A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Combined Nutrient/Biocontrol Agent Mixture
2.2. Effect of Timing of Combined Nutrient/Biocontrol Agent Mixture Foliar Spray on Growth, Yield, Starch, and CMD
2.3. Interaction Effect of Timing of Combined Nutrient/Biocontrol Agent Mixture Foliar Spray and Genotypes on Yield Attributes, Tuber Yield, Starch, and CMD Incidence
2.4. Multilocation Validation of Combined Nutrient/Biocontrol Agent Mixture Foliar Spray on Tuber Yield, Starch, and CMD
2.5. Impact of Combined Nutrient/Biocontrol Agent Mixture on Cassava Leaf Octadecatrienoic Acid and Trilinolein
3. Statistical Analysis
4. Results
4.1. Effect of Timing of Combined Nutrient/Biocontrol Agent Mixture Spray on Growth, Yield Components, Tuber Yield, Starch, and CMD Incidence
4.2. Effect of Timing of Combined Nutrient/Biocontrol Agent Mixture Spray and Genotypes on Yield, Starch, and CMD Incidence in Different Genotypes of Cassava
4.3. Frontline Demonstration to Confirm the Effect of Combined Nutrient/Biocontrol Agent Mixture Spray and Genotypes on Yield, Starch, and CMD Incidence
4.4. Effect of Combined Nutrient/Biocontrol Agent Mixture Spray at Multilocation Trial
4.5. Relationship among Cassava Tuber Yield, Starch, and Cassava Mosaic Disease Incidence
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Fauquet, C.; Fargette, D. African cassava mosaic virus: Etiology, epidemiology and control. Plant Dis. 1990, 74, 404–411. [Google Scholar] [CrossRef]
- Chauynarong, N.; Elangovan, A.V.; Iji, P.A. The potential of cassava products in diets for poultry. World Poult. Sci. J. 2009, 65, 23–36. [Google Scholar] [CrossRef]
- Garcia, M.; Dale, N. Cassava root meal for poultry. J. Appl. Poult. Res. 1999, 8, 132–137. [Google Scholar] [CrossRef]
- Alves, A.A.; Setter, T.L. Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop. Sci. 2000, 40, 131–137. [Google Scholar] [CrossRef]
- Bull, S.E.; Ndunguru, J.; Gruissem, W.; Beeching, J.R.; Vanderschuren, H. Cassava: Constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep. 2011, 30, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Chi, Y.; Pan, C.-L.; Bouvaine, S.; Fan, Y.-Y.; Liu, Y.-Q.; Liu, S.-S.; Seal, S.; Wang, X.-W. Differential transmission of Sri Lankan cassava mosaic virus by three cryptic species of the whitefly Bemisia tabaci complex. Virology 2020, 540, 141–149. [Google Scholar] [CrossRef]
- Liu, S.S.; Colvin, J.; De Barro, P.J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there? J. Integr. Agric. 2012, 11, 176–186. [Google Scholar] [CrossRef]
- Alabi, O.J.; Kumar, P.L.; Naidu, R.A. Cassava Mosaic Disease: A curse to food security in Sub-Saharan Africa. APSnet Features 2011. [Google Scholar] [CrossRef]
- Baranwal, V.K.; Verma, H. Antiviral Phytoproteins as Biocontrol Agents for Efficient Management of Plant Virus Diseases. In Biocontrol Potential and its Exploitation in Sustainable Agriculture; Springer: Boston, MA, USA, 2000; pp. 71–79. [Google Scholar]
- Gupta, N.; Debnath, S.; Sharma, S.; Sharma, P.; Purohit, J. Role of Nutrients in Controlling the Plant Diseases in Sustainable Agriculture. In Agriculturally Important Microbes for Sustainable Agriculture; Meena, V., Mishra, P., Bisht, J., Pattanayak, A., Eds.; Springer: Singapore, 2017. [Google Scholar] [CrossRef]
- Elmer, W.H. Using Mineral Nutrition to Suppress Plant Disease. The Connecticut Agricultural Experiment Station Report. 2015.
- Graham, D.K.; Webb, M.J. Micronutrients and disease resistance and tolerance in plants. In Micronutrients in Agriculture, 2nd ed.; Mortvelt, J.J., Cox, F.R., Shumen, L.M., Weloh, R.M., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 1991; pp. 329–370. [Google Scholar]
- Devdas, C. Role of nutrients in controlling plant disease in Sustainable Agriculture: A review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar]
- Manivasagam, S.; Rabindran, R.; Balasubramanian, P.; Natarajan, S. Studies on cassava mosaic disease with special reference to detection and virus variability. In Proceedings of the 14th Triennial Symposium of International Society for Tropical Root Crops, Central Tuber Crops Re-Search Institute, Sreekariyam, Thiruvananthapuram, Kerala, India, 20–26 November 2006; p. 153. [Google Scholar]
- Rabindran, R. Survey for the occurrence of cassava mosaic disease in Tamil Nadu. J. Root Crops 2011, 37, 197–199. [Google Scholar]
- Dasgupta, I.; Malathi, V.G.; Mukherjee, S.K. Genetic engineering for virus resistance. Curr. Sci. 2003, 84, 340–354. [Google Scholar]
- Gupta, K.K.; Aneja, K.R.; Rana, D. Current status of cow dung as a bioresource for sustainable development. Bioresour. Bioprocess. 2016, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Latini, A.; Giagnacovo, G.; Campiotti, C.A.; Bibbiani, C.; Mariani, S. A Narrative Review of the Facts and Perspectives on Agricultural Fertilization in Europe, with a Focus on Italy. Horticulturae 2021, 7, 158. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef]
- Hodge, J.E.; Hofreiter, B.T. Determination of reducing sugars and carbohydrates. In Methods in Carbohydrate Chemistry; Whistler, R.L., Wolfrom, M.L., Eds.; Academic Press: New York, NY, USA, 1962; pp. 380–394. [Google Scholar] [CrossRef]
- Fargette, D.; Fauquet, C.; Thouvenel, J.C. Field studies on the spread of African cassava mosaic. Ann. Appl. Biol. 1985, 106, 285–294. [Google Scholar] [CrossRef]
- Otim-Nape, G.W.; Thresh, J.M.; Shaw, M.W. The incidence and severity of Cassava mosaic virus disease in Uganda: 1990–1992. Trop. Sci. 1998, 38, 25–37. [Google Scholar]
- Hahn, S.K.; Terry, E.R.; Leuschner, K. Breeding cassava for resistance to cassava mosaic disease. Euphytica 1980, 29, 673–683. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry based metabolite profiling in plants. Nature Protocols. 2006, 1, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Ezui, K.S.; Franke, A.C.; Ahiabor, B.D.K.; Tetteh, F.M.; Sogbedji, J.; Janssen, B.H.; Mando, A.; Giller, K.E. Understanding cassava yield response to soil and fertilizer nutrient supply in West Africa. Plant Soil 2017, 420, 331–347. [Google Scholar] [CrossRef] [Green Version]
- IFA. IFA World Fertilizer Use Manual; International Fertilizer Industry Association: Paris, France, 1992. [Google Scholar]
- Jansson, S.L. Potassium Requirements of Root Crops. In Potassium Requirements of Crops; IPI Research Topic No. 7; International Potash Institute: Bern, Switzerland, 1980; pp. 47–62. [Google Scholar]
- Malavolta, E.; Graner, L.A.; Coury, T.; Sobr, M.O.C.B.; Pacheco, J.A.C. Studies on the mineral nutrition of cassava (Manihot urilissima Pohl.). Plant Physiol. 1955, 30, 81–82. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995; p. 889. [Google Scholar]
- Ohashi, Y.; Matsuoka, M. Localization of pathogenesis-related proteins in the epidermis and intercellular spaces of tobacco-leaves after their induction by potassium salicylate or tobacco mosaic-virus infection. Plant Cell Physiol. 1987, 28, 1227–1235. [Google Scholar]
- Thalooth, A.T.; Tawfik, M.M.; Mohamed, M.H. A comparative study on the effect of foliar application of zinc, potassium and magnesium in growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. World J. Agric. Sci. 2006, 2, 37–46. [Google Scholar]
- Aznar, A.; Chen, N.W.H.; Thomine, S.; Dellagi, A. Immunity to plant pathogen and iron homeostasis. Plant Sci. 2015, 240, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Khaing, F.I.; Ahmed, Z.M.; Yun, W.M.; Ismail, M.R. Effect of silicon, copper and zinc application on sheath blight disease severity on rice. World J. Agric. Res. 2014, 2, 309–314. [Google Scholar] [CrossRef]
- Wang, S. Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J. Microbiol. Biotechnol. 2009, 19, 1250–1258. [Google Scholar] [CrossRef]
- You, C.; Zhang, C.; Kang, F.; Feng, C.L.; Wang, J. Comparison of the effects of biocontrol agent Bacilus subtilis and fungicide metalaxyl mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol. Eng. 2016, 91, 119–125. [Google Scholar] [CrossRef]
- Zhang, S.; Reddy, M.S.; Kloepper, J.W. Tobacco growth enhancement and blue mold disease protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain 90–166. Plant Soil 2004, 262, 277–288. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, D.L.; Shen, L.L.; Jing, C.L.; Zhay, C.S. Application and mechanisms of Bacillus subtilis in biological control of plant disease. In Role of Rhizospheric Microbes in Soil; Springer Naatural Singapore Pvt Ltd.: Singapore, 2018; pp. 225–250. [Google Scholar]
- Esawy, M.A.; Ahmed, E.F.; Helmy, W.A.; Mansour, N.M.; El-Senousy, W.M.; El-Safty, M.M. Production of levansucrase from novel honey Bacillus subtilis isolates capable of producing antiviral levans. Carbohydr. Polym. 2011, 86, 823–830. [Google Scholar] [CrossRef]
- Chan, P.; Hong, C.Y.; Tomlinson, B.; Chang, N.C.; Chen, J.P.; Cheng, J.T. Myocardial protective effect of trilinolein: An antioxidant isolated from the medicinal plant Panax pseudoginseng. Life Sci. 1997, 61, 1999–2006. [Google Scholar] [CrossRef]
- Liechti, R.; Farmer, E.E. Jasmonate biochemical pathway. Sci. STKE 2006, 322, cm3. [Google Scholar] [CrossRef]
- Blechert, S.; Brodschelm, W.; Holder, S.; Kammerer, L.; Kutchan, T.M.; Mueller, M.J.; Xia, Z.Q.; Zenk, M.H. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 1995, 92, 4099–4105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaller, F. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J. Exp. Bot. 2001, 52, 11–23. [Google Scholar] [CrossRef]
Components | Special Features |
---|---|
Cow dung | Humic compounds and fertilizing bioelements are present in cow dung, which can promote plant growth. In addition, odor acts as a repellent for the insect vector. |
Neem cake | Neem cake contains macro and micronutrients. Sulphur compound in neem cake has a negative effect on insects. All the components in it are needed for plant growth. |
Bacillus subtilis | It has a biopesticide property against seed and soil-borne diseases and also produces metabolites related to growth-promoting and disease prevention. |
Nutrient mixture | Improves plant growth, development, induces enzymes involved in disease resistance mechanisms. Spraying the nutrient mixture can alleviate the deficiency symptoms. |
Description of Damage Caused by Virus | Scale |
---|---|
No damage | 1 |
Mild damage with mild chlorosis at base of leaves | 2 |
Most of the leaves were affected and expressed mosaic pattern, Narrowing and distortion of the lower leaflets. | 3 |
Severe damage with mosaic pattern, distortion of 2/3rd of leaves, reduction in leaf size and stunting of shoots | 4 |
Very severe damage with mosaic pattern on all leaves and distorted leaves | 5 |
Treatment | Traits | |||||||
---|---|---|---|---|---|---|---|---|
Plant Height (cm) | Stem Girth (cm) | Number of Tubers Plant−1 | Tuber Length (cm) | Tuber Girth (cm) | Tuber Yield (kg) | Starch (%) | CMD% | |
T1 | 273 a | 8.655 a | 8.51 a,b | 30.92 a | 19.65 b | 34.60 a | 27.50 a | 8.50 c |
T2 | 193 b | 8.655 a | 9.16 a | 33.68 a | 23.16 a | 37.35 a | 28.25 a | 13.25 b |
T3 | 194 b | 8.100 a | 8.02 b | 31.93 a | 23.55 a | 36.65 a | 28.0 a | 13.70 b |
Control | 184 b | 6.715 b | 6.84 c | 27.97 b | 17.88 b | 31.25 b | 26.5 a | 33.45 a |
LSD (p < 0.05) | 18.5 | 0.77 | 0.84 | 2.89 | 2.05 | 3.23 | NS | 2.04 |
Main Effects | Number of Tubers Plant−1 | Tuber Girth (cm) | Tuber Yield (kg Plant−1) | Starch (%) |
---|---|---|---|---|
Time of combined nutrient/biocontrol agent mixture spray | ||||
T1 | 5.84 b | 18.80 b | 34.8 b | 27.00 a,b |
T2 | 6.37 a | 23.89 a | 39.0 a | 28.16 a |
T3 | 4.86 c | 18.52 b | 36.0 a,b | 27.16 a,b |
Control | 4.52 c | 17.78 b | 31.5 c | 26.00 b |
LSD | 0.40 *** | 1.44 *** | 2.52 *** | NS |
Genotypes | ||||
Kungumarose | 4.14 b | 20.55 a | 34.35 b | 26.25 a |
H226 | 7.84 a | 19.34 a,b | 38.80 a | 27.75 a |
Mulluvadi | 4.21 b | 19.29 b | 32.80 b | 27.25 a |
LSD | 0.35 *** | NS | 2.18 *** | NS |
Foliar Spray | Tuber Length (cm) | CMD (%) | ||||||
---|---|---|---|---|---|---|---|---|
Genotypes | ||||||||
Kungumarose | H226 | Mulluvadi | Mean | Kungumarose | H226 | Mulluvadi | Mean | |
T1 | 23.97 f,g | 31.25 b,c | 22.90 g,h | 26.04 b | 9.3 f | 10.0 e,f | 9.0 f | 9.43 d |
T2 | 36.38 a | 32.95 a,b | 29.45 c,d,e | 32.92 a | 9.6 e,f | 12.3 d | 11.4 d,e | 11.10 c |
T3 | 26.85 e,f | 27.45 d,e | 20.12 h,i | 24.80 b | 12.4 d | 14.7 c | 12.3 d | 13.13 b |
Control | 30.55 b,c,d | 27.30 d,e,f | 17.84 i | 25.23 b | 29.3 b | 38.5 a | 27.6 d | 31.80 a |
Mean | 29.43 a | 29.73 a | 22.57 b | 15.15 b | 18.87 a | 15.07 b | ||
LSD | T = 2.008 ***; G = 1.73 ***; T × G = 1.73 *** | T = 1.17 ***; G = 1.01 ***; T × G = 2.03 *** |
Main Effects | Tuber Yield (kg Plant−1) | Starch (%) |
---|---|---|
Foliar spray | ||
T1 | 30.5 b | 25.75 a |
Control | 36.5 a | 26.62 a |
LSD | 2.22 *** | NS |
Genotypes | ||
Mulluvadi | 29.75 c | 27.5 a |
YTP 1 | 40.75 a | 24.75 b |
Kungumarose | 29.50 c | 25.0 b |
H226 | 34.00 b | 27.5 a |
LSD | 3.14 *** | 2.26 * |
Foliar Spray | CMD Incidence (%) | ||||
---|---|---|---|---|---|
Genotypes | |||||
Mulluvadi | YTP 1 | Kungumarose | H226 | Mean | |
T1 | 13.5 d,e | 11.2 e | 14.5 d | 15.0 d | 13.55 b |
Control | 32.0 b | 23.0 c | 31.0 b | 35.0 a | 30.25 a |
Mean | 22.75 b | 17.10 c | 22.75 b | 25.00 a | |
LSD | T = 1.39 ***; G = 1.97 ***; T × G = 2.78 *** |
Treatment | Traits | ||
---|---|---|---|
Tuber Yield (kg Plant−1) | Starch (%) | CMD (%) | |
T1 | 33.01 a | 27.41 a | 12.416 b |
Control | 26.525 b | 25.12 b | 35.491 a |
LSD (p < 0.05) | 0.93 *** | 0.69 ** | 2.09 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neelakandan, K.; Karuppasami, K.M.; Karuppusamy, N.; Shanmugam, K.P.; Lakshmanan, P.; Subramanian, S.; Ramasamy, V.S.; Mariyappan, D.; Muthusamy, V.; Maduraimuthu, D. A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease. Agronomy 2021, 11, 1650. https://doi.org/10.3390/agronomy11081650
Neelakandan K, Karuppasami KM, Karuppusamy N, Shanmugam KP, Lakshmanan P, Subramanian S, Ramasamy VS, Mariyappan D, Muthusamy V, Maduraimuthu D. A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease. Agronomy. 2021; 11(8):1650. https://doi.org/10.3390/agronomy11081650
Chicago/Turabian StyleNeelakandan, Kumar, Kalarani M. Karuppasami, Nageswari Karuppusamy, Kavitha P. Shanmugam, Pugalendhi Lakshmanan, Suganya Subramanian, Venkatachalam S. Ramasamy, Deivamani Mariyappan, Velmurugan Muthusamy, and Djanaguiraman Maduraimuthu. 2021. "A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease" Agronomy 11, no. 8: 1650. https://doi.org/10.3390/agronomy11081650
APA StyleNeelakandan, K., Karuppasami, K. M., Karuppusamy, N., Shanmugam, K. P., Lakshmanan, P., Subramanian, S., Ramasamy, V. S., Mariyappan, D., Muthusamy, V., & Maduraimuthu, D. (2021). A Combined Nutrient/Biocontrol Agent Mixture Improve Cassava Tuber Yield and Cassava Mosaic Disease. Agronomy, 11(8), 1650. https://doi.org/10.3390/agronomy11081650