Using Quinine as a Fluorescent Tracer to Estimate Overland Flow Velocities on Bare Soil: Proof of Concept under Controlled Laboratory Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Setups
2.2. Soil and Surface Morphology
2.3. Tracers
2.3.1. Dye Tracer
2.3.2. Quinine Fluorescent Tracer
2.3.3. Thermal Tracer
2.4. Video Recording Systems
2.5. Laboratory Procedure and Image Processing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, V.P. Handbook of Applied Hydrology; McGraw-Hill Education: New York, NY, USA, 2017; 1440p. [Google Scholar]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Leibundgut, C.; Maloszewski, P.; Külls, C. Tracers in Hydrology; Wiley-Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Tauro, F.; Aureli, M.; Porfiri, M.; Grimaldi, S. Characterization of Buoyant Fluorescent Particles for Field Observations of Water Flows. Sensors 2010, 10, 11512–11529. [Google Scholar] [CrossRef] [Green Version]
- de Lima, J.L.M.P.; Abrantes, J.R.C.B. Using a thermal tracer to estimate overland and rill flow velocities. Earth Surf. Process. Landf. 2014, 30, 1293–1300. [Google Scholar] [CrossRef]
- Mujtaba, B.; de Lima, J.L.M.P. Laboratory testing of a new thermal tracer for infrared-based PTV technique for shallow overland flows. Catena 2018, 169, 69–79. [Google Scholar] [CrossRef]
- Jodeau, M.; Hauet, A.; Paquier, A.; Le Coz, J.; Dramais, G. Application and evaluation of LS-PIV technique for the monitoring of river surface velocities in high flow conditions. Flow Meas. Instrum. 2008, 19, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, J.; Moruzzi, R.; Silveira, A.; de Lima, J.L. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple-tracer approach. J. Hydrol. 2018, 557, 362–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.-H.; Luo, R.-T.; Cao, Y.; Shen, R.-C.; Zhang, X. Correction factor to dye-measured flow velocity under varying water and sediment discharges. J. Hydrol. 2010, 389, 205–213. [Google Scholar] [CrossRef]
- Tauro, F.; Grimaldi, S.; Petroselli, A.; Rulli, M.C.; Porfiri, M. Fluorescent particle tracers in surface hydrology: A proof of concept in a semi-natural hillslope. Hydrol. Earth Syst. Sci. 2012, 16, 2973–2983. [Google Scholar] [CrossRef] [Green Version]
- Tauro, F.; Pagano, C.; Porfiri, M.; Grimaldi, S. Tracing of shallow water flows through buoyant fluorescent particles. Flow Meas. Instrum. 2012, 26, 93–101. [Google Scholar] [CrossRef]
- Lei, T.; Chuo, R.; Zhao, J.; Shi, X.; Liu, L. An improved method for shallow water flow velocity measurement with practical electrolyte inputs. J. Hydrol. 2010, 390, 45–56. [Google Scholar] [CrossRef]
- Schuetz, T.; Weiler, M.; Lange, J.; Stoelzle, M. Two-dimensional assessment of solute transport in shallow waters with thermal imaging and heated water. Adv. Water Resour. 2012, 43, 67–75. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Meng, Y.; Xia, C.; Chen, K.; Chen, Y. Using stable isotopes as tracer to investigate hydrological condition and estimate water residence time in a plain region, Chengdu, China. Sci. Rep. 2021, 11, 2812. [Google Scholar] [CrossRef] [PubMed]
- de Lima, R.L.; Abrantes, J.R.; de Lima, J.L.; de Lima, M.I.P. Using thermal tracers to estimate flow velocities of shallow flows: Laboratory and field experiments. J. Hydrol. Hydromech. 2015, 63, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, J.R.; Moruzzi, R.B.; de Lima, J.L.; Silveira, A.; Montenegro, A.A. Combining a thermal tracer with a transport model to estimate shallow flow velocities. Phys. Chem. Earth Parts A B C 2019, 109, 59–69. [Google Scholar] [CrossRef]
- Buzády, A.; Erostyák, J.; Paál, G. Determination of uranine tracer dye from underground water of Mecsek Hill, Hungary. J. Biochem. Biophys. Methods 2006, 69, 207–214. [Google Scholar] [CrossRef]
- Aley, T.; Fletcher, M.W. The water tracer’s cookbook. Mo. Speleol. 1976, 16, 1–32. [Google Scholar]
- Montenegro, A.A.A.; Abrantes, J.R.C.B.; de Lima, J.L.M.P.; Singh, V.P.; Santos, T.E.M. Impact of mulching on soil and water dynamics under intermittent simulated rainfall. Catena 2013, 109, 139–149. [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; de Lima, J.L.M.P.; Montenegro, A.A.A. Performance of kinematic modelling of surface runoff for intermittent rainfall on soils covered with mulch. Rev. Bras. Eng. Agrícola E Ambient. 2015, 19, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Abrantes, J.R.C.B.; Prats, S.A.; Jacob, J.K.; de Lima, J.L.M.P. Effectiveness of the application of rice straw mulching strips in reducing runoff and soil loss: Laboratory soil flume experiments under simulated rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Prats, S.A.; Abrantes, J.R.C.B.; Crema, I.P.; Keizer, J.J.; de Lima, J.L.M.P. Runoff and soil erosion mitigation with sieved forest residue mulch strips under controlled laboratory conditions. For. Ecol. Manag. 2017, 396, 102–112. [Google Scholar] [CrossRef]
- de Lima, J.L.M.P.; Isidoro, J.M.G.P.; de Lima, M.I.P.; Singh, V.P. Longitudinal Hillslope Shape Effects on Runoff and Sediment Loss: Laboratory Flume Experiments. J. Environ. Eng. 2018, 144, 04017097. [Google Scholar] [CrossRef]
- de Lima, J.L.M.P.; Santos, L.; Mujtaba, B.; de Lima, M.I.P. Laboratory assessment of the influence of rice straw mulch size on soil loss. Adv. Geosci. 2019, 48, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Águas de Coimbra, Eem. Quality Control of Water Intended for Human Consumption-Municipality of Coimbra-Boavista Supply Area—1st Semester 2020; Technical Report; Águas de Coimbra, Eem: Coimbra, Portugal, 2020. [Google Scholar]
- de Lima, J.L.M.P.; Singh, V.P.; de Lima, M.I.P. The influence of storm movement on water erosion: Storm direction and velocity effects. Catena 2003, 52, 39–56. [Google Scholar] [CrossRef]
- Diener, H.C.; Dethlefsen, U.; Dethlefsen-Gruber, S.; Verbeek, P. Effectiveness of quinine in treating muscle cramps: A double-blind, placebo-controlled, parallel-group, multicentre trial. Int. J. Clin. Pract. 2002, 56, 243–246. [Google Scholar]
- Geto, A.; Amare, M.; Tessema, M.; Admassie, S. Polymer-modified glassy carbon electrode for the electrochemical detection of quinine in human urine and pharmaceutical formulations. Anal. Bioanal. Chem. 2012, 404, 525–530. [Google Scholar] [CrossRef]
- Awasthi, S.; Srivastava, A.; Singla, M. Voltammetric determination of citric acid and quinine hydrochloride using polypyrrole–pentacyanonitrosylferrate/platinum electrode. Synth. Met. 2011, 161, 1707–1712. [Google Scholar] [CrossRef]
- Donovan, J.L.; DeVane, C.L.; Boulton, D.; Dodd, S.; Markowitz, J.S. Dietary levels of quinine in tonic water do not inhibit CYP2D6 in vivo. Food Chem. Toxicol. 2003, 41, 1199–1201. [Google Scholar] [CrossRef]
- Thermo Fisher Scientific. Safety Data Sheet Quinine Monohydrochloride Dihydrate 99%. Available online: https://www.alfa.com/en/msds/?language=EN&subformat=AGHS&sku=H33474 (accessed on 18 February 2021).
- Li, G.; Abrahams, A.D.; Atkinson, J.F. Correction factors in the determination of mean velocity of overland flow. Earth Surf. Process. Landf. 1996, 21, 509–515. [Google Scholar] [CrossRef]
- Dunkerley, D. Estimating the mean speed of laminar overland flow using dye injection-uncertainty on rough surfaces. Earth Surf. Process. Landf. 2001, 26, 363–374. [Google Scholar] [CrossRef]
Discharge, Q (mL/s) | Volume of Tracer, Vtr (mL) | Leading-Edge Flow Velocity, U (m/s) | |||||
---|---|---|---|---|---|---|---|
Thermal Tracer | Dye Tracer | Quinine Tracer | |||||
Mean | S.D. | Mean | S.D. | Mean | S.D. | ||
51.54 | 5 | 0.203 | 0.012 | 0.175 | 0.005 | 0.186 | 0.004 |
7.5 | 0.205 | 0.015 | 0.171 | 0.005 | 0.192 | 0.007 | |
10 | 0.207 | 0.009 | 0.179 | 0.008 | 0.179 | 0.011 | |
Mean | 0.205 | 0.175 | 0.185 | ||||
S.D. | 0.001 | 0.003 | 0.005 | ||||
89.28 | 5 | - | - | 0.183 | 0.009 | 0.180 | 0.011 |
7.5 | 0.238 | 0.012 | 0.217 | 0.009 | 0.218 | 0.012 | |
10 | 0.247 | 0.009 | 0.210 | 0.008 | 0.208 | 0.011 | |
Mean | 0.242 | 0.203 | 0.202 | ||||
S.D. | 0.004 | 0.014 | 0.016 | ||||
113.63 | 5 | 0.223 | 0.014 | 0.190 | 0.014 | 0.207 | 0.007 |
7.5 | 0.243 | 0.016 | 0.240 | 0.005 | 0.241 | 0.004 | |
10 | 0.251 | 0.017 | 0.253 | 0.006 | 0.248 | 0.003 | |
Mean | 0.239 | 0.227 | 0.232 | ||||
S.D. | 0.011 | 0.027 | 0.017 |
Discharge, Q (mL/s) | Volume of Tracer, Vtr (mL) | Leading-Edge Flow Velocity, U (m/s) | |||||
---|---|---|---|---|---|---|---|
Thermal Tracer | Dye Tracer | Quinine Tracer | |||||
Mean | S.D. | Mean | S.D. | Mean | S.D. | ||
40.8 | 5 | 0.162 | 0.014 | 0.162 | 0.005 | 0.163 | 0.004 |
7.5 | 0.167 | 0.005 | 0.179 | 0.008 | 0.181 | 0.004 | |
10 | 0.185 | 0.006 | 0.181 | 0.010 | 0.179 | 0.019 | |
Mean | 0.171 | 0.174 | 0.174 | ||||
S.D. | 0.009 | 0.008 | 0.008 | ||||
73.5 | 5 | - | - | 0.179 | 0.009 | 0.211 | 0.019 |
7.5 | 0.187 | 0.014 | 0.185 | 0.008 | 0.210 | 0.011 | |
10 | 0.182 | 0.017 | 0.182 | 0.013 | 0.197 | 0.012 | |
Mean | 0.185 | 0.182 | 0.206 | ||||
S.D. | 0.002 | 0.002 | 0.006 | ||||
116 | 5 | 0.233 | 0.009 | 0.235 | 0.012 | 0.207 | 0.017 |
7.5 | 0.243 | 0.018 | 0.233 | 0.009 | 0.223 | 0.014 | |
10 | 0.249 | 0.015 | 0.219 | 0.016 | 0.232 | 0.015 | |
Mean | 0.241 | 0.229 | 0.221 | ||||
S.D. | 0.006 | 0.007 | 0.010 |
Discharge, Q (mL/s) | Volume of Tracer, Vtr (mL) | Leading-Edge Flow Velocity, U (m/s) | |||||
---|---|---|---|---|---|---|---|
Thermal Tracer | Dye Tracer | Quinine Tracer | |||||
Mean | S.D. | Mean | S.D. | Mean | S.D. | ||
7.38 | 5 | 0.1253 | 0.0107 | 0.1264 | 0.0139 | 0.1298 | 0.0223 |
7.5 | 0.1528 | 0.0173 | 0.1308 | 0.0089 | 0.1291 | 0.0194 | |
10 | 0.1321 | 0.022 | 0.1599 | 0.0078 | 0.1388 | 0.0141 | |
Mean | 0.1367 | 0.1391 | 0.1326 | ||||
S.D. | 0.0117 | 0.0148 | 0.0044 | ||||
18.73 | 5 | 0.1847 | 0.0185 | 0.1503 | 0.0072 | 0.1539 | 0.0069 |
7.5 | 0.1846 | 0.0155 | 0.1510 | 0.0006 | 0.1539 | 0.0082 | |
10 | 0.1858 | 0.0098 | 0.1632 | 0.0009 | 0.1718 | 0.0089 | |
Mean | 0.1850 | 0.1549 | 0.1599 | ||||
S.D. | 0.0005 | 0.0059 | 0.0084 | ||||
27.69 | 5 | 0.1975 | 0.0128 | 0.1854 | 0.0092 | 0.1864 | 0.0168 |
7.5 | 0.1972 | 0.0096 | 0.1867 | 0.0112 | 0.1877 | 0.0129 | |
10 | 0.1960 | 0.0122 | 0.1890 | 0.0043 | 0.1854 | 0.0132 | |
Mean | 0.1969 | 0.1870 | 0.1865 | ||||
S.D. | 0.0006 | 0.0015 | 0.0009 |
Graph (x vs. y) | Surface | Regression Equations | R2 |
---|---|---|---|
Uqu vs. Uth | Flat | y = 1.0844 x | 0.9965 |
Eroded | y = 1.0162 x | 0.9958 | |
Rill | y = 1.0825 x | 0.9955 | |
Uqu vs. Udy | Flat | y = 0.9799 x | 0.9984 |
Eroded | y = 1.0085 x | 0.9925 | |
Rill | y = 1.0022 x | 0.9980 | |
Uth vs. Udy | Flat | y = 0.8983 x | 0.9953 |
Eroded | y = 0.9786 x | 0.9950 | |
Rill | y = 0.9201 x | 0.9903 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Lima, J.L.M.P.; Zehsaz, S.; de Lima, M.I.P.; Isidoro, J.M.G.P.; Jorge, R.G.; Martins, R. Using Quinine as a Fluorescent Tracer to Estimate Overland Flow Velocities on Bare Soil: Proof of Concept under Controlled Laboratory Conditions. Agronomy 2021, 11, 1444. https://doi.org/10.3390/agronomy11071444
de Lima JLMP, Zehsaz S, de Lima MIP, Isidoro JMGP, Jorge RG, Martins R. Using Quinine as a Fluorescent Tracer to Estimate Overland Flow Velocities on Bare Soil: Proof of Concept under Controlled Laboratory Conditions. Agronomy. 2021; 11(7):1444. https://doi.org/10.3390/agronomy11071444
Chicago/Turabian Stylede Lima, João L. M. P., Soheil Zehsaz, M. Isabel P. de Lima, Jorge M. G. P. Isidoro, Romeu Gerardo Jorge, and Ricardo Martins. 2021. "Using Quinine as a Fluorescent Tracer to Estimate Overland Flow Velocities on Bare Soil: Proof of Concept under Controlled Laboratory Conditions" Agronomy 11, no. 7: 1444. https://doi.org/10.3390/agronomy11071444
APA Stylede Lima, J. L. M. P., Zehsaz, S., de Lima, M. I. P., Isidoro, J. M. G. P., Jorge, R. G., & Martins, R. (2021). Using Quinine as a Fluorescent Tracer to Estimate Overland Flow Velocities on Bare Soil: Proof of Concept under Controlled Laboratory Conditions. Agronomy, 11(7), 1444. https://doi.org/10.3390/agronomy11071444