66.30 | 210.78 | 2528.02 | 660.39 | 2099.41 |
27 June 2017 | 13.76 | 3.59 | 11.43 | 123.83 | 32.35 | 102.83 | 1279.54 | 334.25 | 1062.60 | |
P6 | 13 June 2016 | 12.53 | 3.27 | 10.40 | 25.06 | 6.55 | 20.81 | 275.63 | 72.00 | 228.90 |
12 August 2016 | 12.53 | 3.27 | 10.40 | 37.59 | 9.82 | 31.21 | 288.16 | 75.27 | 239.30 | |
P7 | 14 June 2016 | 0.00 | 0.00 | 0.00 | 11.01 | 2.88 | 9.14 | 143.11 | 37.38 | 118.85 |
11 August 2016 | 0.00 | 0.00 | 0.00 | 11.01 | 2.88 | 9.14 | 154.12 | 40.26 | 127.99 | |
30 June 2017 | 0.00 | 0.00 | 0.00 | 33.03 | 8.63 | 27.43 | 242.18 | 63.27 | 201.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonte, A.; Garcerá, C.; Tena, A.; Chueca, P. Volume Rate Adjustment for Pesticide Applications against Aonidiella aurantii in Citrus: Validation of CitrusVol in the Growers’ Practice. Agronomy 2021, 11, 1350. https://doi.org/10.3390/agronomy11071350
Fonte A, Garcerá C, Tena A, Chueca P. Volume Rate Adjustment for Pesticide Applications against Aonidiella aurantii in Citrus: Validation of CitrusVol in the Growers’ Practice. Agronomy. 2021; 11(7):1350. https://doi.org/10.3390/agronomy11071350
Chicago/Turabian StyleFonte, Alberto, Cruz Garcerá, Alejandro Tena, and Patricia Chueca. 2021. "Volume Rate Adjustment for Pesticide Applications against Aonidiella aurantii in Citrus: Validation of CitrusVol in the Growers’ Practice" Agronomy 11, no. 7: 1350. https://doi.org/10.3390/agronomy11071350
APA StyleFonte, A., Garcerá, C., Tena, A., & Chueca, P. (2021). Volume Rate Adjustment for Pesticide Applications against Aonidiella aurantii in Citrus: Validation of CitrusVol in the Growers’ Practice. Agronomy, 11(7), 1350. https://doi.org/10.3390/agronomy11071350