Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands
Abstract
:1. Introduction
2. Trade-Offs and Synergies between Crop and Livestock Production in Morocco
3. Materials and Methods
3.1. Household Survey Data
3.2. Modelling Adoption and Impacts
3.2.1. Endogenous Switching Regression
3.2.2. Stochastic Frontier Production Function
4. Results
4.1. Impacts on Yield
4.2. Impacts on Gross Margins
4.3. Impacts on Wheat Consumption from Own Production
4.4. Impacts on Downside Risk and Variability of Yields
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giller, K.E.; Corbeels, M.; Nyamangara, J.; Triomphe, B.; Affholder, F.; Scopel, E.; Tittonell, P. A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crop. Res. 2011, 124, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, A.R.; Thierfelder, C.; Lambert, D.M. Conservation agriculture systems for Malawian smallholder farmers: Long-term effects on crop productivity, profitability and soil quality. Renew. Agric. Food Syst. 2013, 28, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, C.; Matemba-Mutasa, R.; Rusinamhodzi, L. Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Tillage Res. 2015, 146, 230–242. [Google Scholar] [CrossRef]
- Wall, P.C. Tailoring Conservation Agriculture to the Needs of Small Farmers in Developing Countries. J. Crop. Improvement. 2007, 19, 137–155. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Investing in Sustainable Agricultural Intensification. In The Role of Conservation Agriculture. A Framework for Action; Food and Agriculture Organization of the United Nation: Rome, Italy, 2008. [Google Scholar]
- Hobbs, P.R. Conservation agriculture; what is it and why is it important for future sustainable food production? J. Agric. Sci. 2007, 145, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; Corbeels, M.; Tittonell, P. Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crop. Res. 2009, 114, 23–34. [Google Scholar] [CrossRef]
- Liebl, R.A.; Worsham, A.D. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J. Chem. Ecol. 1983, 9, 1027–1043. [Google Scholar] [CrossRef] [PubMed]
- Tittonell, P.; Corbeels, M.; van Wijk, M.T.; Vanlauwe, B.; Giller, K.E. Combining organic and mineral fertilizers for integrated soil fertility management in smallholder farming systems of Kenya: Explorations using the crop-soil model FIELD. Agron. J. 2008, 100, 1511–1526. [Google Scholar] [CrossRef]
- Mrabet, R. Effects of residue management and cropping systems on wheat yield stability in a semiarid Mediterranean clay soil. Am. J. Plant Sci. 2011, 2, 202–216. [Google Scholar] [CrossRef] [Green Version]
- Moussadek, R.; Mrabet, R.; Zante, P.; Lamachère, J.M.; Pépin, Y.; Bissonnais, Y.L.; Ye, L.; Verdoodt, A.; Van Ranst, E. Effets du travail du sol et de la gestion des résidus sur les propriétés du sol et sur l’érosion hydrique d’un Vertisol Méditerranéen. Can. J. Soil Sci. 2011, 91, 627–635. [Google Scholar] [CrossRef] [Green Version]
- McIntire, J.; Gryseels, G. Crop-Livestock Interactions in Sub-Saharan Africa and their Implications for Farming Systems Research. Exp. Agric. 1987, 23, 235–243. [Google Scholar] [CrossRef]
- Moritz, M. Crop livestock interactions in agricultural and pastoral systems of West Africa. Agric. Hum. Values 2010, 27, 119–128. [Google Scholar] [CrossRef]
- El-Shater, T.; Yigezu, Y.A.; Mugera, A.; Piggin, C.; Haddad, A.; Khalil, Y.; Loss, S.; Aw-Hassan, A. Does zero tillage improve the livelihoods of smallholder cropping farmers? J. Agric. Econ. 2016, 67, 154–172. [Google Scholar] [CrossRef]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crop. Res. 2015, 175, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Ruisi, P.; Frangipane, B.; Amato, G.; Badagliacca, G.; Di Miceli, G.; Plaia, A.; Giambalvo, D. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 2015, 55, 320–328. [Google Scholar] [CrossRef]
- Ruisi, P.; Saia, S.; Badagliacca, G.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Di Miceli, G. Long-term effects of no tillage treatment on soil N availability, N uptake, and N fertilizer recovery of durum wheat differ in relation to crop sequence. Field Crop. Res. 2016, 189, 51–58. [Google Scholar] [CrossRef]
- Habtemichial, K.H.; Singh, B.R.; Aune, J.B. Wheat response to N2 fixed by faba bean (Vicia faba L.) as affected by sulfur fertilization and rhizobial inoculation in semi-arid Northern Ethiopia. J. Plant Nutr. Soil Sci. 2007, 170, 412–418. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Lambers, H.; Bolland, M.D.A.; Veneklaas, E.J. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant Soil 2005, 271, 175–187. [Google Scholar] [CrossRef]
- Gowing, J.W.; Palmer, M. Sustainable agricultural development in sub-Saharan Africa: The case for a paradigm shift in land husbandry. Soil Use Manag. 2008, 24, 92–99. [Google Scholar] [CrossRef]
- Gauny, J. Crop Residues Tradeoffs in Rain-Fed Areas of Morocco. Soil Physics and Land Management. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2016. Available online: https://edepot.wur.nl/380448 (accessed on 13 November 2020).
- Umar, B.B.; Aune, J.B.; Johnsen, F.H.; Lungu, O.I. Options for Improving Smallholder Conservation Agriculture in Zambia. J. Agric. Sci. 2011, 3, 50–62. [Google Scholar]
- FAOSTAT. Production Statistics. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 14 December 2020).
- Badraoui, M. GMP—The Green Morocco Plan. An Innovative Strategy of Agricultural Development. Environ. Dev. AL BIA WAL TANMIA J. 2014. Available online: http://webagris.inra.org.ma/doc/badraoui11141.pdf (accessed on 23 July 2021).
- Mrabet, R.; Moussadek, R.; Fadlaoui, A.; Van Ranst, E. Conservation agriculture in dry areas of Morocco. Field Crop. Res. 2012, 132, 84–94. [Google Scholar] [CrossRef]
- Dahan, R.; Boughlala, M.; Mrabet, R.; Laamari, A.; Balaghi, R.; Lajouad, L. A Review of Available Knowledge on Land Degradation in Morocco; ICARDA Publication, 2012; Available online: https://www.icarda.org/publications/6607/review-available-knowledge-land-degradation-morocco (accessed on 13 December 2012).
- Shaxon, F.; Barber, R. Optimizing Soil Moisture for Plant Production: The Significance of Soil Porosity; Food and Agriculture Organization of the United Nations (FAO) Soils Bulletin #79: Rome, Italy, 2003. [Google Scholar]
- Anderson, W.K.; Siddique, K.H.M. The role and value of crop residues in dryland agriculture. Indian J. Agron. 2015, 60, 332–340. [Google Scholar]
- Klapwijk, C.; van Wijk, M.; Rosenstock, T.; van Asten, P.; Thornton, P.; Giller, K. Analysis of trade-offs in agricultural systems: Current status and way forward. Curr. Opin. Environ. Sustain. 2014, 6, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Tittonell, P.; Gérard, B.; Erenstein, O. Tradeoffs around crop residue biomass in smallholder crop-livestock systems—What’s next? Agric. Syst. 2015, 134, 119–128. [Google Scholar] [CrossRef]
- Boughlala, M.; Dahan, R. An Economic Comparison between Conventional and No-Tillage Farming Systems in Morocco; INRA: Settat, Morocco, 2011. [Google Scholar]
- Schwilch, G.; Laouina, A.; Chaker, M.; Machouri, N.; Sfa, M.; Stroosnijder, L. Challenging conservation agriculture on marginal slopes in Sehoul, Morocco. Renew. Agric. Food Syst. 2015, 30, 233–251. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S. Crop Residue Removal for Biomass Energy Production: Effects on Soils and Recommendations; USDA. Natural Resource Conservation Service, 2006. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf (accessed on 13 February 2020).
- JRC—Joint Research Center. Linking Soil Degradation Processes, Soil-Friendly Farming Practices and Soil-Relevant Policy Measures. 2009. Available online: https://esdac.jrc.ec.europa.eu/projects/SOCO/FactSheets/EN%20Fact%20Sheet.pdf (accessed on 26 November 2020).
- Erenstein, O. Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications. Soil Tillage Res. 2002, 67, 115–133. [Google Scholar] [CrossRef]
- Mazvimavi, K.; Twomlow, S. Socioeconomic and institutional factors influencing adoption of conservation farming by vulnerable households in Zimbabwe. Agric. Syst. 2009, 101, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Lokshin, M.; Sajaia, Z. Maximum likelihood estimation of endogenous switching regression models. Stata J. 2004, 4, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Bidzakin, J.K.; Fialor, S.C.; Awunyo-Vitor, D.; Yahaya, I. Impact of contract farming on rice farm performance: Endogenous switching regression. Cogent Econ. Financ. 2019, 7, 1618229. [Google Scholar] [CrossRef]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Lokshin, M.; Glinskaya, E. The effect of male migration on employment patterns of women in Nepal. World Bank Econ. Rev. 2009, 23, 481–507. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.; Rabe-Hesketh, S. Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal and count variables. Stata J. 2006, 6, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.W.; Milon, J.W. Price Knowledge in Household Demand for Utility Services. Land Econ. 2005, 81, 265–283. [Google Scholar] [CrossRef]
- Antle, J.M. Testing the Stochastic Structure of Production: A Flexible Moment-Based Approach. J. Bus. Econ. Stat. 1983, 1, 192–201. [Google Scholar]
- Antle, J.M.; Goodger, W.A. Measuring Stochastic Technology: The Case of Tulare Milk Production. Am. J. Agric. Econ. 1984, 66, 342–350. [Google Scholar] [CrossRef]
- Chavas, J.P. Risk Analysis in Theory and Practice; Elsevier: London, UK, 2004. [Google Scholar]
- Just, R.E.; Pope, R.D. Production Function Estimation and Related Risk Considerations. Am. J. Agric. Econ. 1979, 61, 276–284. [Google Scholar] [CrossRef]
- Kim, K.; Chavas, J.P. Technological Change and Risk Management: An Application to the Economics of Corn Production. Agric. Econ. 2003, 29, 125–142. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology Adoption under Production Uncertainty: Theory and Application to Irrigation Technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Di Falco, S.; Chavas, J.P. On Crop Biodiversity, Risk Exposure and Food Security in the Highlands of Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LP: College Station, TX, USA, 2017. [Google Scholar]
- Menezes, C.; Geiss, C.; Tressler, J. Increasing Downside Risk. Am. Econ. Rev. 1980, 70, 921–932. [Google Scholar]
- Yigezu, Y.A.; Boughlala, M.; El-Shater, T.; Najjar, D.; Bentaibi, A. Analysis of the adoption, impacts, and seed demand of improved varieties. In Political Economy of the Wheat Sector in Morocco: Seed Systems, Varietal Adoption, and Impacts; Bishaw, Z., Yigezu, Y.A., Niane, A., Telleria, R., Najjar, D., Eds.; International Center for Agricultural Research in the Dry Areas: Beirut, Lebanon, 2019; p. 300. Available online: https://hdl.handle.net/20.500.11766/8505 (accessed on 26 November 2020).
- Yigezu, Y.A.; El-Shater, T.; Boughlala, M.; Bishaw, Z.; Niane, A.; Maalouf, F.; Degu, W.T.; Wery, J.; Boutfiras, M.; Aw-Hassan, A. Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agron. Sustain. Dev. 2019, 39, 58. [Google Scholar] [CrossRef] [Green Version]
- Yigezu, Y.A.; El-Shater, T. Socio-economic impacts of zero and reduced tillage in wheat fields of the Moroccan drylands. Agric. Econ. 2021, 52, 645–663. [Google Scholar] [CrossRef]
- Mohammad, W.; Shah, S.M.; Shehzadi, S.; Shah, S.A. Effect of tillage, rotation and crop residues on wheat crop productivity, fertilizer nitrogen and water use efficiency and soil organic carbon status in dry area (rainfed) of north-west Pakistan. J. Soil Sci. Plant. Nutr. 2012, 12, 715–727. [Google Scholar] [CrossRef] [Green Version]
- Sainju, U.M.; Senwo, Z.N.; Nyakatawa, E.Z.; Tazisong, I.A.; Reddy, K.C. Tillage, cropping systems, and nitrogen fertilizer source effects on soil carbon sequestration and fractions. J. Environ. Qual. 2008, 37, 880–888. [Google Scholar] [CrossRef]
- Mohammad, W.; Shah, Z.; Shah, S.M.; Iqbal, M.M. Rotational benefits of legumes to subsequent rain-fed wheat in a low N soil. pak. J. Soil Sci. 2003, 22, 19–27. [Google Scholar]
- Monjardino, M.; López-Ridaura, S.; van Loon, J.; Mottaleb, K.A.; Kruseman, G.; Zepeda, A.; Hernandez, E.O.; Burgueño, J.; Singh, R.G.; Govaerts, B.; et al. Disaggregating the value of conservation agriculture to inform smallholder transition to sustainable farming: A Mexican case study. Agronomy 2021, 11, 1214. [Google Scholar] [CrossRef]
- Yigezu, Y.A.; El-Shater, T.; Boughlala, M.; Devkota, M.; Mrabet, R.; Moussadek, R. Can an incremental approach be a better option in the dissemination of conservation agriculture? Some socio-economic justifications from the drylands of Morocco. Soil Tillage Res. 2021. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030. 2003. An FAO Perspective. Available online: http://www.fao.org/3/y4252e/y4252e00.htm#TopOfPage (accessed on 23 March 2020).
- Lundy, M.E.; Pittelkow, C.M.; Linquist, B.A.; Liang, X.; van Groenigen, K.J.; Lee, J.; Six, J.; Venterea, R.T.; van Kessel, C. Nitrogen fertilization reduces yield declines following no-till adoption. Field Crop. Res. 2015, 183, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear Regression Models and Applications in Agricultural Research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef] [Green Version]
Region | Province | Wheat Area (in 1000 ha), Average for 2002–2011 | Total Number of Wheat Growers in 2011 (in 1000) | Sample Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bread Wheat | Durum Wheat | Total | No. of Districts | No of Villages | Number of Households | |||||
Male Headed | Female Headed | Total | ||||||||
Chaouia-Ouardigha | Benslimane | 54.96 | 25.41 | 80.37 | 13.92 | 3 | 10 | 26 | 1 | 27 |
Berrechid | 131.96 | 133.9 | 90.39 | 20.70 | 2 | 13 | 40 | 3 | 43 | |
Settat | 175.47 | 40.19 | 3 | 33 | 80 | 2 | 82 | |||
Doukkala-Abda | El Jadida | 95.98 | 79.46 | 92.98 | 64.08 | 3 | 16 | 70 | 6 | 76 |
Sidi Bennour | 82.46 | 56.82 | 2 | 17 | 63 | 5 | 68 | |||
Safi | 74.74 | 73.59 | 148.33 | 63.25 | 3 | 19 | 128 | 2 | 130 | |
Fes-Boulemane | Fes | 69.79 | 29.72 | 12.94 | 3.64 | 1 | 1 | 8 | 0 | 8 |
Moulay Yacoub | 86.57 | 24.34 | 2 | 7 | 52 | 0 | 52 | |||
Gharb-Chrarda-Bni Hces | Kenitra | 94.03 | 13.36 | 85.97 | 30.66 | 3 | 17 | 49 | 10 | 59 |
Sidi Slimane | 21.42 | 7.67 | 1 | 8 | 17 | 1 | 18 | |||
Sidi Kacem | 144.94 | 32.59 | 177.53 | 44.40 | 5 | 22 | 63 | 4 | 67 | |
Marrakech-Tensift-Alhaouz | El Kelaa | 155.36 | 67.91 | 73.68 | 20.33 | 2 | 12 | 36 | 2 | 38 |
Rehamna | 149.59 | 41.27 | 2 | 12 | 75 | 2 | 77 | |||
Meknès-Tafilalet | El Hajeb | 48.95 | 9.88 | 58.83 | 9.02 | 3 | 7 | 22 | 0 | 22 |
Khenifra | 67.09 | 37.25 | 104.34 | 28.05 | 2 | 11 | 58 | 0 | 58 | |
Meknes | 71.78 | 4.49 | 76.27 | 13.73 | 1 | 11 | 29 | 0 | 29 | |
Rabat-Salé | Khemisset | 127.62 | 29.58 | 157.2 | 32.67 | 4 | 25 | 61 | 6 | 67 |
Tadla-Azilal | Beni Mellal | 153.68 | 37 | 190.68 | 46.06 | 3 | 7 | 89 | 1 | 90 |
Taza-Alhoceima-Taounate | Taounate | 103.26 | 80 | 183.26 | 61.16 | 4 | 24 | 117 | 7 | 124 |
Taza | 32.83 | 70.34 | 82.54 | 39.24 | 5 | 14 | 75 | 0 | 75 | |
Guercif | 20.63 | 9.81 | 2 | 6 | 20 | 0 | 20 | |||
Total Sample | 1426.97 | 724.48 | 2151.45 | 671.01 | 56 | 292 | 1178 | 52 | 1230 | |
Total National | 1930.07 | 979.90 | 2909.97 | Not available | ||||||
Sample as % National Total | 73.9% |
Variable Name | Variable | Residue = 0% | Residue = 0.1–30% | Residue = 30.01–60% | Residue > 60% | Entire Sample | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Values or Count | Std. Dev. | Mean Values or Count | Std. Dev. | Mean Values or Count | Std. Dev. | Mean Values or Count | Std. Dev. | n ^ | Mean value | Std. Dev. | ||
Variables derived from household-level data (n = 1230) | ||||||||||||
Age | Age of household head (years) | 59.44 | 14.02 | 59.77 | 13.42 | 59.40 | 13.09 | 59.77 | 14.93 | 59.52 | 13.75 | |
Educ | Education of household head (years) | 1.92 | 0.85 | 1.80 * | 0.77 | 1.90 | 0.88 | 1.97 | 0.92 | 1.90 | 0.86 | |
WArea | Wheat area (ha) | 5.56 | 11.72 | 4.74 | 3.11 | 6.26 | 21.27 | 5.76 | 5.49 | 5.72 | 14.64 | |
TArea | Total cropped area (ha) | 10.50 | 17.88 | 9.03 | 13.29 | 12.56 | 1.79 | 10.51 | 17.46 | 11.02 | 25.85 | |
WDist | Walking distance from home to seed sources (km) | 17.40 | 13.33 | 17.36 | 12.24 | 18.32 | 14.71 | 15.54 ** | 13.08 | 17.45 | 13.67 | |
Cons | Wheat consumption from own production (kg/capita/year) | 55.64 | 30.17 | 59.99 | 31.97 | 68.28 *** | 32.19 | 72.12 *** | 35.20 | 63.07 | 32.52 | |
Sex | Household head is female (0 = No, 1 = Yes) | 16 | 0.18 | 5 | 0.17 | 18 | 0.20 | 10 | 0.23 | 49 | 0.04 | 0.20 |
OffFarmemp | Off-farm employment (0 = No, 1 = Yes) | 80 | 0.39 | 30 | 0.38 | 69 | 0.37 | 37 | 0.40 | 216 | 0.18 | 0.38 |
TLU/ha | Number of livestock in tropical livestock units per ha owned | 0.61 | 0.05 | 0.45 *** | 0.05 | 0.46 ** | 1.03 | 0.35 *** | 0.10 | 0.49 | 1.09 | |
Variables derived from field-level data (n = 2296) | ||||||||||||
Fieldsize | Area of the field (or plot) in ha | 5.77 | 9.51 | 4.95 * | 5.24 | 6.21 | 17.52 | 6.28 | 7.92 | 5.87 | 12.26 | |
Labor | Total amount of labor used (person days/ha) | 55.03 | 34.48 | 51.36 ** | 33.81 | 56.94 | 37.03 | 60.14 ** | 40.56 | 55.85 | 36.21 | |
RF | Rainfall (mm/year) | 361.94 | 92.68 | 351.29 * | 121.21 | 344.97 *** | 98.98 | 376.56 * | 96.09 | 356.75 | 100.31 | |
QN | Quantity of nitrogen fertilizer used (kg/ha) | 39.57 | 45.52 | 36.24 | 44.13 | 45.74 *** | 52.14 | 44.27 | 50.27 | 41.82 | 48.42 | |
QDAP | Quantity of DAP fertilizer used (kg/ha) | 30.18 | 24.08 | 26.25 *** | 25.62 | 31.44 | 29.91 | 32.60 | 24.89 | 30.38 | 26.55 | |
QSeed | Quantity of seed used (kg/ha) | 173.08 | 55.73 | 164.84 ** | 58.09 | 176.39 | 57.96 | 174 | 52.57 | 173.20 | 56.49 | |
QPesti | Quantity of pesticides (kg/ha) | 0.20 | 0.46 | 0.33 *** | 0.58 | 0.20 | 0.48 | 0.25 ** | 0.49 | 0.23 | 0.49 | |
QHerbi | Quantity of herbicides (kg/ha) | 0.93 | 0.59 | 0.89 | 0.63 | 0.88 * | 0.60 | 0.91 | 0.61 | 0.91 | 0.60 | |
Yield | Yield (kg/ha) | 1356.45 | 1017.81 | 1195.30 ** | 1204.50 | 1514.61 *** | 1418.71 | 1666.43 *** | 1445.31 | 1429.47 | 1260.10 | |
FavZone | Farm in favorable zone? (1 = Yes, 0 = No) | 330 | 0.48 | 84 *** | 0.44 | 287 | 0.37 | 150 *** | 0.50 | 851 | 0.37 | 0.48 |
ItermZone | Farm in intermediate zone (1 = Yes, 0 = No) | 266 | 0.46 | 100 | 0.46 | 233 | 0.46 | 75 ** | 0.42 | 674 | 0.29 | 0.46 |
GM | Gross margins (MAD/ha) # | 3332.76 | 2964.02 | 2941.03 ** | 3526 | 3742.27 ** | 4024.03 | 4171.69 *** | 3885.74 | 3530.53 | 3576.87 | |
ZT | Was ZT practiced on the field? (0 = No, 1 = Yes) | 139 | 0.37 | 26 *** | 0.27 | 94 ** | 0.33 | 41 | 0.34 | 300 | 0.13 | 0.34 |
Rot | Rotation practiced? (0 = No, 1 = Yes) | 310 | 0.48 | 91 ** | 0.45 | 256 | 0.47 | 158 *** | 0.50 | 815 | 0.35 | 0.48 |
ImpVar | Planted to improved wheat varieties? (0 = No, 1 = Yes) | 307 | 0.48 | 69 *** | 0.41 | 232 ** | 0.46 | 137 ** | 0.50 | 745 | 0.32 | 0.47 |
# of fields | Number of fields on this category | 876 | 330 | 771 | 319 | 2296 | ||||||
Irrig | Is the field irrigated? (0 = No, 1 = Yes) | 133 | 0.36 | 45 | 0.34 | 165 *** | 0.41 | 52 | 0.37 | 395 | 0.17 | 0.38 |
Independent Variables | Adoption and Yield Equations for Retention of between 0.1% and 30% Residue (Counterfactual: No Residue Retained at all) | Yield Equation for Retention of 30–60% Residue (Counterfactual: No Residue Retained at all) ^ | Yield Equation for Retention of 60% or Above Residues (Counterfactual: No Residue Retained at all) ^ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes = 1, No = 0 | Yield for Adopters | Non-Adopters | Yield for Adopters | Non-Adopters | Yield for Adopters | Non-Adopters | ||||||||
Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | |
Age (years) | 0.071 | 0.138 | 0.003 | 0.019 | 0.043 | 0.046 | 0.002 | 0.022 | 0.001 | 0.024 | 0.014 | 0.034 | 0.008 | 0.021 |
Education (years) | 0.083 | 0.096 | −0.012 | 0.014 | −0.016 | 0.031 | −0.017 | 0.016 | 0.019 | 0.016 | 0.034 | 0.027 | −0.007 | 0.015 |
Sex (1 = male, 0 = female) | 0.101 | 0.145 | 0.016 | 0.021 | 0.008 | 0.066 | 0.010 | 0.024 | 0.032 | 0.024 | 0.011 | 0.040 | 0.026 | 0.023 |
Improved Variety (No = 0, Yes = 1) | −0.132 | 0.098 | 0.335 | 0.014 *** | 0.403 | 0.035 *** | 0.349 | 0.016 *** | 0.385 | 0.017 *** | 0.285 | 0.026 *** | 0.332 | 0.015 *** |
Quantity of n-fertilizer used | 0.046 | 0.046 | 0.005 | 0.007 | 0.006 | 0.013 | −0.004 | 0.008 | −0.005 | 0.008 | 0.039 | 0.014 *** | 0.004 | 0.008 |
Quantity of DAP fertilizer | −0.170 | 0.035 *** | 0.048 | 0.005 *** | 0.037 | 0.010 *** | 0.062 | 0.006 *** | 0.037 | 0.007 *** | 0.059 | 0.012 *** | 0.046 | 0.006 *** |
Amount of seed used (kg/ha) | −0.096 | 0.098 | 0.051 | 0.014 *** | 0.088 | 0.028 *** | 0.054 | 0.016 *** | 0.017 | 0.017 | 0.065 | 0.027 ** | 0.054 | 0.015 *** |
Labor | −0.089 | 0.101 | 0.044 | 0.014 *** | 0.010 | 0.030 | 0.062 | 0.016 *** | 0.037 | 0.017 | 0.008 | 0.025 | 0.047 | 0.015 *** |
Wheat area (ha) | −0.012 | 0.058 | 0.011 | 0.008 | 0.048 | 0.024 ** | 0.014 | 0.010 | 0.013 | 0.010 | 0.005 | 0.015 | 0.008 | 0.009 |
Cultivated area (ha) | −0.009 | 0.014 | 0.002 | 0.002 | 0.002 | 0.004 | 0.003 | 0.002 | 0.000 | 0.002 | 0.001 | 0.003 | 0.002 | 0.002 |
Quantity of herbicides (kg/ha) | −0.161 | 0.086 * | −0.028 | 0.012 *** | 0.004 | 0.026 | −0.017 | 0.014 | 0.001 | 0.015 | 0.003 | 0.022 | −0.026 | 0.013 ** |
Quantity of pesticides (kg/ha) | 0.238 | 0.110 *** | 0.088 | 0.015 *** | −0.032 | 0.030 | 0.074 | 0.018 *** | −0.007 | 0.019 | 0.042 | 0.027 | 0.081 | 0.017 *** |
Rainfall | −0.581 | 0.114 *** | 0.118 | 0.018 *** | 0.059 | 0.030 ** | 0.146 | 0.019 *** | 0.019 | 0.023 | 0.324 | 0.032 *** | 0.107 | 0.019 *** |
Zero tillage | −0.965 | 0.260 *** | 0.180 | 0.023 *** | 0.316 | 0.044 *** | 0.238 | 0.027 *** | 0.113 | 0.071 | 0.112 | 0.031 *** | 0.146 | 0.023 *** |
Rotation | −0.072 | 0.073 | 0.062 | 0.010 *** | 0.136 | 0.026 *** | 0.062 | 0.012 *** | 0.039 | 0.012 *** | 0.101 | 0.020 *** | 0.050 | 0.012 *** |
Irrigation | 0.777 | 0.132 *** | 1.250 | 0.018 *** | 1.462 | 0.044 *** | 1.208 | 0.021 *** | 1.495 | 0.029 *** | 1.320 | 0.035 *** | 1.252 | 0.020 *** |
Favorable zone | 0.050 | 0.086 | −0.010 | 0.014 | 0.020 | 0.031 | −0.018 | 0.014 | −0.016 | 0.015 | −0.022 | 0.024 | −0.016 | 0.013 |
Intermediate zone | −0.054 | 0.081 | 0.022 | 0.012 *** | 0.000 | 0.026 | 0.024 | 0.013 * | 0.030 | 0.014 ** | 0.031 | 0.024 | 0.027 | 0.012 ** |
TLU/ha | −0.035 | 0.008 *** | ||||||||||||
Constant | 4.278 | 1.031 *** | 5.391 | 0.161 | 5.147 | 0.300 *** | 5.019 | 0.169 *** | 6.102 | 0.194 *** | 4.098 | 0.278 *** | 5.384 | 0.155 *** |
Rho | 0.551 | 0.443 | 0.041 | 0.359 | 0.017 | 0.251 | −0.824 | 0.035 *** | 0.056 | 0.291 | −0.671 | 0.096 *** | ||
Sigma | 0.198 | 0.007 *** | 0.198 | 0.007 *** | 0.144 | 0.004 *** | 0.169 | 0.007 *** | 0.142 | 0.006 *** | 0.147 | 0.007 *** | ||
Wald test x2 | 1377.5 *** | 1916.4 *** | 1208.890 *** | |||||||||||
Log likelihood | −446.4 | −523.5 | 54.399 |
Treatments | Yield ^ | Gross Margins (MAD/ha) ^ | Consumption kg/capita/year ^ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subsamples Effects | To Adopt | Not to Adopt | Treatment | % Change | To Adopt | Not to Adopt | Treatment | % Change | To Adopt | Not to Adopt | Treatment | % Change | |
Retention of between 0.1% and 30% residues (counterfactual: no residue retained at all) (Yes = 330) | Farm households that adopted | 1173.56 (64.79) | 1262.08 (56.19) | −88.52 (11.68) *** | −7.01% | 2830.62 (191.09) | 3100.12 (285.10) | −269.50 (10.68) *** | −8.69% | 55.18 (1.70) | 60.20 (2.56) | −5.02 (0.92) *** | −8.34% |
Farm households that did not adopt | 1163.82 (32.06) | 1347.30 (33.88) | −183.48 (4.95) *** | −13.62% | 2748.84 (122.48) | 3111.50 (89.88) | −362.66 (40.95) *** | −11.66% | 60.73 (1.85) | 57.24 (1.49) | 3.49 (0.44) *** | 6.10% | |
Heterogeneity effects | 9.73 (5.64) | −85.22 (65.09) | 94.95 (10.79) *** | 81.78 (13.45) | −11.38 (7.32) | 93.16 (11.45) *** | −5.54 (3.19) | 2.96 (0.33) | −8.51 (0.91) *** | ||||
Retention of between 30% and 60% residues (counterfactual: no residue retained at all) (Yes = 771) | Farm households that adopted | 1504.89 (50.59) | 1206.08 (36.40) | 298.82 (14.41) *** | 24.78% | 3642.02 (142.81) | 3009.76 (112.73) | 632.25 (34.23) *** | 25.17% | 62.73 (0.92) | 51.42 (0.99) | 11.31 (0.18) *** | 22.00% |
Farm households that did not adopt | 1366.69 (38.21) | 1351.20 (34.35) | 15.51 (4.81) ** | 1.15% | 3266.06 (112.47) | 3225.89 (98.73) | 40.21 (20.60) ** | 1.25% | 61.67 (1.13) | 51.94 (1.05) | 9.73 (0.16) *** | 18.73% | |
Heterogeneity effects | 138.21 (62.54) *** | −145.12 (50.06)*** | 283.33 (14.46) *** | 375.96 (179.78) *** | −216.10 (149.19)*** | 592.09 (38.91) *** | 1.06 (1.39) | −0.52 (0.44) | 1.57 (0.24) ** | ||||
Retention of 60% or above residues (counterfactual: no residue retained at all) (Yes = 319) | Farm households that adopted | 1656.88 (80.99) | 1268.79 (55.82) | 388.09 (26.23) *** | 30.59% | 4074.06 (216.48) | 3151.08 (152.49) | 922.98 (69.11) *** | 32.46% | 80.91 (1.77) | 64.58 (1.63) | 16.33 (0.43) *** | 25.29% |
Farm households that did not adopt | 1496.85 (43.88) | 1348.39 (34.05) | 148.47 (10.56) *** | 11.01% | 3751.71 (139.91) | 3225.90 (98.73) | 525.81 (44.16) *** | 16.30% | 69.74 (1.01) | 57.57 (0.92) | 12.17 (0.24) *** | 21.14% | |
Heterogeneity effects | 160.03 (87.62) ** | −79.60 (65.71) | 239.63 (23.60) *** | 422.34 (266.12) *** | −74.83 (187.71) | 197.17 (84.22) *** | 11.17 (1.98) *** | 7.01 (1.81) *** | 4.16 (0.48) *** |
Independent Variables | Gross Margins Equation for Retention of Between 0.1% and 30% Residues (Counterfactual: No Residue Retained at all) | Gross Margins Equation for Retention of 30–60% Residues (Counterfactual: No Residue Retained at all) | Gross Margins Equation for Retention of 60% or Above Residues (Counterfactual: No Residue Retained at all) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes = 1, No = 0 | Adopters | Non-Adopters | Adopters | Non-Adopters | Adopters | Non-Adopters | ||||||||
Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | Coef. | Std. Er | |
Age (years) | −0.078 | 0.169 | 0.051 | 0.111 | 0.012 | 0.060 | −0.020 | 0.061 | 0.009 | 0.052 | 0.007 | 0.070 | 0.013 | 0.052 |
Education (years) | −0.099 | 0.128 | −0.048 | 0.065 | 0.010 | 0.043 | −0.008 | 0.041 | 0.002 | 0.037 | 0.081 | 0.056 | 0.007 | 0.037 |
Sex (1 = male, 0 = female) | −0.209 | 0.192 | 0.057 | 0.241 | −0.105 | 0.068 | 0.032 | 0.061 | −0.068 | 0.056 | 0.054 | 0.083 | −0.059 | 0.056 |
Improved Variety (No = 0, Yes = 1) | 0.073 | 0.125 | 0.245 | 0.111 | 0.030 | 0.043 | 0.218 | 0.043 *** | 0.099 | 0.037 *** | −0.024 | 0.054 | 0.092 | 0.037 *** |
Quantity of n-fertilizer used | 0.015 | 0.067 | −0.018 | 0.028 | 0.012 | 0.018 | −0.014 | 0.020 | −0.007 | 0.019 | 0.080 | 0.030 *** | −0.005 | 0.019 |
Quantity of DAP fertilizer | 0.047 | 0.052 | 0.077 | 0.022 *** | 0.067 | 0.014 *** | 0.062 | 0.017 *** | 0.077 | 0.015 *** | 0.099 | 0.024 *** | 0.069 | 0.014 *** |
Amount of seed used(kg/ha) | −0.079 | 0.126 | 0.047 | 0.063 | 0.113 | 0.034 *** | 0.042 | 0.043 | 0.116 | 0.037 *** | 0.087 | 0.056 | 0.116 | 0.037 *** |
Labor | −0.025 | 0.123 | 0.017 | 0.068 | 0.040 | 0.033 | −0.021 | 0.044 | 0.069 | 0.038 * | −0.023 | 0.052 | 0.064 | 0.038 *** |
Wheat area (ha) | 0.087 | 0.074 | 0.062 | 0.055 | 0.008 | 0.027 | 0.047 | 0.024 ** | 0.020 | 0.023 | 0.032 | 0.032 | 0.016 | 0.023 |
Cultivated area (ha) | −0.001 | 0.018 | 0.001 | 0.010 | 0.005 | 0.005 | −0.007 | 0.006 | 0.008 | 0.005 | 0.005 | 0.007 | 0.008 | 0.005 |
Quantity of herbicides (kg/ha) | −0.075 | 0.110 | −0.321 | 0.058 *** | −0.246 | 0.032 *** | −0.305 | 0.037 *** | −0.310 | 0.033 *** | −0.198 | 0.046 *** | −0.314 | 0.033 *** |
Quantity of pesticides (kg/ha) | 0.217 | 0.135 | −0.444 | 0.067 *** | −0.028 | 0.038 | −0.267 | 0.048 *** | −0.004 | 0.042 | −0.110 | 0.056 ** | −0.003 | 0.042 |
Rainfall | 0.208 | 0.150 | 0.104 | 0.204 | 0.152 | 0.050 *** | −0.016 | 0.054 | 0.219 | 0.047 *** | 0.427 | 0.067 *** | 0.198 | 0.045 *** |
Zero tillage | 0.588 | 0.149 *** | 0.561 | 0.256 ** | 0.331 | 0.064 *** | 0.284 | 0.179 | 0.286 | 0.061 *** | 0.176 | 0.065 *** | 0.243 | 0.059 *** |
Rotation | 0.239 | 0.092 *** | 0.167 | 0.091 * | 0.073 | 0.033 ** | 0.012 | 0.032 | 0.086 | 0.028 *** | 0.092 | 0.043 ** | 0.078 | 0.028 *** |
Irrigation | 0.062 | 0.163 | 1.729 | 0.162 *** | 1.316 | 0.051 *** | 1.792 | 0.068 *** | 1.339 | 0.053 *** | 1.368 | 0.073 *** | 1.360 | 0.049 *** |
Favorable zone | 0.169 | 0.112 | 0.084 | 0.126 | −0.078 | 0.039 ** | −0.027 | 0.037 | −0.019 | 0.033 | −0.051 | 0.049 | −0.021 | 0.033 |
Intermediate zone | −0.118 | 0.110 | 0.013 | 0.087 | −0.018 | 0.035 | 0.049 | 0.035 | 0.017 | 0.031 | 0.051 | 0.050 | 0.019 | 0.031 |
TLU/ha | −0.060 | 0.014 *** | ||||||||||||
Constant | −1.389 | 1.294 | 6.130 | 0.668 *** | 6.008 | 0.415 *** | 7.402 | 0.477 *** | 5.263 | 0.413 *** | 4.321 | 0.586 *** | 5.428 | 0.385 *** |
Rho | −0.084 | 1.901 | 0.929 | 0.016 *** | 0.011 | 0.236 | −0.168 | 0.041 *** | −0.008 | 0.300 | −0.164 | 0.029 *** | ||
Sigma | 0.390 | 0.048 *** | 0.445 | 0.014 | 0.368 | 0.009 *** | 0.351 | 0.010 *** | 0.296 | 0.012 *** | 0.350 | 0.009 *** | ||
Wald test x2 | 1848.76 *** | 1725.52 *** | 774.58 *** | |||||||||||
Log likelihood | −1117.52 | 2639.79 | 1560 |
Treatments | Downside Risk Exposure | Variance | |||||||
---|---|---|---|---|---|---|---|---|---|
Subsample Effects | To Adopt | Not to Adopt | Treatment | % Change | To Adopt | Not to Adopt | Treatment | % Change | |
Retention of between 0.1% and 30% residues (counterfactual: no residue retained at all) | Farm households that adopted | −0.0040 | −0.0177 | 0.0137 | +77% | 0.0341 | −0.0451 | 0.0782 | +173% |
−0.0004 | −0.0006 | (0.0007) *** | −0.0016 | −0.0003 | (0.0015) *** | ||||
Farm households that did not adopt | −0.0586 | 0.0300 | −0.0617 | −206% | 0.0379 | 0.0576 | −0.0197 | −34% | |
−0.0004 | −0.0003 | (0.0004) *** | −0.0002 | −0.0002 | (0.0009) *** | ||||
Heterogeneity effects | 0.0547 | −0.0207 | 0.0137 | +66% | −0.0038 | −0.1027 | 0.0989 | +96% | |
(0.0006) *** | (0.0007) *** | (0.0008) *** | (0.0018) ** | (0.0004) *** | (0.0017) *** | ||||
Retention of between 30% and 60% residues (counterfactual: no residue retained at all) | Farm households that adopted | −0.0033 | −0.0287 | 0.0255 | +89% | 0.0208 | −0.0482 | 0.0691 | +143% |
−0.0001 | −0.0002 | (0.0003) *** | −0.0004 | −0.0003 | (0.0003) *** | ||||
Farm households that did not adopt | −0.0035 | 0.0077 | −0.0113 | −147% | 0.0219 | 0.0429 | −0.0210 | −49% | |
−0.0001 | −0.0001 | (0.0003) *** | −0.0004 | −0.0003 | (0.0003) *** | ||||
Heterogeneity effects | 0.0002 | −0.0365 | 0.0367 | +101% | −0.0011 | −0.0912 | 0.0901 | +99% | |
(0.0001) * | (0.0002) *** | (0.0003) *** | (0.0005) ** | (0.0004) *** | (0.0004) *** | ||||
Retention of 60% or above residues (counterfactual: no residue retained at all) | Farm households that adopted | 0.0022 | −0.0045 | 0.0067 | +149% | 0.0203 | 0.0330 | −0.0128 | −39% |
−0.0001 | −0.0004 | (0.0004) *** | −0.0007 | −0.0010 | (0.0013) *** | ||||
Farm households that did not adopt | 0.0035 | −0.0021 | 0.0056 | +267% | 0.0259 | 0.0307 | −0.0049 | −16% | |
−0.0001 | −0.0002 | (0.0002) *** | −0.0004 | −0.0007 | (0.0009) *** | ||||
Heterogeneity effects | −0.0013 | −0.0024 | 0.0011 | +46% | −0.0056 | 0.0023 | −0.0079 | −343% | |
(0.0001) *** | −0.0005 | (0.0005) ** | (0.0008) *** | (0.0013) * | (0.0017) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shater, T.; Yigezu, Y.A. Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands. Agronomy 2021, 11, 1465. https://doi.org/10.3390/agronomy11081465
El-Shater T, Yigezu YA. Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands. Agronomy. 2021; 11(8):1465. https://doi.org/10.3390/agronomy11081465
Chicago/Turabian StyleEl-Shater, Tamer, and Yigezu A. Yigezu. 2021. "Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands" Agronomy 11, no. 8: 1465. https://doi.org/10.3390/agronomy11081465
APA StyleEl-Shater, T., & Yigezu, Y. A. (2021). Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands. Agronomy, 11(8), 1465. https://doi.org/10.3390/agronomy11081465