Tillage and Liquid Dairy Manure Effects on Overland Flow Nitrogen and Phosphorus Loss Potential in an Upper Midwest Corn Silage-Winter Triticale Cropping System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site and Experimental Design
2.2. Manure Application and Tillage Treatments
2.3. Rainfall-Overland Flow Simulations
2.4. Plant and Soil Measures
2.5. Statistical Analysis
3. Results and Discussion
3.1. Weather
3.2. Manure and Tillage Effects on Soil Nutrient Concentrations and Total Carbon
3.3. Manure and Tillage Effects on Overland Flows
3.4. Manure and Tillage Effects on Overland Flow Nitrogen Loss
3.5. Manure and Tillage Effects on Overland Flow Phosphorus and Sediment Loss
3.6. Plot Surface Coverage and Overland Flow Water Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grande, J.D.; Karthikeyan, K.G.; Miller, J.L.; Powell, J.M. Residue level and manure application timing effects on runoff and sediment losses. J. Environ. Qual. 2005, 34, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- Grande, J.D.; Karthikeyan, K.G.; Miller, P.S.; Powell, J.M. Corn residue level and manure application timing effects of phosphorus losses in runoff. J. Environ. Qual. 2005, 34, 1620–1634. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, P.J.; Sharpley, A.N.; Moyer, B.G.; Elwinger, G.F. Effect of mineral and manure phosphorus sources on runoff phosphorus. J. Environ. Qual. 2002, 31, 2026–2033. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.F.; Young, E.O.; Coblentz, W.K.; Cavadini, J. Runoff water quality following low-disturbance manure application in an alfalfa-grass hay crop forage system. J. Environ. Qual. 2020, 49, 663–674. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Casler, M.D.; Coblentz, W.K.; Cavadini, J. Influence of soil and manure management practices on surface runoff phosphorus and nitrogen loss in a corn silage production system: A paired watershed approach. Soil Syst. 2021, 5, 1. [Google Scholar] [CrossRef]
- Smith, K.A.; Jackson, D.R.; Pepper, T.J. Nutrient losses by surface run-off following the application of organic manures to arable land. Nitrogen. Environ. Pollut. 2001, 112, 41–51. [Google Scholar] [CrossRef]
- Withers, P.J.A.; Clay, S.D.; Breeze, V.G. Phosphorus transfer in runoff following application of fertilizer, manure, and sewage sludge. J. Environ. Qual. 2001, 30, 180–188. [Google Scholar] [CrossRef]
- Jokela, W.E.; Coblentz, W.K.; Hoffman, P.C. Dairy heifer manure management, dietary phosphorus and soil test P effects on runoff phosphorus. J. Environ. Qual. 2012, 41, 1600–1611. [Google Scholar] [CrossRef] [Green Version]
- Jokela, W.E.; Sherman, J.; Cavadini, J. Nutrient runoff losses from liquid dairy manure applied with low-disturbance methods. J. Environ. Qual. 2016, 45, 1672–1679. [Google Scholar] [CrossRef]
- Little, J.L.; Bennett, D.R.; Miller, J.J. Nutrient and sediment losses under simulated rainfall following manure incorporation by different methods. J. Environ. Qual. 2005, 34, 1883–1895. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Good, L.W.; Jokela, W.E.; Karthikeyan, K.G.; Arriaga, F.J.; Stock, M. Quantifying the impact of seasonal and short-term manure application decisions on phosphorus loss in surface runoff. J. Environ. Qual. 2017, 46, 1395–1402. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; King, K.W.; Ford, W.; Buda, A.R.; Kennedy, A.C. Effect of tillage on macropore flow and phosphorus transport to tile drains. Water Res. Resear. 2016, 52, 2868–2882. [Google Scholar] [CrossRef] [Green Version]
- Bundy, L.G.; Andraski, T.W.; Powell, J.M. Management practice effects on phosphorus losses in runoff in corn production systems. J. Environ. Qual. 2001, 30, 1822–1828. [Google Scholar] [CrossRef] [Green Version]
- Eghball, B.; Gilley, J.E. Phosphorus and nitrogen in runoff following beef cattle manure or compost application. J. Environ. Qual. 1999, 28, 1201–1210. [Google Scholar] [CrossRef]
- Yague, M.R.; Andraski, T.W.; Laboski, C.A.M. Manure composition and incorporation effects on phosphorus in runoff following corn biomass removal. J. Environ. Qual. 2011, 40, 1963–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.J.; Meisinger, J.J.; Decker, A.M.; Mulford, F.R. Effects of a grass selective herbicide in a vetch-rye cover crop system on corn grain yield and soil moisture. Agron. J. 2007, 99, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, T.C.; Radke, J.K.; Laflen, J.M. Small grain cover crops and wheel traffic effects on infiltration, runoff, and erosion. J. Soil Water Conserv. 2001, 56, 160–164. [Google Scholar]
- Kaspar, T.C.; Jaynes, D.B.; Parkin, T.B.; Moorman, T.B. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage. J. Environ. Qual. 2007, 36, 1503–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otte, B.; Mirsky, S.B.; Schomberg, H.; Davis, B.; Tully, K. Effect of cover crop termination timing on pools and fluxes of inorganic nitrogen in no-till corn. Agron. J. 2019, 111, 2832–2842. [Google Scholar] [CrossRef]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 2018, 47, 1400–1411. [Google Scholar] [CrossRef]
- Shelton, D.P. Crop residue cover and manure incorporation Part I: Reduction of percent cover. Appl. Eng. Agric. 2004, 20, 605–611. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Singer, J.W. The use of cover crops to manage soil. In Soil Management: Building a Solid Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; ASA-SSSA: Madison, WI, USA, 2011. [Google Scholar]
- Ewing, R.P.; Wagger, M.G.; Denton, H.P. Tillage and cover crop management effects on soil water and corn yield. Soil Sci. Soc. Am. J. 1991, 55, 1081–1085. [Google Scholar] [CrossRef]
- Raimbault, B.A.; Vyn, T.J.; Tollenaar, M. Corn response to rye cover crop management and spring tillage systems. Agron. J. 1990, 82, 1088–1093. [Google Scholar] [CrossRef]
- Raimbault, B.A.; Vyn, T.J.; Tollenaar, M. Corn response to rye cover crop, tillage methods, and planter options. Agron. J. 1991, 83, 287–290. [Google Scholar] [CrossRef]
- Clark, A.J.; Decker, A.M.; Meisinger, J.J.; McIntosh, M.S. Kill date of vetch, rye, and a vetch-rye mixture: II. Soil moisture and corn yield. Agron. J. 1997, 89, 434–441. [Google Scholar] [CrossRef]
- Duiker, S.W.; Curran, W.S. Rye cover crop mananagement for corn production in the northern Mid-Atlantic region. Agron. J. 2005, 97, 1413–1418. [Google Scholar] [CrossRef]
- Moore, E.B.; Wiedenhoeft, M.H.; Kaspar, T.C.; Cambardella, C.A. Rye cover crop effects on soil quality in no-till corn silage-soybean cropping systems. Soil Sci. Soc. Am. J. 2014, 78, 968–976. [Google Scholar] [CrossRef]
- Reed, H.K.; Karsten, H.D.; Curran, W.S.; Tooker, J.F.; Duiker, S.W. Planting green effects on corn and soybean production. Agron. J. 2019, 111, 2314–2325. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Ayuso, M.; Gabriel, J.L.; Quemada, M. The kill date as amanagement tool for cover cropping success. PLoS ONE 2014, 9, e109587. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Timing of cover-crop management effects on weed suppression in no-till planted soybean using a roller-crimper. Weed Sci. 2011, 59, 380–389. [Google Scholar] [CrossRef]
- Qi, Z.; Helmers, M.J. Soil water dynamics under winter rye cover crop in central Iowa. Vadose Zone J. 2010, 9, 53–60. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistence of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Young, E.O.; Ross, D.S.; Jaisi, D.P.; Vidon, P.G. Phosphorus transport along the cropland–riparian–stream continuum in cold climate agroecosystems: A review. Soil Syst. 2021, 5, 15. [Google Scholar] [CrossRef]
- Griffith, K.E.; Young, E.O.; Klaiber, L.B.; Kramer, S.R. Winter rye cover crop impacts on runoff water quality in a northern New York (USA) tile-drained maize agroecosystem. Water Air Soil Pollut. 2020, 231, 84. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Porter, P.M.; Baker, J.M. Winter rye cover crop management influences on soil water, soil nitrate, and corn development. Agron. J. 2011, 103, 316–323. [Google Scholar] [CrossRef]
- Peters, J. Recommended Methods of Manure Analysis; University of Wisconsin-Extension: Madison, WI, USA, 2003. [Google Scholar]
- Peters, J. Wisconsin Procedures for Soil Testing, Plant Analysis and Feed and Forage Analysis. 2013. Available online: https://uwlab.soils.wisc.edu/about-us/lab-procedures-and-methods/ (accessed on 8 May 2018).
- Humphrey, J.B.; Daniel, T.C.; Edwards, D.R.; Sharpley, A.N. A portable rainfall simulator for plot-scale runoff studies. Appl. Eng. Agric. 2002, 18, 199–204. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Method for Determining Sediment Concentration in Water Samples; ASTM International: West Conshohocken, PA, USA, 2000. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 1995. [Google Scholar]
- Patton, C.J.; Kryskalla, J.R. Methods of Analysis by the US Geological Survey National Water Quality Laboratory: Evaluation of Alkaline Persulfate Digestion as an Alternative to Kjeldahl Digestion for the Determination of Total and Dissolved Nitrogen and Phosphorus in Water; US Department of the Interior, US Geological Survey: Denver, CO, USA, 2000.
- Diamond, D. Determination of Orthophosphate in Waters by Flow Injection Analysis; QuikChem Method 10-115-01-1-P; Lachat Instruments: Loveland, CO, USA, 2007. [Google Scholar]
- Pritzlaff, D. Determination of Nitrate/Nitrite in Surface and Wastewaters by Flow Injection Analysis; QuikChem Method 10-107-04-1-C; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- Prokopy, W. Determination of Ammonia by Flow Injection Analysis; QuikChem Method 10-107-06-2-A; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- Booth, D.T.; Cox, S.E.; Berryman, R.D. Point sampling digital imagery with SamplePoint. Environ. Monit. Assess. 2006, 123, 97–108. [Google Scholar] [CrossRef]
- Egan, L. Determination of Ammonia by Flow Injection Analysis (High Throughput, Salicylate Method/DCIC for Multi Matrices); QuikChem Method 90-107-06-3-A; Lachat Instruments: Loveland, CO, USA, 2011. [Google Scholar]
- Harbridge, J. Determination of Nitrate in 2M KCl Soil Extracts by Flow Injection Analysis; Quikchem Method 12-107-04-1-J; Lachat Instruments: Loveland, CO, USA, 2007. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight 3. Organic matter (LOI) loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Jr., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Laboski, C.A.M.; Peters, J.B. Nutrient Application Guidelines for Field, Vegetable, and Fruit Crops in Wisconsin; University of Wisconsin-Extension: Madison, WI, USA, 2012. [Google Scholar]
- Gilley, J.E.; Bartelt-Hunt, S.L.; Lamb, S.J.; Li, X.; Snow, D.D.; Woodbury, B.L. Runoff nutrient transport as affected by land application method, swine growth stage, and runoff rate. Trans. ASAE 2013, 56, 1295–1303. [Google Scholar]
- Mueller, D.H.; Wendt, R.C.; Daniel, T.C. Phosphorus losses as affected by tillage and manure application. Soil Sci. Soc. Am. J. 1984, 48, 901–905. [Google Scholar] [CrossRef] [Green Version]
- McDowell, R.; Sharpley, A.N. Phosphorus transport in overland flow in response to position of manure application. J. Environ. Qual. 2002, 31, 217–227. [Google Scholar] [CrossRef]
- Verbree, D.A.; Duiker, S.W.; Kleinman, P.J. Runoff losses of sediment and phosphorus from no-till and cultivated soils receiving dairy manure. J. Environ. Qual. 2010, 39, 1762–1770. [Google Scholar] [CrossRef] [PubMed]
- Daverede, I.C.; Kravchenko, A.N.; Hoeft, R.G.; Nafziger, E.D.; Bullock, D.G.; Warren, J.J.; Gonzini, L.C. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer. J. Environ. Qual. 2004, 33, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Burkitt, L.L.; Dougherty, W.J.; Carlson, S.M.; Donaghy, D.J. Effect of variable soil phosphorus on phosphorus concentrations in simulated surface runoff under intensive dairy pastures. Aust. J. Soil. Res. 2010, 48, 231–237. [Google Scholar] [CrossRef]
- Pote, D.H.; Daniel, T.C.; Moore, P.A.; Nichols, D.J.; Sharpley, A.N.; Edwards, D.R. Relating extractable soil phosphorus to phosphorus losses in runoff. Soil Sci. Soc. Am. J. 1996, 60, 855. [Google Scholar] [CrossRef]
- Vadas, P.A.; Kleinman, P.J.; Sharpley, A.N.; Turner, B.L. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [Green Version]
Treatment | OM † | Total N | Total C | Bray-1-P | Bray-1-K |
---|---|---|---|---|---|
% | g kg−1 | mg kg−1 | |||
Control | 4.7 b‡ | 2.4 a | 24.5 b | 32.3 bc | 235 b |
Broadcast | 4.9 a | 2.5 a | 25.4 a | 36.6 ab | 302 a |
Vertical | 4.8 ab | 2.5 a | 25.4 a | 36.8 a | 285 a |
Chisel | 4.4 c | 2.2 b | 22.5 c | 28.8 c | 227 b |
CV †† | 6 | 6 | 5 | 6 | 3 |
p-value ‡‡ | <0.001 | <0.001 | <0.001 | 0.008 | <0.001 |
Treatment | Runoff | TP † | TN | DRP | NO3−-N | NH4+-N | SS | TDS | VS |
---|---|---|---|---|---|---|---|---|---|
mm | g ha−1 | kg ha−1 | |||||||
Simulation 1 | |||||||||
Control | 0.05 | 0.19 bc ‡ | 3.19 b | 0.07 b | 1.38 | 0.42 | 0.08 bc | 0.32 b | 0.17 b |
Broadcast | 0.31 | 7.25 a | 36.3 a | 3.72 a | 12.2 | 9.95 | 1.95 a | 2.62 a | 1.39 a |
Vertical | 0.01 | 0.06 c | 0.84 c | 0.03 b | 0.37 | 0.20 | 0.05 c | 0.08 c | 0.06 c |
Chisel | 0.08 | 0.32 b | 4.60 b | 0.13 ab | 2.86 | 0.72 | 0.16 b | 0.34 b | 0.20 b |
CV | 43 | 65 | 103 | 51 | 5216 | 159 | 40 | 65 | 44 |
p-value | NS | 0.05 | 0.06 | 0.10 | NS | NS | 0.05 | 0.07 | 0.07 |
Simulation 2 | |||||||||
Control | 0.07 | 0.51 | 3.96 | 0.31 | 2.70 | 0.14 | 0.15 | 0.35 b | 0.29 |
Broadcast | 0.08 | 1.99 | 14.4 | 0.54 | 3.70 | 0.39 | 0.40 | 1.37 b | 1.19 |
Vertical | 0.52 | 2.59 | 26.3 | 0.83 | 20.1 | 0.03 | 1.28 | 2.43 ab | 2.00 |
Chisel | 0.98 | 7.69 | 55.5 | 1.17 | 36.6 | 0.01 | 6.97 | 6.19 a | 4.65 |
CV | 96 | 168 | 92 | 112 | 147 | 41 | 258 | 2692 | 554 |
p-value | NS | NS | NS | NS | NS | NS | NS | 0.03 | NS |
Simulation 3 | |||||||||
Control | 0.17 | 1.26 | 27.2 | 0.54 | 16.9 | 1.01 | 0.42 | 1.33 | 0.82 |
Broadcast | 0.36 | 3.11 | 35.7 | 0.64 | 21.7 | 0.96 | 2.92 | 3.12 | 2.17 |
Vertical | 0.27 | 2.46 | 34.1 | 0.56 | 20.7 | 0.69 | 1.58 | 1.83 | 1.26 |
Chisel | 1.37 | 11.8 | 120 | 1.44 | 67.6 | 2.26 | 25.8 | 11.4 | 8.04 |
CV | 112 | 112 | 126 | 146 | 170 | 233 | 1258 | 1251 | 818 |
p-value | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Simulation 4 | |||||||||
Control | 0.42 | 2.54 | 32.4 | 0.76 | 25.8 | 0.18 | 1.45 | 2.78 | 1.15 |
Broadcast | 0.75 | 7.20 | 68.3 | 1.10 | 48.6 | 0.40 | 9.81 | 3.87 | 2.22 |
Vertical | 0.30 | 1.79 | 22.5 | 0.22 | 17.0 | 0.02 | 1.36 | 1.95 | 0.91 |
Chisel | 4.26 | 31.5 | 271 | 2.67 | 164 | 0.46 | 63.8 | 26.1 | 13.7 |
CV | 167 | 253 | 54 | 204 | 62 | 67 | 437 | 175 | 324 |
p-value | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Treatment | TP † | TN | DRP | NO3−-N | NH4+-N | SS | TDS | VS |
---|---|---|---|---|---|---|---|---|
mg/L | ||||||||
Simulation 1 | ||||||||
Control | 0.30 | 5.36 b ‡ | 0.20 | 3.04 | 1.00 | 126 | 514 | 274 c |
Broadcast | 1.12 | 7.41 a | 0.51 | 3.30 | 1.69 | 375 | 518 | 281 bc |
Vertical | 0.57 | 7.57 a | 0.25 | 3.53 | 1.92 | 335 | 703 | 485 a |
Chisel | 0.65 | 6.49 ab | 0.29 | 3.16 | 1.12 | 372 | 559 | 384 ab |
CV | 72 | 16 | 53 | 14 | 50 | 10 | 21 | 21 |
p-value | NS | 0.10 | NS | NS | NS | NS | NS | 0.03 |
Simulation 2 | ||||||||
Control | 0.97 | 5.91 | 0.66 b | 3.95 | 0.23 b | 274 | 531 | 495 |
Broadcast | 1.45 | 6.14 | 1.23 a | 9.11 | 0.38 a | 172 | 584 | 510 |
Vertical | 0.66 | 5.42 | 0.25 b | 3.91 | 0.04 c | 357 | 526 | 513 |
Chisel | 0.93 | 5.63 | 0.18 b | 3.95 | 0.02 c | 522 | 490 | 653 |
CV | 54 | 19 | 102 | 28 | 31 | 69 | 9 | 7 |
p-value | NS | NS | 0.03 | NS | 0.0003 | NS | NS | NS |
Simulation 3 | ||||||||
Control | 0.53 | 11.4 | 0.19 | 6.24 | 1.37 | 433 b | 1011 | 596 |
Broadcast | 0.73 | 8.27 | 0.18 | 4.83 | 0.23 | 509 b | 592 | 393 |
Vertical | 0.87 | 12.6 | 0.23 | 7.76 | 0.25 | 582 b | 801 | 671 |
Chisel | 0.75 | 9.09 | 0.12 | 5.55 | 0.24 | 1158 a | 608 | 423 |
CV | 27 | 32 | 23 | 40 | 73 | 28 | 25 | 5 |
p-value | NS | NS | NS | NS | NS | 0.06 | NS | NS |
Simulation 4 | ||||||||
Control | 0.54 | 7.38 | 0.17 | 5.69 | 0.07 | 296 | 644 | 224 |
Broadcast | 0.81 | 7.48 | 0.13 | 5.01 | 0.07 | 854 | 618 | 304 |
Vertical | 0.51 | 6.73 | 0.08 | 5.00 | 0.02 | 375 | 666 | 293 |
Chisel | 0.70 | 6.48 | 0.06 | 4.21 | 0.01 | 1236 | 591 | 309 |
CV | 44 | 24 | 48 | 31 | 105 | 14 | 8 | 22 |
p-value | NS | NS | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherman, J.F.; Young, E.O.; Cavadini, J. Tillage and Liquid Dairy Manure Effects on Overland Flow Nitrogen and Phosphorus Loss Potential in an Upper Midwest Corn Silage-Winter Triticale Cropping System. Agronomy 2021, 11, 1775. https://doi.org/10.3390/agronomy11091775
Sherman JF, Young EO, Cavadini J. Tillage and Liquid Dairy Manure Effects on Overland Flow Nitrogen and Phosphorus Loss Potential in an Upper Midwest Corn Silage-Winter Triticale Cropping System. Agronomy. 2021; 11(9):1775. https://doi.org/10.3390/agronomy11091775
Chicago/Turabian StyleSherman, Jessica F., Eric O. Young, and Jason Cavadini. 2021. "Tillage and Liquid Dairy Manure Effects on Overland Flow Nitrogen and Phosphorus Loss Potential in an Upper Midwest Corn Silage-Winter Triticale Cropping System" Agronomy 11, no. 9: 1775. https://doi.org/10.3390/agronomy11091775