Granulometric Parameters of Solid Blueberry Fertilizers and Their Suitability for Precision Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Particle Size of Blueberry Fertilisers
2.2. Shape of the Fertilizer Particles
2.3. Bulk Density of the Blueberry Fertilizers
2.4. The Mass-to-Volume Dependency of the Fertilizers
2.5. A Determination and Setting of the Dosing Mass for the Volumetric Dosing Unit
- As—the cross-sectional area of the fertilizer quantity in the groove, in mm2;
- l—working length of the groove in mm;
- γf,i—bulk density.
3. Results and Discussion
3.1. Granule Size in Blueberry Fertilizer
3.2. The Shape and Roughness of Fertilizer Particles
3.3. The Bulk Density of Blueberry Fertilizer
3.4. Mass Dosing by Volumetric Doser
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Starast, M.; Karp, K.; Noormets, M. The effect of foliar fertilisation on the growth and yield of lowbush blueberry in Estonia. Acta Hortic. 2002, 594, 679–684. [Google Scholar] [CrossRef]
- Olt, J.; Arak, M.; Jasinskas, A. Development of mechanical technology for low-bush blueberry cultivating in the plantation established on milled peat fields. Agric. Eng. 2013, 45, 120–131. [Google Scholar]
- Retamales, J.B.; Hancock, J.F. Blueberries (Crop Production Science in Horticulture Agriculture, Book 29), 2nd ed.; CABI Publishing: Wallingford, UK, 2018; 424p. [Google Scholar]
- Zydlik, Z.; Pacholak, E.; Rutkowski, K.; Styła, K. The influence of a mycorrhizal vaccine on a biochemical properties of soil in the plantation of blueberry. Zemdirb. Agric. 2016, 103, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Virro, I.; Arak, M.; Maksarov, V.; Olt, J. Precision fertilisation technologies for berry plantation. Agron. Res. 2020, 18 (Suppl. 4), 2797–2810. [Google Scholar] [CrossRef]
- Chang, Y.K.; Zaman, Q.; Farooque, A.A.; Schumann, A.W.; Percival, D.C. An automated yield monitoring system II for commercial wild blueberry double-head harvester. Comput. Electron. Agric. 2012, 81, 97–103. [Google Scholar] [CrossRef]
- Dubbini, M.; Pezzuolo, A.; De Giglio, M.; Gattelli, M.; Curzio, L.; Covi, D.; Yezekyan, T.; Marinello, F. Last generation instrument for agriculture multispectral data collection. Agric. Eng. Int. CIGR J. 2017, 19, 87–93. [Google Scholar]
- Grimstad, L.; Zakaria, R.; Le, T.D.; From, P.J. A Novel Autonomous Robot for Greenhouse Applications. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 8270–8277. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Hayashi, S.; Yoshida, H.; Kobayashi, K. Development of a Stationary Robotic Strawberry Harvester with a Picking Mechanism that Approaches the Target Fruit from Below. Jpn. Agric. Res. Q. 2014, 48, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Farooque, A.A.; Zaman, Q.U.; Schumann, A.W.; Madani, A.; Percival, D.C. Delineating management zones for site specific fertilization in wild blueberry fields. Appl. Eng. Agric. 2012, 28, 57–70. [Google Scholar] [CrossRef]
- Chen, C.; Pan, J.; Lam, S.K. A review of precision fertilization research. Environ. Earth Sci. 2014, 71, 4073–4080. [Google Scholar] [CrossRef]
- Ehret, D.L.; Frey, B.; Forge, T.; Helmer, T.; Bryla, D.R.; Zebarth, B.J. Effects of nitrogen rate and application method on early production and fruit quality in highbush blueberry. Can. J. Plant Sci. 2014, 94, 1165–1179. [Google Scholar] [CrossRef]
- Starast, M.; Karp, K.; Vool, E.; Paal, T.; Albert, T. Effect of NPK fertilization and elemental sulphur on growth and yield of lowbush blueberry. Agric. Food Sci. 2007, 1, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Paal, T.; Starast, M.; Noormets-Šanski, M.; Vool, E.; Tasa, T.; Karp, K. Influence of liming and fertilization on lowbush blueberry in harvested peat field condition. Sci. Hortic. 2011, 130, 157–163. [Google Scholar] [CrossRef]
- Leit, I. Effect of Genotype and Fertilization on the Chemical Composition of Blueberries under Organic Farming Conditions. Master’s Thesis, Eesti Maaülikool, Tartu, Estonia, 2017; 46p. [Google Scholar]
- Vainura, K. The Influence of Monterra Malt Fertilizers on the Productivity and Fruit Chemical Composition of Blueberry’s Selections (Vaccinium). Master’s Thesis, Eesti Maaülikool, Tartu, Estonia, 2018; 63p. [Google Scholar]
- Villette, S.; Gee, C.; Piron, E.; Martin, R.; Miclet, D.; Paindavoine, M. Centrifugal fertiliser spreading: Velocity and mass flow distribution measurement by image processing. In Proceedings of the International Conference on Agricultural Engineering, AgEng2010, Clermont-Ferrand, France, 6–8 September 2010. [Google Scholar]
- Bulgakov, V.; Adamchuk, V.; Arak, M.; Petrychenko, I.; Olt, J. Theoretical research into the motion of combined fertilizing and sowing tractor-implement unit. Agron. Res. 2020, 15, 1498–1516. [Google Scholar] [CrossRef]
- Bulgakov, V.; Adamchuk, V.; Kuvachov, V.; Shymko, L.; Olt, J. A theoretical and experimental study of combined agricultural gantry unit with a mineral fertilizer spreader. Agraarteadus J. Agric. Sci. 2020, 31, 139–146. [Google Scholar] [CrossRef]
- Aphale, A.; Bolander, N.; Park, J.; Shaw, L.; Svec, J.; Wassgren, C. Granular fertiliser particle dynamics on and off a spinner spreder. Biosyst. Eng. 2003, 85, 319–329. [Google Scholar] [CrossRef]
- Yule, I.; Pemberton, J. Spreading Blended Fertilisers. 22nd Annual FLRC Workshop. In Proceedings of the Nutrient Management in a Rapidly Changing World; Currie, L.-D., Lindsay, C.L., Eds.; Occasional Report No 22; Fertiliser and Lime Research Centre, Massey University: Palmerston North, New Zealand, 2009; pp. 243–249. [Google Scholar]
- Villette, S.; Cointault, F.; Zwaenepoel, P.; Chopinrt, B.; Paindavoine, M. Velosity measurement using motion blurred images to improve the quality of fertiliser spreading in agriculture. In Proceedings of the Eighth International Conference on Quality Control by Artificial Vision, Le Creusot, France, 23–25 May 2007. Art. 635601. [Google Scholar]
- Biocca, M.; Gallo, P.; Menesatti, P. Aerodynamic properties of six organo-mineral fertilizer particles. J. Agric. Eng. 2013, 44, 411–414. [Google Scholar]
- Dintwa, E.; Van Liedekerke, P.; Olislagers, R.; Tijskens, E.; Ramon, H. Model for simulation of particle flow on a centrifugal fertiliser spreader. Biosyst. Eng. 2004, 87, 407–415. [Google Scholar] [CrossRef]
- Bulgakov, V.; Adamchuk, O.; Pascuzzi, S.; Santoro, F.; Olt, J. Research into engineering and operating parameters of mineral fertilizer application machine with new fertilizer spreading tools. Agron. Res. 2021, 19, 676–686. [Google Scholar] [CrossRef]
- Fulton, J.; Port, K. Physical Properties of Granular Fertilizers and Impact on Spreading. The Ohio State University. FABE-550.1. 2016. Available online: https://ohioline.osu.edu/factsheet/fabe-5501 (accessed on 7 May 2021).
- Ivell, D.M.; Van Nyugen, T. The Evolution of Screening Systems for Optimum Granular Fertilizer Product Quality. Procedia Eng. 2014, 83, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Valius, G.; Simutis, R. Modeling of continuous fertilizer granulation-drying circuit for computer simulation and control purposes. In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics—Signal Processing, Systems Modeling and Control, Milan, Italy, 2–5 July 2009; pp. 98–103. [Google Scholar] [CrossRef] [Green Version]
Fertilizer | Color | N (%) | P (%) | K (%) | Bulk Density γ (kg m−3) |
---|---|---|---|---|---|
Agro NPK (SQM Qrop Top K) | green | 12 | 6 | 24 | 1030 |
Substral | white | 5 | 15 | 30 | 950 |
Agro Organic (Memon Siforga) | brown | 4 | 3 | 8 | 775 |
Parameter/Fertilizer | Substral | Agro NPK | Agro Organic |
---|---|---|---|
Diameter of granule d1 | 3.98 | 4.82 | 5.11 |
Diameter of granule d2 | 3.65 | 4.32 | 3.18 |
Diameter of granule d3 | 3.45 | 3.82 | 2.64 |
Mean diameter of granule dm,100, mm | 3.68 | 4.29 | 3.64 |
Minimum diameter dm,min, mm | 2.52 | 3.08 | 2.66 |
Maximum diameter dm,max, mm | 4.86 | 6.09 | 5.07 |
Sample variance | 0.22 | 0.28 | 0.19 |
Standard deviation | 0.47 | 0.53 | 0.44 |
Standard error | 0.047 | 0.053 | 0.044 |
Parameter | Mass m, g | Volume Vavg, mL | Bulk Density γavg, g cm−3 |
---|---|---|---|
Mean | 5.21 | 5.61 | 0.928 |
Standard error | 0.22 | 0.22 | 0.007 |
Median | 5.20 | 5.63 | 0.928 |
Standard deviation | 0.70 | 0.68 | 0.022 |
Sample variance | 0.49 | 0.47 | 0.0005 |
Range | 2.18 | 2.20 | 0.073 |
Minimum | 4.02 | 4.53 | 0.886 |
Maximum | 6.20 | 6.73 | 0.959 |
Count | 10 | 10 | 10 |
Parameter | Mass m, g | Volume Vavg, mL | Bulk Density γavg, g cm−3 |
---|---|---|---|
Mean | 2.37 | 3.76 | 0.631 |
Standard error | 0.11 | 0.17 | 0.003 |
Median | 2.40 | 3.80 | 0.631 |
Standard deviation | 0.35 | 0.53 | 0.010 |
Sample variance | 0.12 | 0.28 | 0.0001 |
Range | 1.16 | 1.73 | 0.033 |
Minimum | 1.73 | 2.80 | 0.616 |
Maximum | 2.88 | 4.53 | 0.649 |
Count | 10 | 10 | 10 |
Parameter | Mass m, g | Volume Vavg, mL | Bulk Density γavg, g cm−3 |
---|---|---|---|
Mean | 3.31 | 4.01 | 0.824 |
Standard error | 0.11 | 0.14 | 0.004 |
Median | 3.34 | 4.03 | 0.820 |
Standard deviation | 0.34 | 0.44 | 0.013 |
Sample variance | 0.12 | 0.19 | 0.00017 |
Range | 1.03 | 1.27 | 0.042 |
Minimum | 2.69 | 3.27 | 0.809 |
Maximum | 3.71 | 4.53 | 0.851 |
Count | 10 | 10 | 10 |
Test No. | Agro NPK | Agro Organic | Substral | |||
---|---|---|---|---|---|---|
Mass g | Volume mL | Mass g | Volume mL | Mass g | Volume mL | |
1 | 24.76 | 23 | 21.06 | 29 | 21.78 | 23 |
2 | 25.79 | 23 | 21.91 | 31 | 22.55 | 23 |
3 | 27.29 | 25 | 17.45 | 24 | 23.04 | 24 |
4 | 27.02 | 25 | 21.60 | 30 | 22.28 | 23 |
5 | 26.09 | 24 | 19.09 | 26 | 26.01 | 26 |
6 | 28.14 | 26 | 18.59 | 25 | 23.50 | 24 |
7 | 26.29 | 24 | 21.98 | 30 | 25.14 | 26 |
8 | 27.50 | 25 | 17.75 | 24 | 23.90 | 25 |
9 | 27.44 | 25 | 19.17 | 27 | 23.48 | 24 |
10 | 26.88 | 24 | 16.89 | 23 | 26.00 | 26 |
Mean | 26.72 | 24.4 | 19.55 | 26.9 | 23.77 | 24.4 |
Calculated | 19.00 | 20.5 | 13.70 | 20.5 | 16.87 | 20.5 |
Difference | 1.41 | 1.19 | 1.43 | 1.31 | 1.41 | 1.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lillerand, T.; Virro, I.; Maksarov, V.V.; Olt, J. Granulometric Parameters of Solid Blueberry Fertilizers and Their Suitability for Precision Fertilization. Agronomy 2021, 11, 1576. https://doi.org/10.3390/agronomy11081576
Lillerand T, Virro I, Maksarov VV, Olt J. Granulometric Parameters of Solid Blueberry Fertilizers and Their Suitability for Precision Fertilization. Agronomy. 2021; 11(8):1576. https://doi.org/10.3390/agronomy11081576
Chicago/Turabian StyleLillerand, Tormi, Indrek Virro, Viacheslav V. Maksarov, and Jüri Olt. 2021. "Granulometric Parameters of Solid Blueberry Fertilizers and Their Suitability for Precision Fertilization" Agronomy 11, no. 8: 1576. https://doi.org/10.3390/agronomy11081576
APA StyleLillerand, T., Virro, I., Maksarov, V. V., & Olt, J. (2021). Granulometric Parameters of Solid Blueberry Fertilizers and Their Suitability for Precision Fertilization. Agronomy, 11(8), 1576. https://doi.org/10.3390/agronomy11081576