The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit
Abstract
:1. Introduction
1.1. Mineral Components
1.2. Bioactive Compounds, Dietary Fibers and Antioxidants
2. Biofortification Strategy
2.1. Food Fortification
2.2. Agricultural Practices
2.2.1. Fertilizers Application to Enrich the Nutrient’s Content in SGC Grains
2.2.2. Increasing Micronutrient’s Concentration in SGC Grains on Depleted Soils
3. Plant Breeding Strategy
3.1. Conventional Plant Breeding
3.1.1. Studying of SGC Genetic Resources to Find Sources for Biofortification Breeding Programs
3.1.2. Development of Biofortified SGC Cultivars under Irrigated and Non-Irrigated Conditions
3.2. Genetic Biofortification
4. Micronutrient Bioavailability and Safety
5. Studying Collections of Plant Genetic Resources for Biofortification Purposes
5.1. Collections of SGC Plant Genetic Resources and Biofortification Strategy
5.2. The Potential of VIR Collection of Oat Genetic Resources in Biofortification Strategy
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mid-term review of the UN Decade of Action on Nutrition. Available online: https://www.who.int/news-room/detail/12-03-2020-mid-term-review-of-the-un-decade-of-action-on-nutrition (accessed on 10 August 2020).
- WHO. Available online: https://www.who.int/docs/default-source/nutritionlibrary/departmental-news/mid-term-review---un-decade-of-action-on-nutrition/nutrition-decade-mtr-foresight-paper-ru.pdf?sfvrsn=9c3e3836_6 (accessed on 10 August 2020).
- Global Nutrition Report 2020 Stresses Equity Focus to Address Rising Malnutrition. Available online: https://www.harvestplus.org/knowledge-market/in-the-news/global-nutrition-report-2020-stresses-equity-focus-address-rising (accessed on 15 August 2020).
- Welch, R.M.; Graham, R.D. Breeding crops for enhanced micronutrient content. Plant Soil 2002, 245, 205–214. [Google Scholar] [CrossRef]
- World Health Organization. 1999. Available online: http://www.who.int/nut/malnutritionworldwide.htm (accessed on 20 August 2020).
- Panasenko, L.M.; Kartseva, T.V.; Nefedova, Z.V.; Zadorina-Khutornaya, E.V. Role of the main mineral substances in the child nutrition. Russ. Bull. Perinatol. Pediatrics 2018, 63, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Science 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Vitamin and Mineral Requirements in Human Nutrition Second Edition Vitamin and Mineral Requirements in Human Nutrition: World Health Organization and Food and Agriculture Organization of the United Nations; World Health Organization: Geneva, Switzerland, 2004; 362p. [Google Scholar]
- Loskutov, I.G.; Polonskiy, V.I. Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder (Review). Agric. Biol. 2017, 52, 646–657. [Google Scholar] [CrossRef]
- Polonskiy, V.; Loskutov, I.; Sumina, A. Biological role and health benefits of antioxidant compounds in cereals. Biol. Commun. 2020, 65, 53–67. [Google Scholar] [CrossRef]
- Thies, F.; Masson, L.; Boffetta, P.; Kris-Etherton, P. Oats and CVD risk markers: A systematic literature review. Br. J. Nutr. 2014, 112, S19–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebrov, V.G.; Gromova, O.A. Vitamins, Macro- and Micronutrients; GEOTAR-Media: Moscow, Russia, 2008; 960p. [Google Scholar]
- Mehri, A. Trace Elements in Human Nutrition (II)—An Update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar] [PubMed]
- Ermakov, V.V.; Tyutikov, S.F.; Safonov, V.A. Biogeochemical Indication of Microlementoses; RAS: Moscow, Russia, 2018; 386p, ISBN 978-5-906906-91-5. [Google Scholar]
- FAO. Biotechnology in Food and Agriculture. 2000. Available online: http://www.fao.org/biotech/c14doc.htm (accessed on 15 August 2020).
- World Health Organization and Food and Agriculture Organization of the United Nations. Global Health Risks. 2009. Available online: https://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_report_full.pdf (accessed on 15 August 2020).
- Konikowska, K.; Mandecka, A. Trace Elements in Human Nutrition. In Recent Advances in Trace Elements; Wiley: Hoboken, NJ, USA, 2018; pp. 339–372. [Google Scholar]
- Díaz, J.R.; Cagigas, A.D.L.; Rodríguez, R. Micronutrient deficiencies in developing and affluent countries. Eur. J. Clin. Nutr. 2003, 57, S70–S72. [Google Scholar] [CrossRef] [PubMed]
- Underwood, B.A. From research to global reality: The micronutrient story. J. Nutr. 1998, 128, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.S.; Nadeem, M.T.; Khan, M.K.I.; Shabir, R. Oat: Unique among the cereals. Eur. J. Nutr. 2008, 47, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, K.; Saliou, C.; Wallo, W. Nutrient-Rich Botanicals in Skin Health: Focus on Avena sativa. In Bioactive Dietary Factors and Plant Extracts in Dermatology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 153–168. [Google Scholar]
- Collins, F.W. Oat phenolics: Avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J. Agric. Food Chem. 1989, 37, 60–66. [Google Scholar] [CrossRef]
- Okazaki, Y.; Isobe, T.; Iwata, Y.; Matsukawa, T.; Matsuda, F.; Miyagawa, H.; Ishihara, A.; Nishioka, T.; Iwamura, H. Metabolism of avenanthramide phytoalexins in oats. Plant J. 2004, 39, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, R.; Dimberg, L.; Germeier, C.U.; Berardo, N.; Locatelli, S.; Guerrini, L. Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm. Euphytica 2016, 207, 273–292. [Google Scholar] [CrossRef]
- Leonova, S.; Gnutikov, A.; Loskutov, I.; Blinova, E.; Gustafsson, K.-E.; Olsson, O. Diversity of avenanthramide content in wild and cultivated oats. Proc. Appl. Bot. Genet. Breed. 2020, 181, 30–47. [Google Scholar] [CrossRef]
- Tripathi, V.; Singh, A.; Ashraf, M.T. Avenanthramides of Oats: Medicinal Importance and Future Perspectives. Pharmacogn. Rev. 2018, 12, 66–71. [Google Scholar] [CrossRef]
- Perrelli, A.; Goitre, L.; Salzano, A.M.; Moglia, A.; Scaloni, A.; Retta, S.F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxidative Med. Cell. Longev. 2018, 2018, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Shao, J.; Gao, Y.; Chen, C.; Yao, D.; Chu, Y.F.; Johnson, J.; Kang, C.; Yeo, D.; Ji, L.L. Absorption and Elimination of Oat Avenanthramides in Humans after Acute Consumption of Oat Cookies. Oxidative Med. Cell. Longev. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Marmouzi, I.; Ezzat, S.M. The Pharmacology of Avenanthramides: Polyphenols. In Polyphenols in Human Health and Disease, 2nd ed.; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: Salt Lake City, UT, USA, 2018; pp. 3–13. [Google Scholar]
- Turrini, E.; Maffei, F.; Milelli, A.; Calcabrini, C.; Fimognari, C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Sci. 2019, 20, 4536. [Google Scholar] [CrossRef] [Green Version]
- Maliarova, M.; Mrazova, V.; Havrlentova, M.; Sokol, J. Optimization of Parameters for Extraction of Avenanthramides from Oat (Avena sativa L.) Grain Using Response Surface Methodology (RSM). J. Braz. Chem. Soc. 2015, 26, 2369–2378. [Google Scholar]
- Ishihara, A.; Kojima, K.; Fujita, T.; Yamamoto, Y.; Nakajima, H. New series of avenanthramides in oat seed. Biosci. Biotechnol. Biochem. 2014, 78, 1975–1983. [Google Scholar] [CrossRef]
- Pridal, A.A.; Böttger, W.; Ross, A.B. Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chem. 2018, 253, 93–100. [Google Scholar] [CrossRef] [PubMed]
- De Bruijn, W.J.C.; van Dinteren, S.; Gruppen, H.; Vincken, J.-P. Mass spectrometric characterisation of avenanthramides and enhancingtheir production by germination of oat (Avena sativa). Food Chem. 2019, 277, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Tang, Y.; Yang, J.; Idehen, E.; Sang, S. Avenanthramide Aglycones and Glucosides in Oat Bran: Chemical Profile, Levels in Commercial Oat Products, and Cytotoxicity to Human Colon Cancer Cells. J. Agric. Food Chem. 2018, 66, 8005–8014. [Google Scholar] [CrossRef]
- Jágr, M.; Dvořáček, V.; Čepková, P.Y.; Doležalová, J. Comprehensive Analysis of Oat Avenanthramides Using Hybrid Quadrupole-Orbitrap Mass Spectrometry: Possible Detection of New Compounds. Rapid Commun. Mass Spectrom. 2018, 34, e8718. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.M.; Martha, J.; Hahn, M.J.; Emmons, C.L. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002, 79, 473–478. [Google Scholar] [CrossRef]
- Yang, J.; Oub, B.; Wise, M.L.; Chu, Y.-F. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chem. 2014, 160, 338–345. [Google Scholar] [CrossRef]
- Wang, P.; Chen, H.; Zhu, Y.; McBride, J.; Fu, J.; Sang, S. Oat Avenanthramide-C (2c) Is Biotransformed by Mice and the Human Microbiota into Bioactive Metabolites. J. Nutr. 2015, 145, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Milbury, P.E.; Kwak, H.-K.; Collins, F.W.; Samuel, P.; Jeffrey, B.; Blumberg, J.B. Avenanthramides and Phenolic Acids from Oats Are Bioavailable and Act Synergistically with Vitamin C to Enhance Hamster and Human LDL Resistance to Oxidation. J. Nutr. 2004, 134, 1459–1466. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wang, L.; Wang, R.; Luo, X.; Li, Y.; Li, J.; Li, Y.; Chen, Z. Phenolic contents, cellular antioxidant activity and anti-proliferativ capacity of different varieties of oats. Food Chem. 2018, 239, 260–267. [Google Scholar] [CrossRef]
- Darakhshan, S.; Pour, A.B. Tranilast: A review of its therapeutic applications. Pharmacol. Res. 2015, 291, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Emmons, C.; Peterson, D.M. Antioxidant Activity and Phenolic Content of Oat as Affected by Cultivar and Location. Crop Sci. 2001, 41, 1676–1681. [Google Scholar] [CrossRef]
- Li, X.-p.; Li, M.-y.; Ling, A.-j.; Hu, X.-z.; Ma, Z.; Liu, L.; Li, Y.-x. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. J. Cereal Sci. 2017, 73, 130–137. [Google Scholar] [CrossRef]
- Gómez-Galera, S.; Rojas, E.; Sudhakar, D.; Zhu, C.; Pelacho, A.; Capell, T.; Christou, P. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2009, 19, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Konarev, A.V.; Khoreva, V.I. Biochem. Stud. Plant Genet. Resour. VIR; VIR: St. Petersburg, Russia, 2000; 91p. [Google Scholar]
- Chwil, S. A study on the effects of foliar feeding under different soil fertilization conditions on the yield structure and quality of common oat (Avena sativa L.). Acta Agrobot. 2014, 67, 109–120. [Google Scholar] [CrossRef] [Green Version]
- Lalani, B.; Bechoff, A.; Bennett, B. Which Choice of Delivery Model(s) Works Best to Deliver Fortified Foods? Nutrients 2019, 11, 1594. [Google Scholar] [CrossRef] [Green Version]
- Shah, J.; Syed, B.; Jian-bin, Z.; Quan, X.-y.; Essa, A.; Noor, M.; Zhang, G.-p. Nitrogen (N) metabolism related enzyme activities, cell ultrastructure and nutrient contents as affected by N level and barley genotype. J. Integr. Agric. 2017, 16, 190–198. [Google Scholar] [CrossRef]
- Janmohammadi, M.; Shahryar, N.S.; Mojtaba, D. Investigation of foliar application of nano-micronutrientfertilizers and nano-titanium dioxide on some traits of barley. Nouraein Biol. 2016, 62, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Gluhovtsev, V.V.; Sanina, N.V.; Apalikov, A.A. Foliar Application of Nutrients for Spring Barley Cultivation in Arid Conditions of Middle Volga. Russ. Agric. Sci. 2016, 42, 121–123. [Google Scholar] [CrossRef]
- Savin, T.V.; Abugalieva, A.I.; Cakmak, I.; Savin, E.V. Barley varieties resources on the Fe content in the grain characterization. Proc. Appl. Bot. Genet. Breed. 2013, 171, 81–85. [Google Scholar]
- Khaghani, S. The effects of micro elements of iron and zinc on morphological characteristics of mycorrhized barley (Hordeum vulgare L.). J. Crop Ecophysiol. 2016, 10, 339–351. [Google Scholar]
- Tang, F.H.M.; Maggi, F. Breakdown, uptake and losses of human urine chemical compounds in barley (Hordeum vulgare) and soybean (Glycine max) agricultural plots. Nutr. Cycl. Agroecosyst. 2016, 104, 221–245. [Google Scholar] [CrossRef]
- Oliveira, S.; Tavares, L.C.; Lemes, E.S.; Brunes, A.P.; Dias, I.L.; Meneghello, G.E. Seed treatment of Avena sativa L. with zinc: Physiological quality and performance of initial plans. Semin. Ciências Agrárias 2014, 35, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Behzad, S.; Rengel, Z.; Li, C. Quantitative trait loci (QTL) of seed Zn accumulation in barley population Clipper X Sahara. J. Plant Nutr. 2015, 38, 1672–1684. [Google Scholar]
- Shivay, Y.S.; Prasad, R.; Pal, M. Effect of Sources, Methods and Time of Application of Zinc on Productivity, Zinc Uptake and Use Efficiency of Oats (Avena Sativa L.) Under Zinc Defficient Condition. J. Plant Nutr. 2015, 38, 1372–1382. [Google Scholar] [CrossRef]
- Gomez-Coronado, F.; Poblaciones, M.J.; Almeida, A.S.; Cakmak, I. Zinc (Zn) concentration of bread wheat grown under Mediterranean conditions as affected by genotype and soil/foliar Zn application. Plant Soil 2016, 401, 331–346. [Google Scholar] [CrossRef]
- Doehlert, D.C.; Simsek, S.; Thavarajah, D.; Thavarajah, P.; Ohm, J.-B. Detailed Composition Analyses of Diverse Oat Genotype Kernels Grown in Different Environments in North Dakota. Cereal Chem. 2013, 90, 572–578. [Google Scholar] [CrossRef]
- Jastrebova, J.; Skoglund, M.; Nilsson, J.; Dimberg, L.H. Selective and sensitive LC-MS determination of avenanthramides in oats. Chromatographia 2006, 63, 419–423. [Google Scholar] [CrossRef]
- Chu, Y.-F.; Wise, M.L.; Gulvady, A.A.; Chang, T.; Kendra, D.F.; van Klinken, B.J.-W.; Shi, Y.; O’Shea, M. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats. Food Chem. 2013, 139, 426–431. [Google Scholar] [CrossRef]
- Tong, L.; Liu, L.; Zhong, K.; Wang, Y.; Guo, L.; Zhou, S. Effects of Cultivar on Phenolic Content and Antioxidant Activity of Naked Oat in China. J. Integr. Agric. 2014, 13, 1809–1816. [Google Scholar] [CrossRef]
- Ortiz-Robledo, F.; Villanueva-Fierro, I.; Omaha, B.D.; Lares-Asef, I.; Proal-Nájera, J.B.; Návar-Chaidez, J. Avenanthramides and nutritional components of Four mexican oat (Avena sativa L.) Varieties. Agrociencia 2013, 47, 225–232. [Google Scholar]
- Multari, S.; Pihlava, J.-M.; Ollennu-Chuasam, P.; Hietaniemi, V.; Yang, B.; Suomela, J.-P. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat (Avena sativa L.) from Finland. J. Agric. Food Chem. 2018, 66, 2900–2908. [Google Scholar] [CrossRef] [Green Version]
- Allwood, J.W.; Xu, Y.; Martinez Martin, P.; Palau, R.; Cowan, A.; Goodacre, R.; Marshall, A.; Stewart, D.; Howarth, C. Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen supplementation in oats. Metabolomics 2019, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinga, J.; Johnsonb, J.; Chub, Y.F.; Fenga, H. Enhancement of γ-aminobutyric acid, avenanthramides, and other healthpro-moting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019, 283, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Kaura, J.; Whitson, A.; Ashton, J.; Katopo, L.; Kasapis, S. Effect of ultra-high temperature processing and storage conditions on phenolic acid, avenanthramide, free fatty acid and volatile profiles from Australian oat grains. Bioact. Carbohydr. Diet. Fibre 2018, 15, 21–29. [Google Scholar] [CrossRef]
- Soycan, G.; Schär, M.Y.; Kristek, A.; Boberska, J.; Alsharif, S.N.; Corona, G.; Shewry, P.R.; Spencer, J.P. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chem. 2019, 3, 100047. [Google Scholar] [CrossRef]
- Abugalieva, A.I.; Abugalieva, S.I.; Quarri, S.A.; Turuspekov, E.K.; Chakmak, I.; Savin, T.V.; Ganeev, V.A. Fe, Zn and S content in doubled haploid lines of Chinese spring × SQ1 wheat population. Vavilov J. Genet. Breed. 2012, 16, 894–901. [Google Scholar]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for increasing the content and bioa-vailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- AlOmari, D.Z.; Eggert, K.; Von Wirén, N.; Alqudah, A.M.; Polley, A.; Plieske, J.; Ganal, M.W.; Pillen, K.; Röder, M. Identifying Candidate Genes for Enhancing Grain Zn Concentration in Wheat. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Swamy, B.; Kaladhar, K.; Anuradha, K.; Batchu, A.K.; Longvah, T.; Sarla, N. QTL Analysis for Grain Iron and Zinc Concentrations in Two, O. nivara Derived Backcross Populations. Rice Sci. 2018, 25, 197–207. [Google Scholar] [CrossRef]
- Guerinot, M.L. Micronutrients: Supplementing seeds with zinc. Nat. Plants 2016, 2, 16060. [Google Scholar] [CrossRef]
- Xue, W.T.; Gianinetti, A.; Wang, R.; Zhan, Z.J.; Yan, J.; Jiang, Y.; Fahima, T.; Zhao, G.; Cheng, J.P. Characterizing Barley Seed Macro- and Micro-nutrients under Multiple Environmental Conditions. Cereal Res. Commun. 2016, 44, 639–649. [Google Scholar] [CrossRef] [Green Version]
- Velu, G.; Singh, R.P.; Crespo-Herrera, L.; Juliana, P.; Dreisigacker, S.; Valluru, R.; Stangoulis, J.; Sohu, V.S.; Mavi, G.S.; Mishra, V.K.; et al. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortifcation in CIMMYT wheat breeding. Sci. Rep. 2018, 8, 13526. [Google Scholar] [CrossRef]
- George, T.S.; French, A.; Brown, L.K.; Karley, A.J.; White, P.; Ramsay, L.; Daniell, T. Genotypic variation in the ability of landraces and commercial cereal varieties to avoid manganese deficiency in soils with limited manganese availability: Is there a role for root-exuded phytases? Physiol. Plant. 2014, 151, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Raboy, V. Progress in Breeding Low Phytate Crops. J. Nutr. 2002, 132, 503S–505S. [Google Scholar] [CrossRef] [PubMed]
- Brinch-Pedersen, H.; Hatzack, F.; Stöger, E.; Arcalis, E.; Pontopidan, K.; Holm, P.B. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): Deposition pattern, thermostability, and phytate hydroslysis. J. Agric. Food Chem. 2006, 54, 4624–4632. [Google Scholar] [CrossRef] [PubMed]
- Lucca, P.; Hurrell, R.; Potrykus, I. Fighting Iron Deficiency Anemia with Iron-Rich Rice. J. Am. Coll. Nutr. 2002, 21, 184S–190S. [Google Scholar] [CrossRef]
- Morris, J.; Nakata, P.A.; McConn, M.; Brock, A.; Hirschi, K.D. Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol. Biol. 2007, 64, 613–618. [Google Scholar] [CrossRef]
- Tanhuanpää, P.; Kalendar, R.; Schulman, A.H.; Kiviharju, E. A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome 2007, 50, 588–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detterbeck, A.; Pongrac, P.; Rensch, S.; Reuscher, S.; Pečovnik, M.; Vavpetič, P.; Pelicon, P.; Holzheu, S.; Krämer, U.; Clemens, S. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. New Phytol. 2016, 211, 1241–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pošćić, F.; Mattiello, A.; Fellet, G.; Miceli, F.; Marchiol, L. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels. Int. J. Environ. Res. Public Health 2016, 13, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, J.E.; Fernández, J.M.; Puschenreiter, M.; Williams, P.N.; Plaza, C. Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agric. Ecosyst. Environ. 2016, 219, 171–178. [Google Scholar] [CrossRef]
- Ishikawa, S.; Fujimaki, S. Route and Regulation of Zinc, Cadmium, and Iron Transport in Rice Plants (Oryza sativa L.) during Vegetative Growth and Grain Filling: Metal Transporters, Metal Speciation, Grain Cd Reduction and Zn and Fe Biofortification. Int. J. Mol. Sci. 2015, 16, 19111–19129. [Google Scholar]
- Masuda, H.; Usuda, K.; Kobayashi, T.; Ishimaru, Y.; Kakei, Y.; Takahashi, M.; Higuchi, K.; Nakanishi, H.; Mori, S.; Nishizawa, N.K. Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2009, 2, 155–166. [Google Scholar] [CrossRef] [Green Version]
- Goto, F.; Yoshihara, T.; Shigemoto, N.; Toki, S.; Takaiwa, F. Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 1999, 17, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, S.; Ishimaru, Y.; Igura, M.; Kuramata, M.; Abe, T.; Senoura, T.; Hase, Y.; Arao, T.; Nishizawa, N.K.; Nakanishi, H. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc. Natl. Acad. Sci. USA 2012, 109, 19166–19171. [Google Scholar] [CrossRef] [Green Version]
- Konarev, A.V.; Loskutov, I.G.; Shelenga, T.V.; Horeva, V.I.; Konarev, A.V. Plant genetic resources as an inexhaustible source of healthy food products. Agrar. Russ. 2019, 2, 38–48. [Google Scholar]
- Ma, J.F.; Higashitani, A.; Sato, K.; Takeda, K. Genotypic variation in Fe concentration of barley grain. Soil Sci. Plant Nutr. 2004, 50, 1115–1117. [Google Scholar] [CrossRef]
- Raj, M.S.P.; Vyakaranahal, B.S. Effect of integrated nutrient and micronutrients treatment on plant growth pa-rameters in oat cultivar (Avena sativa L.). Int. J. Plant Sci. 2014, 9, 397–400. [Google Scholar]
- Kaur, S.; Bhardwaj, R.D.; Kapoor, R.; Greval, S.K. Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT Food Sci. Technol. 2019, 110, 32–39. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Rines, H.W. Avena, L. In The Book Wild Crop Relatives: Genomic and Breeding Resources, Cereals; Kole, C., Ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; p. 109. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Shelenga, T.V.; Konarev, A.V.; Shavarda, A.L.; Blinova, E.V.; Dzubenko, N.I. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena, L.). Russ. J. Genet. Appl. Res. 2017, 7, 501–508. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Shelenga, T.V.; Konarev, A.V.; Khoreva, V.I.; Shavarda, A.L.; Blinova, E.V.; Gnutikov, A.A. Biochemical aspects of interactions between fungi and plants: A case study of Fusarium in oats. Agric. Biol. 2019, 54, 575–588. [Google Scholar] [CrossRef]
- Loskutov, I.G.; Shelenga, T.V.; Konarev, A.V.; Vargach, Y.I.; Porokhovinova, E.A.; Blinova, E.V.; Gnutikov, A.A.; Rodionov, A.V. Modern approach of structuring the variety diversity of the naked and covered forms of cultural oats (Avena sativa L.). Ecol. Genet. 2020, 18, 27–41. [Google Scholar]
- Leonova, S.; Shelenga, T.; Hamberg, M.; Konarev, A.V.; Loskutov, I.; Carlsson, A.S. Analysis of Oil Composition in Cultivars and Wild Species of Oat (Avena sp.). J. Agric. Food Chem. 2008, 56, 7983–7991. [Google Scholar] [CrossRef]
- Konarev, A.V.; Shelenga, T.V.; Perchuk, I.N.; Blinova, E.V.; Loskutov, I.G. Characteristic of oat diversity (genus Avena, L.) from the collection of N. I. Vavilov All-Russia Research Institute of Plants—an initial material for oat Fusarium resistance selection. Agrar. Russ. 2015, 5, 2–10. [Google Scholar]
- Bityutskii, N.P.; Yakkonen, K.; Loskutov, I. Content of iron, zinc and manganese in grains of Triticum aestivum, Secale cereale, Hordeum vulgare and Avena sativa cultivars registered in Russia. Genet. Resour. Crop Evol. 2017, 64, 1955–1961. [Google Scholar] [CrossRef]
- Bityutskii, N.P.; Loskutov, I.; Yakkonen, K.; Konarev, A.; Shelenga, T.; Khoreva, V.; Blinova, E.; Ryumin, A. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil content and fatty acid composition in whole grains. Cereal Res. Commun. 2019, 48, 87–94. [Google Scholar] [CrossRef]
- Nizova, G.K.; Yarosh, N.P. The effect of presowing seed treatment with succinic acid on the quality of oat green biomass and grain. Sci. Tech. Bull. N.I. Vavilov All Russ. Res. Inst. Plant Ind. 1988, 184, 17–20. [Google Scholar]
- Nizova, G.K.; Rodionova, N.A. Quality of naked oat cultivars in the Northwest of the Non-Black-Earth Zone of Russia. Bull. Appl. Bot. Genet. Plant Breed. 1986, 107, 40–45. [Google Scholar]
- Yarosh, N.P.; Nizova, G.P. Oil and fatty acid content in grain of common and Byzantine oats. Sci. Tech. Bull. N.I. Vavilov All Russ. Res. Inst. Plant Ind. 1988, 180, 18–23. [Google Scholar]
- Yarosh, N.P.; Nizova, G.K.; Rodionova, N.A. Variability of biochemical characters in common oat cultivars depending on nature and climate zones of cultivation. Sci. Tech. Bull. N.I. Vavilov All Russ. Res. Inst. Plant Ind. 1988, 180, 3–9. [Google Scholar]
Nutrient | Recommended Daily Intake |
---|---|
Selenium | 6–42 µg/day |
Iodine | 90–200 µg/day |
Iron | 4–65 mg/day |
Zinc | 72–457 mg/kg body weight/day |
Кальций | 300–1000 mg/day |
Vitamin A | 180–400 µg/day |
Vitamin B1 | 0,2–1.5 mg/day |
Vitamin B2 | 0.3–1.6 mg/day |
Vitamin B6 | 0.1–2 mg/day |
Vitamin C | 25–70 mg/day |
Vitamin E | 7–10 mg/day |
Folic acid | 80–500 µg/day |
Food Fortification | Agronomic Strategy | Plant Breeding Strategy | |
---|---|---|---|
Conventional | Genetic Technologies-Based Breeding Approaches | ||
Enrichment of dairy products: bread, milk, salt, wheat flour, etc. with essential nutrients Supplements of micronutrient and vitamins (pharmacological preparations of micronutrient and vitamins) | Mineral fertilization foliar and soil mineral fertilizing | Using of the genetic variability for the development of micronutrient-enhanced crop varieties | Molecular Breeding marker-assisted breeding Genetic Engineering direct genes introduction into breeding varieties |
Oat varieties, Cultivars, Oat Products | Avenanthramide’s Amounts |
---|---|
European A. sativa cultivars and A. byzantine cultivars | total AVA: up to 3.0 g /kg [24] |
North American A. sativa cultivars | total AVA: 18.3–163.4 mg/g [61] |
Chinese naked oat cultivars | total AVA: 3.73–71.85 mg/g DW [62] |
Chinese hulled oat cultivars (cv ‘Longyan 3’; cv ‘Beiyan 1’) | total AVA: 5.01–146.94 μg/g [41] total AVA: 146.94 μg/g [41] total AVA: 120.95 μg/g [41] |
Chinese 29 naked and 10 hulled cultivars - » - - » - - » - naked cv. ‘Bayou 9(reproduced in Gansu region of China) naked cv. ‘Bayou 9 (reproduced in other regions of China) | total AVA: 22.1–471.2 mg/kg [44] AVA C: 6.24–136.20 mg/kg [44] AVA A: 6.07–112.25 mg/kg [44] AVA B: 7.26–222.77 mg/kg [44] total AVA: 471.2 mg/kg [44] total AVA: 48.2 to 190.8 mg/kg [44] |
Mexican A. sativa cultivars (modified cv. ‘Avemex’) | total AVA: 1.8–9.9 mg/kg [63] total AVA: 9.9 mg/kg [63] |
Finnish hulled oats: cv. ‘Avetron’ cv. ‘Viviana’ | total AVA: 26.7 mg/kg [64] total AVA: 185 mg/kg [64] AVA C: 39.2 mg/kg [64] AVA A: 29.6 mg/kg [64] AVA B: 21.9 mg/kg [64] |
A. sativa cultivars (cv. ‘Shadow’ (Canada); ‘Valiant’ (Netherlands); ‘Atego’ (Czech Republic) reproduced in Czechia | total AVA: over 250 mg/kg DW [36] |
160 wild and cultivated Avena accessions reproduced in Russia: A. sterilis A. insularis and A. longiglumis A. sativa | total AVA: 4–1825 mg/kg WW [25] total AVA: nearly 2 mg/kg WW [25] total AVA: 600–700 mg/kg WW [25] total AVA: 551.35 mg/kg WW [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shelenga, T.V.; Kerv, Y.A.; Perchuk, I.N.; E. Solovyeva, A.; Khlestkina, E.K.; G. Loskutov, I.; Konarev, A.V. The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit. Agronomy 2021, 11, 1420. https://doi.org/10.3390/agronomy11071420
Shelenga TV, Kerv YA, Perchuk IN, E. Solovyeva A, Khlestkina EK, G. Loskutov I, Konarev AV. The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit. Agronomy. 2021; 11(7):1420. https://doi.org/10.3390/agronomy11071420
Chicago/Turabian StyleShelenga, Tatyana V., Yulia A. Kerv, Irina N. Perchuk, Alla E. Solovyeva, Elena K. Khlestkina, Igor G. Loskutov, and Alexey V. Konarev. 2021. "The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit" Agronomy 11, no. 7: 1420. https://doi.org/10.3390/agronomy11071420
APA StyleShelenga, T. V., Kerv, Y. A., Perchuk, I. N., E. Solovyeva, A., Khlestkina, E. K., G. Loskutov, I., & Konarev, A. V. (2021). The Potential of Small Grains Crops in Enhancing Biofortification Breeding Strategies for Human Health Benefit. Agronomy, 11(7), 1420. https://doi.org/10.3390/agronomy11071420