Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Facilities
2.2. Experimental Design
2.3. Variables Analyzed
2.4. Statistical Analysis
3. Results
3.1. Body Weight and Milk Yield
3.2. Milk Mineral Profile
3.3. Lipid Profile of Milk
3.4. Plasma Metabolite Profile
4. Discussion
4.1. Body Weight and Milk Yield
4.2. Milk Mineral Profile
4.3. Lipid Profile of Milk
4.4. Plasma Metabolite Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Sánchez-Rodríguez, M. Gestión práctica y económica de una explotación caprina. In Jornada de Gestión Práctica y Económica de Explotaciones Caprinas y Ovinas; INTEROVIC Y SEOC.; Salón Internacional de la Avicultura y Ganadería: Seville, Spain, 2014. [Google Scholar]
- Ministerio de Agricultura; Pesca y Alimentación de España (MAPA). 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/resultados-de-anos-anteriores/default.aspx (accessed on 6 July 2021).
- Ros, M.; Pascual, J.A.; Ayuso, M.; Morales, A.B.; Miralles, J.R.; Solera, C. Estrategias Sostenibles Para un Manejo Integral de los Residuos y Subproductos Orgánicos de la Industria Agroalimentaria; Proyecto Life+ Agrowaste; CEBAS-CSIC, CTC y AGRUPAL: Murcia, Spain, 2012. [Google Scholar]
- García-Rodríguez, J.; Ranilla, M.J.; France, J.; Alaiz-Moretón, H.; Carro, M.D.; López, S. Chemical Composition, In Vitro Digestibility and Rumen Fermentation Kinetics of Agro-Industrial By-Products. Animals 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- Meneses, M.; Martínez-Marín, A.L.; Madrid, J.; Martínez-Teruel, A.; Hernández, F.; Megías, M.D. Ensilability, in vitro and in vivo values of the agro-industrial by-products of artichoke and broccoli. Environ. Sci. Pollut. Res. 2020, 27, 2919–2925. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.; Muelas, R.; Sandoval-Castro, C.A.; Sendra, E.; Díaz, J.R. Ensiling Process in Commercial Bales of Horticultural By-Products from Artichoke and Broccoli. Animals 2020, 10, 831. [Google Scholar] [CrossRef]
- Marsico, G.; Ragni, M.; Vicenti, A.; Jambrenghi, A.C.; Tateo, A.; Giannico, F.; Vonghia, G. The quality of meat from lambs and kids reared on feeds based on artichoke (cynara scolymus L.) bracts. Acta Hortic. 2005, 681, 489–494. [Google Scholar] [CrossRef]
- Jaramillo, D.; Buffa, M.; Rodríguez, M.; Pérez-Baena, I.; Guamis, B.; Trujillo, A.-J. Effect of the inclusion of artichoke silage in the ration of lactating ewes on the properties of milk and cheese characteristics during ripening. J. Dairy Sci. 2010, 93, 1412–1419. [Google Scholar] [CrossRef] [Green Version]
- Salman, F.M.; El-Nomeary, Y.A.A.; Abedo, A.A.; Abd El-Rahman, H.H.; Mohamed, M.I.; Ahmed, S.M. Utilization of artichoke (Cynara scolymus) by-products in sheep feeding. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 624–630. [Google Scholar]
- Monllor, P.; Romero, G.; Sendra, E.; Atzori, A.S.; Díaz, J.R. Short-Term Effect of the Inclusion of Silage Artichoke By-Products in Diets of Dairy Goats on Milk Quality. Animals 2020, 10, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muelas, R.; Monllor, P.; Romero, G.; Sayas-Barberá, E.; Navarro, C.; Díaz, J.R.; Sendra, E. Milk Technological Properties as Affected by Including Artichoke By-Products Silages in the Diet of Dairy Goats. Foods 2017, 6, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liotta, L.; Randazzo, C.L.; Russo, N.; Zumbo, A.; Di Rosa, A.R.; Caggia, C.; Chiofalo, V. Effect of Molasses and Dried Orange Pulp as Sheep Dietary Supplementation on Physico-Chemical, Microbiological and Fatty Acid Profile of Comisana Ewe’s Milk and Cheese. Front. Nutr. 2019, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Campione, A.; Natalello, A.; Valenti, B.; Luciano, G.; Rufino-Moya, P.J.; Avondo, M.; Morbidini, L.; Pomente, C.; Krol, B.; Wilk, M.; et al. Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes. Animals 2020, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monllor, P.; Muelas, R.; Roca, A.; Atzori, A.S.; Díaz, J.R.; Sendra, E.; Romero, G. Long-Term Feeding of Dairy Goats with Broccoli By-Product and Artichoke Plant Silages: Milk Yield, Quality and Composition. Animals 2020, 10, 1670. [Google Scholar] [CrossRef]
- Nudda, A.; Cannas, A.; Correddu, F.; Atzori, A.S.; Lunesu, M.F.; Battacone, G.; Pulina, G. Sheep and Goats Respond Differently to Feeding Strategies Directed to Improve the Fatty Acid Profile of Milk Fat. Animals 2020, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Use of microalgae in ruminant nutrition and implications on milk quality—A review. Livest. Sci. 2018, 214, 25–35. [Google Scholar] [CrossRef]
- Halmemies-Beauchet-Filleau, A.; Shingfield, K.J.; Simpura, I.; Kokkonen, T.J.; Jaakkola, S.; Toivonen, V.; Vanhatalo, A. Effect of incremental amounts of camelina oil on milk fatty acid composition in lactating cows fed diets based on a mixture of grass and red clover silage and concentrates containing camelina expeller. J. Dairy Sci. 2017, 100, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Fernández, C.; Sánchez-Séiquer, P.; Navarro, M.J.; Garcés, C. Modeling the Voluntary Dry Matter Intake in Murciano-Granadina Dairy Goats; 1st Joint Seminar of the FAO-CIHEAM Sheep and Goat Nutrition and Mountain and Mediterranean Pastures Subnetworks; CIHEAM-IAMZ: Granada, Spain, 2003; p. 96. [Google Scholar]
- INRA. Alimentation des Bovins, Ovins et Caprins; Jarrige, R., Ed.; INRA: Paris, France, 1988; p. 471. [Google Scholar]
- AOAC. Offcial Methods of Analysis, 16th ed.; Cunniff, P., Ed.; Association of Offcial Analytical Chemists: Washington, WA, USA, 1999. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary neutral detergent fibre and nonstarch polysacacharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Kim, D.-O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Liu, F.-X.; Fu, S.-F.; Bi, X.-F.; Chen, F.; Liao, X.-J.; Hu, X.-S.; Wu, J.-H. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China. Food Chem. 2013, 138, 396–405. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. 1988, 23, 103–116. [Google Scholar]
- Kramer, J.K.G.; Fellner, V.; Dugan, M.E.R.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef]
- González-Arrojo, A.; Soldado, A.; Vicente, F.; Fernández Sánchez, M.L.; Sanz-Medel, A.; de la Roza-Delgado, B. Changes on levels of essential trace elements in selenium naturally enriched milk. J. Food Nutr. Res. 2016, 4, 303–308. [Google Scholar]
- Gravert, H.O. Dairy Cattle Production; Elsevier Science: New York, NY, USA, 1987; p. 234. [Google Scholar]
- Schau, E.M.; Fet, A.M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 2008, 13, 255–264. [Google Scholar] [CrossRef]
- Romeu-Nadal, M.; Morera-Pons, S.; Casteltratamiento, A.I.; López-Sabater, M.C. Comparison of two methods for the extraction of fat from human milk. Anal. Chim. Acta 2004, 513, 457–461. [Google Scholar] [CrossRef]
- Nudda, A.; McGuire, M.; Battacone, G.; Pulina, G. Seasonal Variation in Conjugated Linoleic Acid and Vaccenic Acid in Milk Fat of Sheep and its Transfer to Cheese and Ricotta. J. Dairy Sci. 2005, 88, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Lock, A.; Garnsworthy, P. Seasonal variation in milk conjugated linoleic acid and D9-desaturase activity in dairy cows. Livest. Prod. Sci. 2003, 79, 47–59. [Google Scholar] [CrossRef]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Evaluation of the factors affecting silage intake of dairy cows: A revision of the relative silage dry-matter intake index. Animals 2007, 1, 758–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decandia, M.; Sitzia, M.; Cabiddu, A.; Kababya, D.; Molle, G. The use of polyethylene glycol to reduce the anti-nutritional effects of tannins in goats fed woody species. Small Rumin. Res. 2000, 38, 157–164. [Google Scholar] [CrossRef]
- Monllor, P.; Romero, G.; Atzori, A.S.; Sandoval-Castro, C.A.; Ayala-Burgos, A.J.; Roca, A.; Sendra, E.; Díaz, J.R. Composition, Mineral and Fatty Acid Profiles of Milk from Goats Fed with Different Proportions of Broccoli and Artichoke Plant By-Products. Foods 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R.F. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients 2019, 11, 2282. [Google Scholar] [CrossRef] [Green Version]
- Pfeuffer, M.; Jaudszus, A. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids. Adv. Nutr. 2016, 7, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Patel, M.; Wredle, E.; Bertilsson, J. Effect of dietary proportion of grass silage on milk fat with emphasis on odd- and branched-chain fatty acids in dairy cows. J. Dairy Sci. 2013, 96, 390–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, A.; Bernard, L.; Meynadier, A.; Malpuech-Brugère, C. Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: A review. Biochimie 2017, 141, 107–120. [Google Scholar] [CrossRef]
- Correddu, F.; Fancello, F.; Chessa, L.; Atzori, A.; Pulina, G.; Nudda, A. Effects of supplementation with exhausted myrtle berries on rumen function of dairy sheep. Small Rumin. Res. 2018, 170, 51–61. [Google Scholar] [CrossRef]
- Ganguly, R.; Hasanally, D.; Stamenkovic, A.; Maddaford, T.G.; Chaudhary, R.; Pierce, G.N.; Ravandi, A. Alpha linolenic acid decreases apoptosis and oxidized phospholipids in cardiomyocytes during ischemia/reperfusion. Mol. Cell. Biochem. 2017, 437, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Rivas, J.; Rossini, M.; Colmenares, O.; Salvador, A.; Morantes, M.; Valerio, D. Effect of feeding on the profile metabolic goats in canary in the tropics. In Proceedings of the 4th Symposium of the Latin American Association in Animal Science, Quevedo, Ecuador, 13–15 November 2014; pp. 125–132. [Google Scholar]
- Ghasemi, S.; Naserian, A.A.; Valizadeh, R.; Tahmasebi, A.M.; Vakili, A.R.; Behgar, M. Effects of pistachio by-product in replacement of lucerne hay on microbial protein synthesis and fermentative parameters in the rumen of sheep. Anim. Prod. Sci. 2012, 52, 1052. [Google Scholar] [CrossRef] [Green Version]
- McMahon, L.; McAllister, T.; Berg, B.; Majak, W.; Acharya, S.; Popp, J. A review of the eects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant. Sci. 2000, 80, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Rapetti, L.; Bava, L. Feeding management of dairy goats in intensive systems. In Dairy Goats Feeding and Nutrition; Cannas, A., Pulina, G., Eds.; CABI Editorial: Wallingford, UK, 2008; p. 221. [Google Scholar]
Item | Diets | |||
---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | |
Ingredients (g/100 g DM) | ||||
Alfalfa hay | 37.5 | 13.2 | 4.83 | - |
Grain mix | 62.5 | 61.8 | 55.8 | 29.0 |
Oats | - | - | - | 10.2 |
ABS | - | 24.7 | 38.7 | 60.0 |
Premix vitamins/minerals | - | 0.311 | 0.696 | 0.880 |
Chemical composition | ||||
DM (g/kg FM) | 872 | 422 | 322 | 231 |
g/kg DM | ||||
OM | 932 | 936 | 936 | 920 |
EE | 65.3 | 57.7 | 58.5 | 48.9 |
CP | 162 | 160 | 157 | 145 |
NDF | 399 | 321 | 371 | 459 |
ADF | 218 | 183 | 205 | 294 |
ADL | 63.1 | 40.8 | 36.2 | 116 |
TP | 3.87 | 7.95 | 7.75 | 14.7 |
IVDMD | 715 | 739 | 804 | 769 |
1 ME | 2.66 | 2.13 | 2.51 | 2.44 |
VFA and fermentative metabolites (g/kg DM) | ||||
Lactate | n.d. | 3.99 | 23.5 | 3.66 |
Acetate | n.d. | 2.63 | 3.12 | 8.74 |
Propionate | n.d. | 3.70 | n.d. | n.d. |
Butyrate | n.d. | 9.80 | n.d. | 23.7 |
Ethanol | n.d. | 2.49 | 4.13 | 8.85 |
Ammonia N | n.d. | 4.01 | 4.01 | 8.95 |
Fatty acids profile (g/100 g total fatty acids) | ||||
C6:0 | 0.061 | 1.49 | 0.163 | 7.94 |
C12:0 | 0.183 | 0.156 | 0.225 | 0.057 |
C14:0 | 0.440 | 0.500 | 0.435 | 0.251 |
C16:0 | 17.2 | 18.4 | 16.8 | 14.0 |
C16:1 cis9 | 0.300 | 0.388 | 0.303 | 0.235 |
C18:0 | 3.25 | 3.25 | 3.05 | 1.54 |
C18:1 cis9 | 26.4 | 23.0 | 27.0 | 18.6 |
C18:1 cis11 | 1.06 | 0.962 | 1.16 | 0.798 |
C18:2n6 | 44.0 | 41.5 | 41.9 | 29.4 |
C18:3n3 | 4.07 | 2.83 | 4.48 | 4.85 |
C20:0 | 0.463 | 0.440 | 0.431 | 0.327 |
C20:1n9 | 0.323 | 0.297 | 0.373 | 0.375 |
C22:0 | 0.457 | 0.439 | 0.449 | 0.121 |
C24:0 | 0.336 | 0.368 | 0.457 | 0.439 |
SFA | 23.3 | 30.5 | 23.9 | 45.1 |
MUFA | 28.2 | 25.0 | 29.1 | 20.3 |
PUFA | 48.7 | 44.5 | 47.2 | 34.8 |
Mineral profile | ||||
Na (g/kg DM) | 2.89 | 2.59 | 3.28 | 3.11 |
Mg (g/kg DM) | 2.66 | 2.57 | 2.62 | 2.86 |
K (g/kg DM) | 13.5 | 17.7 | 19.7 | 23.5 |
Ca (g/kg DM) | 5.90 | 6.24 | 5.64 | 5.33 |
P (g/kg DM) | 2.76 | 3.95 | 3.64 | 4.00 |
S (g/kg DM) | 2.89 | 2.94 | 2.71 | 2.89 |
Se (mg/kg DM) | 0.198 | 0.288 | 0.119 | 0.100 |
Zn (mg/kg DM) | 49.4 | 73.8 | 55.4 | 46.5 |
Cu (mg/kg DM) | 6.15 | 7.42 | 6.63 | 8.20 |
Fe (mg/kg DM) | 129 | 230 | 133 | 160 |
Mn (mg/kg DM) | 42.1 | 51.5 | 31.7 | 28.3 |
Variable | Diets | Significance | ||||||
---|---|---|---|---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | SEM | Diet | Sampling | Diet × Sampling | |
Average body weight (kg) | 44.2 a | 42.4 b | 42.3 b | 42.2 b | 0.565 | * | * | *** |
Milk yield (kg/day) | 2.39 a | 2.33 a | 2.26 ab | 1.91 b | 0.139 | * | ns | * |
LSCC (Log10 cell/mL) | 5.57 | 5.71 | 5.58 | 5.59 | 0.103 | ns | ** | ns |
FCM (kg/day) | 2.55 a | 2.46 ab | 2.50 a | 2.00 b | 0.163 | * | ns | ns |
Fat (%) | 3.74 | 3.97 | 4.04 | 4.20 | 0.205 | ns | ns | ns |
Protein (%) | 3.35 | 3.33 | 3.40 | 3.41 | 0.079 | ns | ns | ns |
FPCM (kg/day) | 2.37 a | 2.30 a | 2.30 a | 1.87 b | 0.142 | * | ns | ns |
UTS (%) | 7.12 | 7.31 | 7.44 | 7.57 | 0.223 | ns | ns | * |
True protein (%) | 3.12 | 3.10 | 3.16 | 3.17 | 0.070 | ns | ns | ns |
Casein (%) | 2.66 | 2.64 | 2.73 | 2.70 | 0.062 | ns | ns | ns |
Whey protein (%) | 0.462 | 0.470 | 0.433 | 0.457 | 0.018 | ns | ** | ** |
Lactose (%) | 4.24 | 4.22 | 4.33 | 4.25 | 0.045 | ns | * | *** |
Total solids (%) | 12.0 | 12.2 | 12.4 | 12.3 | 0.227 | ns | ns | ns |
NFTS (%) | 8.72 | 8.72 | 8.84 | 8.71 | 0.099 | ns | ns | * |
Ash (%) | 0.618 ab | 0.656 a | 0.598 ab | 0.568 b | 0.032 | * | ns | ns |
Milk urea (mg/L) | 597 | 549 | 533 | 542 | 24.4 | ns | ns | ns |
Mineral | Diets | SEM | Significance | |||
---|---|---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | |||
Na (g/kg MS) | 2.59 | 2.44 | 2.50 | 2.96 | 0.314 | ns |
Mg (g/kg MS) | 0.888 | 0.896 | 0.864 | 0.921 | 0.069 | ns |
P (g/kg MS) | 6.00 | 5.98 | 6.38 | 5.91 | 0.437 | ns |
S (g/kg MS) | 2.45 | 2.43 | 2.60 | 2.41 | 0.118 | ns |
K (g/kg MS) | 12.0 | 12.5 | 11.4 | 11.5 | 0.724 | ns |
Ca (g/kg MS) | 8.85 | 8.79 | 8.87 | 8.39 | 0.533 | ns |
Mn (mg/kg MS) | 0.203 b | 0.236 b | 0.328 a | 0.316 a | 0.017 | ** |
Fe (mg/kg MS) | 2.95 | 2.27 | 2.72 | 2.34 | 0.304 | ns |
Cu (mg/kg MS) | 0.697 | 0.522 | 0.474 | 0.378 | 0.066 | ns |
Zn (mg/kg MS) | 28.3 | 23.3 | 25.9 | 21.3 | 3.54 | ns |
Se (mg/kg MS) | 0.102 | 0.104 | 0.112 | 0.094 | 0.009 | ns |
Fatty Acid | Diets | SEM | Significance | |||
---|---|---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | |||
C4:0 | 2.20 | 2.75 | 2.79 | 2.75 | 0.239 | ns |
C6:0 | 3.10 | 3.58 | 3.78 | 3.48 | 0.361 | ns |
C7:0 | 0.053 | 0.043 | 0.071 | 0.054 | 0.007 | ns |
C8:0 | 4.25 | 4.41 | 5.18 | 4.00 | 0.882 | ns |
C9:0 | 0.064 | 0.068 | 0.083 | 0.080 | 0.007 | ns |
C10:0 | 13.3 | 14.8 | 15.3 | 14.4 | 2.02 | ns |
C10:1 c9 | 0.039 | 0.035 | 0.040 | 0.034 | 0.006 | ns |
C11:0 | 0.186 | 0.172 | 0.168 | 0.186 | 0.008 | ns |
C12:0 | 3.20 a | 2.94 ab | 2.77 b | 2.66 b | 0.144 | ** |
C12:1 c9 | 0.032 | 0.027 | 0.025 | 0.025 | 0.004 | ns |
iso C13:0 | 0.017 | 0.021 | 0.021 | 0.021 | 0.003 | ns |
anteiso C13:0 | 0.025 | 0.029 | 0.023 | 0.030 | 0.003 | ns |
iso C14:0 | 0.055 | 0.051 | 0.052 | 0.070 | 0.007 | ns |
C14:0 | 7.61 | 7.07 | 6.63 | 6.98 | 0.334 | ns |
iso C15:0 | 0.167 | 0.162 | 0.139 | 0.162 | 0.026 | ns |
anteiso C15:0 | 0.233 | 0.192 | 0.199 | 0.213 | 0.012 | ns |
C14:1 c9 | 0.074 | 0.050 | 0.061 | 0.072 | 0.012 | ns |
C15:0 | 0.653 ab | 0.566 c | 0.605 bc | 0.689 a | 0.028 | * |
C15:1 | 0.072 | 0.048 | 0.063 | 0.054 | 0.009 | ns |
iso C16:0 | 0.165 c | 0.201 b | 0.194 b | 0.240 a | 0.013 | *** |
C16:0 | 21.6 | 20.7 | 20.0 | 23.3 | 2.03 | ns |
C16:1 t4 | 0.038 | 0.000 | 0.008 | 0.050 | 0.019 | ns |
C16:1 t5 | 0.024 b | 0.000 b | 0.000 b | 0.053 a | 0.013 | * |
C16:1 t6–7 | 0.106 | 0.072 | 0.115 | 0.092 | 0.062 | ns |
C16:1 t9 | 0.200 | 0.156 | 0.207 | 0.159 | 0.043 | ns |
C16:1 t10 | 0.028 | 0.015 | 0.029 | 0.001 | 0.016 | ns |
C16:1 t11–12 | 0.009 | 0.026 | 0.029 | 0.036 | 0.014 | ns |
C16:1 c7 | 0.201 | 0.180 | 0.184 | 0.153 | 0.022 | ns |
C16:1 c9 | 0.428 | 0.401 | 0.442 | 0.483 | 0.049 | ns |
C16:1 c10 | 0.029 | 0.000 | 0.028 | 0.024 | 0.017 | ns |
C16:1 c11 | 0.000 | 0.000 | 0.003 | 0.003 | 0.002 | ns |
iso C17:0 | 0.243 | 0.246 | 0.271 | 0.204 | 0.029 | ns |
anteiso C17:0 | 0.280 | 0.228 | 0.267 | 0.224 | 0.022 | ns |
C17:0 | 0.566 | 0.455 | 0.495 | 0.552 | 0.031 | ns |
C17:1 c6–7 | 0.040 | 0.054 | 0.050 | 0.049 | 0.007 | ns |
C17:1 c8 | 0.000 | 0.000 | 0.005 | 0.000 | 0.002 | ns |
C17:1 c9 | 0.095 b | 0.104 b | 0.116 b | 0.174 a | 0.014 | * |
iso C18:0 | 0.032 | 0.036 | 0.046 | 0.048 | 0.010 | ns |
C18:0 | 14.0 a | 13.8 a | 13.3 ab | 12.3 b | 0.657 | * |
C18:1 t4 | 0.070 | 0.048 | 0.068 | 0.060 | 0.010 | ns |
C18:1 t5 | 0.029 | 0.025 | 0.031 | 0.027 | 0.006 | ns |
C18:1 t6–8 | 0.197 a | 0.148 b | 0.187 a | 0.128 b | 0.013 | *** |
C18:1 t9 | 0.273 a | 0.232 b | 0.212 bc | 0.183 c | 0.017 | *** |
C18:1 t10 | 0.289 | 0.2000 | 0.110 | 0.167 | 0.079 | ns |
C18:1 t11 | 1.32 b | 1.22 b | 2.20 a | 0.881 b | 0.250 | * |
C18:1 t12 | 0.478 ab | 0.419 b | 0.510 a | 0.282 c | 0.024 | *** |
C18:1 t13–14 | 0.060 | 0.148 | 0.124 | 0.000 | 0.059 | ns |
C18:1 t15–16 | 0.425 a | 0.407 a | 0.350 b | 0.331 b | 0.014 | *** |
C18:1 c9 | 18.5 | 16.5 | 17.4 | 18.1 | 2.56 | ns |
C18:1 c11 | 0.056 | 0.051 | 0.042 | 0.007 | 0.044 | ns |
C18:1 c12 | 0.582 a | 0.537 a | 0.565 a | 0.462 b | 0.026 | ** |
C18:1 c13 | 0.128 | 0.114 | 0.124 | 0.104 | 0.010 | ns |
C18:1 c15 | 0.207 | 0.204 | 0.195 | 0.178 | 0.009 | ns |
C18:2 c9.t13 | 0.268 a | 0.189 b | 0.194 b | 0.193 b | 0.015 | ** |
C18:2 t8.c13 | 0.100 a | 0.081 b | 0.071 b | 0.074 b | 0.006 | * |
C18:2 c9.t12 | 0.157 | 0.101 | 0.095 | 0.093 | 0.017 | ns |
C18:2 t11.c15 | 0.011 b | 0.006 b | 0.027 a | 0.012 b | 0.004 | ** |
C18:2n6 | 2.62 a | 2.56 ab | 2.88 a | 2.25 b | 0.171 | * |
C20:0 | 0.229 a | 0.214 b | 0.187 c | 0.209 b | 0.007 | ** |
C18:3n6 | 0.017 | 0.026 | 0.026 | 0.025 | 0.006 | ns |
C20:1 c9 | 0.013 | 0.001 | 0.007 | 0.007 | 0.006 | ns |
C20:1 c11 | 0.037 | 0.061 | 0.057 | 0.049 | 0.006 | ns |
C18:3n3 | 0.182 a | 0.146 b | 0.151 b | 0.134 b | 0.012 | * |
CLA c9.t11 | 0.446 | 0.433 | 0.631 | 0.401 | 0.187 | ns |
CLA t9.c11 | 0.044 | 0.041 | 0.041 | 0.037 | 0.006 | ns |
CLA t10.c12 | 0.025 | 0.020 | 0.018 | 0.033 | 0.010 | ns |
CLA t12.14 | 0.016 | 0.013 | 0.014 | 0.022 | 0.006 | ns |
C20:2n6 | 0.031 | 0.040 | 0.036 | 0.038 | 0.007 | ns |
C20:2n9 | 0.000 b | 0.000 b | 0.003 a | 0.000 b | 0.001 | * |
C20:3n9 | 0.073 | 0.073 | 0.054 | 0.057 | 0.008 | ns |
C22:0 | 0.024 | 0.026 | 0.018 | 0.024 | 0.007 | ns |
C20:4n6 | 0.146 | 0.145 | 0.142 | 0.164 | 0.011 | ns |
C23:0 | 0.025 | 0.030 | 0.023 | 0.028 | 0.006 | ns |
C22:2n6 | 0.000 | 0.016 | 0.015 | 0.005 | 0.008 | ns |
C24:0 | 0.048 | 0.0144 | 0.026 | 0.057 | 0.063 | ns |
Variable | Diets | SEM | Significance | |||
---|---|---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | |||
SFA | 72.5 | 73.3 | 72.1 | 72.7 | 1.80 | ns |
MUFA | 23.5 | 22.0 | 23.1 | 23.0 | 2.23 | ns |
PUFA | 4.13 ab | 3.93 b | 4.37 a | 3.53 c | 0.192 | * |
UFA | 27.3 | 26.1 | 27.4 | 26.7 | 1.86 | ns |
SFA/UFA | 2.65 | 2.83 | 2.68 | 2.74 | 0.255 | ns |
SCFA | 23.1 | 25.6 | 27.1 | 24.8 | 3.57 | ns |
MCFA | 36.4 | 34.2 | 33.4 | 36.7 | 1.44 | ns |
LCFA | 39.9 | 40.1 | 39.2 | 37.9 | 2.77 | ns |
OBCFA | 2.84 | 2.51 | 2.67 | 2.84 | 0.128 | ns |
∑CLA | 0.596 | 0.543 | 0.592 | 0.505 | 0.117 | ns |
n3 | 0.179 | 0.145 | 0.153 | 0.136 | 0.011 | ns |
n6 | 2.80 a | 2.77 ab | 3.06 a | 2.44 b | 0.173 | * |
n6/n3 | 16.1 | 19.2 | 20.2 | 18.7 | 1.16 | ns |
AI | 2.07 a | 2.09 a | 1.90 b | 2.10 a | 0.080 | ** |
TI | 3.26 ab | 3.36 a | 3.05 b | 3.29 ab | 0.154 | ** |
DI C14:0 | 0.009 | 0.007 | 0.009 | 0.011 | 0.002 | ns |
DI C16:0 | 0.051 | 0.041 | 0.050 | 0.045 | 0.004 | ns |
DI C18:0 | 1.56 b | 1.47 b | 1.66 ab | 1.78 a | 0.106 | *** |
Variable | Diets | SEM | Significance | |||||
---|---|---|---|---|---|---|---|---|
C | ABS25 | ABS40 | ABS60 | Diet | Sampling | Diet × Sampling | ||
Glucose (mg/dL) | 44.8 | 46.3 | 47.0 | 44.5 | 1.44 | ns | *** | ** |
Urea (mg/dL) | 52.5 a | 44.0 b | 39.5 bc | 35.1 c | 1.73 | *** | ** | ** |
BHB (mmol/L) | 0.319 b | 0.524 a | 0.444 ab | 0.318 b | 0.054 | * | ns | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monllor, P.; Muelas, R.; Roca, A.; Bueso-Ródenas, J.; Atzori, A.S.; Sendra, E.; Romero, G.; Díaz, J.R. Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats. Agronomy 2021, 11, 1649. https://doi.org/10.3390/agronomy11081649
Monllor P, Muelas R, Roca A, Bueso-Ródenas J, Atzori AS, Sendra E, Romero G, Díaz JR. Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats. Agronomy. 2021; 11(8):1649. https://doi.org/10.3390/agronomy11081649
Chicago/Turabian StyleMonllor, Paula, Raquel Muelas, Amparo Roca, Joel Bueso-Ródenas, Alberto Stanislao Atzori, Esther Sendra, Gema Romero, and José Ramón Díaz. 2021. "Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats" Agronomy 11, no. 8: 1649. https://doi.org/10.3390/agronomy11081649
APA StyleMonllor, P., Muelas, R., Roca, A., Bueso-Ródenas, J., Atzori, A. S., Sendra, E., Romero, G., & Díaz, J. R. (2021). Effect of the Short-Term Incorporation of Different Proportions of Ensiled Artichoke By-Product on Milk Parameters and Health Status of Dairy Goats. Agronomy, 11(8), 1649. https://doi.org/10.3390/agronomy11081649