Water Purification by Potassium Humate–C.I. Basic Blue 3 Adsorption-Based Interactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. Dye Contents and Concentrations
2.3. Adsorption Kinetics
2.4. Thermodynamics
2.5. Statistical Analysis
3. Results and Discussion
3.1. Spectrophotometry
3.2. Dye Adsorption
3.3. Humics–Dye Reaction Kinetics
3.4. Adsorption Isotherms and Thermodynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Strawn, D.G.; Bohn, H.L.; O’Connor, G.A. Soil Chemistry, 5th ed.; Wiley: Hoboken, NJ, USA, 2020; p. 51. [Google Scholar]
- Piccolo, A. The supramolecular structure of humic substances: A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Myneni, S.C.B.; Brown, J.T.; Martinez, G.A.; Meyer-Ilse, W. Imaging of humic substance macromolecular structures in water and soils. Science 1999, 286, 1335–1337. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.E.; Sharma, P.; Kappler, A. Surface binding site analysis of Ca2+-homoionized clay–humic acid complexes. J. Colloid Interface Sci. 2010, 352, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Perminova, I.V.; Hatfield, K. Remediation chemistry of humic substances: Theory and implications for technology. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Dordrecht, The Netherlands, 2005; p. 6. [Google Scholar]
- Sheng, G.-P.; Zhang, M.-L.; Yu, H.-Q. A rapid quantitative method for humic substances determination in natural waters. Anal. Chim. Acta 2007, 592, 162–167. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Suchithra, P.S. Adsorption characteristics of humic acid-immobilized amine modified polyacrylamide/bentonite composite for cationic dyes in aqueous solutions. J. Environ. Sci. 2009, 21, 884–891. [Google Scholar] [CrossRef]
- Peng, L.; Qin, P.; Lei, M.; Zeng, Q.; Song, H.; Yang, J.; Shao, J.; Liao, B.; Gu, J. Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. J. Hazard. Mater. 2012, 209–210, 193–198. [Google Scholar] [CrossRef]
- Mashkoor, F.; Nasar, A.; Asiri, A.M. Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using Tectona grandis sawdust as a very low-cost adsorbent. Sci. Rep. 2018, 8, 8314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Gao, Z.; Ji, Y.; Hu, X.; Sun, C.; Yang, S.; Wang, L.; Wang, Q.; Fang, D. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways. J. Hazard. Mater. 2015, 285, 127–136. [Google Scholar]
- Vreysen, S.; Maes, A. Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl. Clay Sci. 2008, 38, 237–249. [Google Scholar] [CrossRef]
- Janoš, P. Sorption of basic dyes onto iron humate. Environ. Sci. Technol. 2003, 37, 5792–5798. [Google Scholar] [CrossRef]
- Sepulveda, L.A.; Santana, C.C. Effect of solution temperature, pH and ionic strength on dye adsorption onto Magellanic peat. Environ. Technol. 2013, 34, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Vinod, V.P.; Anirudhan, T.S. Adsorption behaviour of basic dyes on the humic acid immobilized pillared clay. Water Air Soil Pollut. 2003, 150, 193–217. [Google Scholar] [CrossRef]
- Jones, M.N.; Bryan, N.D. Colloidal properties of humic substances. Adv. Colloid Interface Sci. 1998, 78, 1–48. [Google Scholar] [CrossRef]
- Klučáková, M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Angelico, R.; Ceglie, A.; He, J.-Z.; Liu, Y.-R.; Palumbo, G.; Colombo, C. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere 2014, 99, 239–247. [Google Scholar] [CrossRef]
- Klučáková, M.; Kalina, M. Composition, particle size, charge, and colloidal stability of pH-fractionated humic acids. J. Soils Sediments 2015, 15, 1900–1908. [Google Scholar] [CrossRef]
- Tarasevich, Y.I.; Dolenko, S.A.; Trifonova, M.Y.; Alekseenko, E.Y. Association and colloid-chemical properties of humic acids in aqueous solutions. Colloid J. 2013, 75, 207–213. [Google Scholar] [CrossRef]
- Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. Bih. K. Sven. Vetensk.-Akad. Handl. 1899, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Kinetic models for the sorption of dye from aqueous solution by wood. Trans. Inst. Chem. Eng. 1998, 76, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, F.J.; Schlenger, P.; García-Valverde, M. Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques. Sci. Total Environ. 2016, 541, 623–637. [Google Scholar] [CrossRef]
- Kang, S.; Xing, B. Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ. Sci. Technol. 2005, 39, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Korshin, G.V.; Li, C.-W.; Benjamin, M.M. Monitoring the properties of natural organic matter through UV spectroscopy: A consistent theory. Water Res. 1997, 31, 1787–1795. [Google Scholar] [CrossRef]
- Her, N.; Amy, G.; Sohn, J.; Gunten, U. UV absorbance ratio index with size exclusion chromatography (URI-SEC) as an NOM property indicator. J. Water Supply Res. Technol. 2008, 57, 35–44. [Google Scholar] [CrossRef]
- Santosa, S.J.; Krisbiantoro, P.A.; Yuniarti, M.; Koesnarpardi, K.S. Magnetically separable humic acid-functionalized magnetite for reductive adsorption of tetrachloroaurate(III) ion in aqueous solution. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100454. [Google Scholar]
- Khataee, A.R.; Fathinia, M.; Aber, S.; Zarei, M. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. J. Hazard. Mater. 2010, 181, 886–897. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc. 1960, 3973–3993. [Google Scholar] [CrossRef]
- Tipping, E. Cation Binding by Humic Substances; Cambridge University Press: Cambridge, UK, 2004; p. 156. [Google Scholar]
- Khataee, A.R.; Vafaei, F.; Jannatkhah, M. Biosorption of three textile dyes from contaminated water by filamentous green algal Spirogyra sp.: Kinetic, isotherm and thermodynamic studies. Int. Biodeter. Biodegr. 2013, 83, 33–40. [Google Scholar] [CrossRef]
- Crini, G. Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigm. 2008, 77, 415–426. [Google Scholar] [CrossRef]
- Ong, S.T.; Lee, C.K.; Zainal, Z. Removal of basic and reactive dyes using ethylenediamine modified rice hull. Bioresour. Technol. 2007, 98, 2792–2799. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, A.; Ali Shah, A.H.A.; Bilal, S.; Rahman, G. Basic Blue dye adsorption from water using polyaniline/magnetite (Fe3O4) composites: Kinetic and thermodynamic aspects. Materials 2019, 12, 1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.N.; Almeida, C.A.P.; Menezes, C.T.B.; Debacher, N.A.; Sierra, M.M.D. Removal of methylene blue from aqueous solution by peat. J. Hazard. Mater. 2007, 144, 412–419. [Google Scholar] [CrossRef]
- Lee, V.K.C.; Porter, J.F.; McKay, G. Modified design model for the adsorption of dye onto peat. Trans. Inst. Chem. Eng. 2001, 79, 21–26. [Google Scholar] [CrossRef]
- Allen, S.J.; McKay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef]
- Janoš, P.; Sĕdivý, P.; Rýznarová, M.; Grötschelová, S. Sorption of basic and acid dyes from aqueous solutions onto oxihumolite. Chemosphere 2005, 59, 881–886. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Derjaguin, B.; Landau, L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. USSR (Engl. Transl.) 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the stability of lyophobic colloids. J. Phys. Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Verwey, E.J.W.; Overbeek, J.T.G. Theory of the Stability of Lyophobic Colloids; Elsevier: Amsterdam, The Netherlands, 1948; pp. 135–185. [Google Scholar]
- Derjaguin, B.V.; Titijevskaia, A.S.; Abricossova, I.I.; Malkina, A.D. Investigations of the forces of interaction of surfaces in different media and their application to the problem of colloid stability. Discuss. Faraday Soc. 1954, 18, 24–41. [Google Scholar] [CrossRef]
- Li, Q.; Xie, L.; Jiang, Y.; Fortner, J.D.; Yu, K.; Liao, P.; Liu, C. Formation and stability of NOM–Mn(III) colloids in aquatic environments. Water Res. 2019, 149, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Wershaw, R.L. A new model for humic materials and their interactions with hydrophobic organic chemicals in soil–water or sediment–water systems. J. Contam. Hydrol. 1986, 1, 29–45. [Google Scholar] [CrossRef]
- Harbour, P.J.; Dixon, D.R.; Scales, P.J. The role of natural organic matter in suspension stability 2. Modelling of particle–particle interaction. Colloids Surf. A 2007, 295, 67–74. [Google Scholar] [CrossRef]
- Roulia, M.; Vassiliadis, A.A. Sorption characterization of a cationic dye retained by clays and perlite. Micropor. Mesopor. Mater. 2008, 116, 732–740. [Google Scholar] [CrossRef]
Adsorbent Concentration (g L−1) | pH | Dye Concentration (g L−1) | Dye Removal Efficiency (%) | Dye Adsorption (g Dye/g Adsorbent) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
287 K | 308 K | 323 K | 353 K | 287 K | 308 K | 323 K | 353 K | ||||
0.020 | 4.0 | 0.004 | 89.3 | 89.8 | 99.9 | 95.0 | 0.179 | 0.180 | 0.197 | 0.190 | |
0.020 | 55.1 | 53.5 | 63.3 | 53.8 | 0.551 | 0.535 | 0.633 | 0.538 | |||
0.020 | 7.3 | 0.004 | 91.0 | 96.9 | 93.5 | – | 0.185 | 0.194 | 0.187 | – | |
0.020 | 60.1 | 69.6 | 61.6 | – | 0.601 | 0.696 | 0.616 | – | |||
0.020 | 10.0 | 0.004 | 86.8 | 88.8 | – | – | 0.173 | 0.178 | – | – | |
0.020 | 57.3 | 61.5 | – | – | 0.573 | 0.615 | – | – |
Model | R2 | Rate Constant |
---|---|---|
Pseudo-first-order | 0.9939 | = 0.0152 min−1 |
Intraparticle diffusion | 0.9855 | K = 0.0055 g min−1/2g−1, C = 0.5509 |
Pseudo-second-order | 0.9997 | = 0.893 g (g min)−1 |
Equation | pH | R2 |
---|---|---|
Langmuir | 4.0 | 0.981 |
7.3 | 0.988 | |
10.0 | 0.985 | |
Freundlich | 4.0 | 0.960 |
7.3 | 0.900 | |
10.0 | 0.954 | |
BET | 4.0 | 0.982 |
7.3 | 0.988 | |
10.0 | 0.922 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roulia, M.; Vassiliadis, A.A. Water Purification by Potassium Humate–C.I. Basic Blue 3 Adsorption-Based Interactions. Agronomy 2021, 11, 1625. https://doi.org/10.3390/agronomy11081625
Roulia M, Vassiliadis AA. Water Purification by Potassium Humate–C.I. Basic Blue 3 Adsorption-Based Interactions. Agronomy. 2021; 11(8):1625. https://doi.org/10.3390/agronomy11081625
Chicago/Turabian StyleRoulia, Maria, and Alexandros A. Vassiliadis. 2021. "Water Purification by Potassium Humate–C.I. Basic Blue 3 Adsorption-Based Interactions" Agronomy 11, no. 8: 1625. https://doi.org/10.3390/agronomy11081625
APA StyleRoulia, M., & Vassiliadis, A. A. (2021). Water Purification by Potassium Humate–C.I. Basic Blue 3 Adsorption-Based Interactions. Agronomy, 11(8), 1625. https://doi.org/10.3390/agronomy11081625