Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacterial Endophytes
2.2. MALDI-TOF MS and Data Analysis
2.3. rrs Gene Analysis
2.4. Plant Growth Assays under Hydroponic Conditions
2.5. Microcosm Assay
2.6. Statistical Analysis
3. Results
3.1. MALDI-TOF MS Analysis
3.2. rrs Gene Analysis
3.3. Hydroponic Conditions Test
3.4. Microcosm Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loganes, C.; Ballali, S.; Minto, C. Main Properties of Canola Oil Components: A Descriptive Review of Current Knowledge. Open Agric. J. 2016, 10, 69–74. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Using canola oil biodiesel as an alternative fuel in diesel engines: A review. Appl. Sci. 2017, 7, 881. [Google Scholar] [CrossRef]
- Hegewald, H.; Wensch-Dorendorf, M.; Sieling, K.; Christen, O. Impacts of break crops and crop rotations on oilseed rape productivity: A review. Eur. J. Agron. 2018, 101, 63–77. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 April 2021).
- Fernández-Tirado, F.; Parra-López, C.; Romero-Gámez, M. A multi-criteria sustainability assessment for biodiesel alternatives in Spain: Life cycle assessment normalization and weighting. Renew. Energy 2021, 164, 1195–1203. [Google Scholar] [CrossRef]
- Riaz, U.; Mehdi, S.M.; Iqbal, S.; Khalid, H.I.; Qadir, A.A.; Anum, W.; Ahmad, M.; Murtaza, G. Bio-fertilizers: Eco-Friendly Approach for Plant and Soil Environment. In Bioremediation and Biotechnology; Hakeem, K., Bhat, R., Qadri, H., Eds.; Springer: Cham, Switzerland, 2020; pp. 189–213. [Google Scholar]
- Thomas, L.; Singh, I. Microbial Biofertilizers: Types and Applications. In Biofertilizers for Sustainable Agriculture and Environment; Giri, B., Prasad, R., Wu, Q.S., Varma, A., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- Santoyo, G.; Moreno-Hagelsieb, G.; Orozco-Mosqueda, M.C.; Glick, B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016, 183, 92–99. [Google Scholar] [CrossRef]
- Afzal, I.; Shinwari, Z.K.; Sikandar, S.; Shahzad, S. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res. 2019, 221, 36–49. [Google Scholar] [CrossRef]
- Omomowo, O.I.; Babalola, O.O. Bacterial and Fungal Endophytes: Tiny giants with immense beneficial potential for plant growth and sustainable agricultural productivity. Microorganisms 2019, 7, 481. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, H.; Nalin, R.; Bally, R.; Cleyet-Marel, J.C. Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol. Fertil. Soils 2001, 33, 152–156. [Google Scholar] [CrossRef]
- Farina, R.; Beneduzi, A.; Ambrosini, A.; de Campos, S.B.; Lisboa, B.B.; Wendisch, V.; Vargas, L.K.; Passaglia, L.M. Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl. Soil Ecol. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Croes, S.; Weyens, N.; Colpaert, J.; Vangronsveld, J. Characterization of the cultivable bacterial populations associated with field grown Brassica napus L.: An evaluation of sampling and isolation protocols. Environ. Microbiol. 2015, 17, 2379–2392. [Google Scholar] [CrossRef]
- Valetti, L.; Iriarte, L.; Fabra, A. Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Appl. Soil Ecol. 2018, 132, 1–10. [Google Scholar] [CrossRef]
- Jiménez-Gómez, A.; Saati-Santamaría, Z.; Kostovcik, M.; Rivas, R.; Velázquez, E.; Mateos, P.F.; Menéndez, E.; García-Fraile, P. Selection of the root endophyte Pseudomonas brassicacearum CDVBN10 as plant growth promoter for Brassica napus L. crops. Agronomy 2020, 10, 1788. [Google Scholar] [CrossRef]
- Jamalzadeh, A.; Darvishnia, M.; Khodakaramian, G.; Bazgir, E.; Zafari, D. Genetic diversity and plant growth-promoting activity of the dominant bacteria from canola plants in Western Iran. Egypt. J. Biol. Pest Control 2021, 31, 98. [Google Scholar] [CrossRef]
- Lagier, J.C.; Armougom, F.; Million, M.; Hugon, P.; Pagnier, I.; Robert, C.; Bittar, F.; Fournous, G.; Gimenez, G.; Maraninchi, M.; et al. Microbial culturomics: Paradigm shift in the human gut microbiome study. Clin. Microbiol. Infect. 2012, 18, 1185–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagier, J.C.; Dubourg, G.; Million, M.; Cadoret, F.; Bilen, M.; Fenollar, F.; Levasseur, A.; Rolain, J.M.; Fournier, P.E.; Raoult, D. Culturing the human microbiota and culturomics. Nat. Rev. Microbiol. 2018, 16, 540–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarhan, M.S.; Hamza, M.A.; Youssef, H.H.; Patz, S.; Becker, M.; ElSawey, H.; Nemr, R.; Daanaa, H.S.A.; Mourad, E.F.; Morsi, A.T.; et al. Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media—A review. J. Adv. Res. 2019, 19, 15–27. [Google Scholar] [CrossRef]
- Nyambura-Ngamau, C.; Njeri-Matiru, V.; Tani, A.; Wangari-Muthuri, C. Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. Afr. J. Microbiol. Res. 2012, 6, 6414–6422. [Google Scholar] [CrossRef]
- Stets, M.I.; Pinto, A.S., Jr.; Huergo, L.F.; de Souza, E.M.; Guimarães, V.F.; Alves, A.C.; Steffens, M.B.; Monteiro, R.A.; Pedrosa, F.d.Q.; Cruz, L.M.; et al. Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. J. Biotechnol. 2013, 165, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, E.; Menéndez, E.; Sánchez-Juanes, F.; Valencia-Daza, N.; Pérez-Yépez, J.; León Barrios, M.; Pérez-Galdona, R.; Garrido, A.; González-Buitrago, J.M. Identification of human pathogenic bacteria in plant roots by using MALDI-TOF MS methodology. In Biological Nitrogen Fixation and Beneficial Plant-Microbe Interaction; González-Andrés, F., James, E., Eds.; Springer: Cham, Switzerland, 2016; pp. 3–12. [Google Scholar]
- López, J.L.; Alvarez, F.; Príncipe, A.; Salas, M.E.; Lozano, M.J.; Draghi, W.O.; Jofré, E.; Lagares, A. Isolation, taxonomic analysis, and phenotypic characterization of bacterial endophytes present in alfalfa (Medicago sativa) seeds. J. Biotechnol. 2018, 267, 55–62. [Google Scholar] [CrossRef]
- Toubal, S.; Bouchenak, O.; Elhaddad, D.; Yahiaoui, K.; Boumaza, S.; Arab, K. MALDI-TOF MS detection of endophytic bacteria associated with great nettle (Urtica dioica L.), grown in Algeria. Pol. J. Microbiol. 2018, 67, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaMontagne, M.G.; Tran, P.L.; Benavidez, A.; Morano, L.D. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ 2021, 9, e11359. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Romero, F.M.; Rossi, F.R.; Gárriz, A.; Carrasco, P.; Ruíz, O.A. A bacterial endophyte from apoplast fluids protects canola plants from different phytopathogens via antibiosis and induction of host resistance. Phytopathology 2019, 109, 375–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.; Sánchez-Juanes, F.; García-Fraile, P.; Rivas, R.; Mateos, P.F.; Martínez-Molina, E.; González-Buitrago, J.M.; Velázquez, E. MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS ONE 2011, 6, e20223. [Google Scholar] [CrossRef] [Green Version]
- Carro, L.; Spröer, C.; Alonso, P.; Trujillo, M.E. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst. Appl. Microbiol. 2012, 35, 73–80. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Rigaud, J.; Puppo, A. Indole-3-acetic acid catabolism by soybean bacteroids. J. Gen. Microbiol. 1975, 88, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Rychert, J. Benefits and limitations of MALDI-TOF Mass Spectrometry for the identification of microorganisms. J. Infectiol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Rahi, P.; Vaishampayan, P. Editorial: MALDI-TOF MS application in Microbial Ecology studies. Front. Microbiol. 2020, 10, 2954. [Google Scholar] [CrossRef]
- Germida, J.J.; Siciliano, S.D.; Renato de Freitas, J.; Seib, A.M. Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol. Ecol. 1998, 26, 43–50. [Google Scholar] [CrossRef]
- Patel, S.; Gupta, R.S. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 406–438. [Google Scholar] [PubMed]
- Kaminsky, L.M.; Trexler, R.V.; Malik, R.J.; Hockett, K.L.; Bell, T.H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 2019, 37, 140–151. [Google Scholar] [CrossRef] [PubMed]
Isolates | Best Match | Score Values |
---|---|---|
Isolates matching with score values >2.3 | ||
MRBN04, MRBN40 | Bacillus megaterium DSM 32T | 2.439, 2.476 |
MRBN48 | Bacillus subtilis DSM 10T | 2.381, 2.562 |
MRBN01, MRBN02, MRBN05, MRBN43, MRBN47 | Paenibacillus amylolyticus DSM 11747T | 2.375, 2.301, 2.309, 2.320, 2.310 |
Isolates matching with score values >2.0 and <2.3 | ||
MRBN09, MRBN26, MRBN56 | Bacillus simplex (currently Pe. simplex) CS 206_1aI BRB | 2.206, 2.276, 2.000 |
MRBN21 | Bacillus niacini (currently N. niacini) DSM 2923T | 2.082 |
MRBN16, MRBN17.2, MRBN49, MRBN50, MRBN52, MRBN55 | Paenibacillus glucanolyticus DSM 5162T | 2.172, 2.198, 2.110, 2.239, 2.208 |
MRBN06 | Paenibacillus massiliensis DSM 16942T | 2.242 |
MRBN03, MRBN15, MRBN18, MRBN35, MRBN36, MRBN44 | Paenibacillus polymyxa DSM 356 | 2.179, 2.106, 2.166, 2.193, 2.124, 2.111 |
MRBN17.1, MRBN23 | Paenibacillus polymyxa DSM 742 | 2.165, 2.158 |
MRBN31 | Paenibacillus polymyxa DSM 740 | 2.118, 2.117 |
MRBN45 | Paenibacillus polymyxa DSM 372 | 2.247 |
VABN01, VABN02, VABN03, VABN04, VABN05, VABN08, VABN09, VABN10, VABN13, VABN17, VABN23 | Pseudomonas koreensis 2_2 TUB | 2.162, 2.118, 2.215, 2.048, 2.208, 2.073, 2.138, 2.221, 2.055, 2.146, 2.228 |
VABN07, VABN15, VABN20, VABN21, VABN22 | Pseudomonas thivervalensis DSM 13194T | 2.260, 2.274, 2.262, 2.226, 2.244 |
Isolates not identified | ||
MRBN07, MRBN12, MRBN54 | Not identified |
Isolates | Closest Type Strain (Accession Number in GenBank) | Similarity (%) |
---|---|---|
MRBN09, MRBN26, MRBN56 | Peribacillus simplex (previously B. simplex) NBRC 15720T = DSM 1321T (CP017704.1) | 99.8 |
MRBN12, MRBN54 | Bacillus taxi M5HDSG1-1T (MK355518.1) | 99.4 |
MRBN21 | Neobacillus niacini (previously N. niacini) IFO15566T = NBRC 15566T (NR_024695.1, NR_113777.1) | 98.7 |
MRBN16, MRBN17.2, MRBN49, MRBN50, MRBN52, MRBN55 | Paenibacillus lautus AB236dT = JCM 9073T = NBRC 15380T (NR_117185.1, NR_040882.1, NR_112724.1) Paenibacillus lautus NRRL NRS-666T (NR_115599.1) Paenibacillus glucanolyticus 5162T (CP015286.1) Paenibacillus glucanolyticus DSM 5162T = NBRC 15330T (NR_040883.1, NR_113748.1) | 99.1 98.5 98.3 97.8 |
MRBN06 | Paenibacillus massiliensis 2301065T (NR_115175.1) | 100 |
MRBN03, MRBN15, MRBN17.1, MRBN18, MRBN23, MRBN31, MRBN35, MRBN36, MRBN44, MRBN45 | Paenibacillus polymyxa DSM 36T (CP049784.1) | 99.4 |
VABN01, VABN02, VABN03, VABN04, VABN05, VABN08, VABN09, VABN10, VABN13, VABN17, VABN23 | Pseudomonas baetica a390T (NR_116899.1) Pseudomonas koreensis Ps 9-14T (NR_025228.1) | 99.8 99.5 |
VABN07, VABN15, VABN20, VABN21, VABN22 | Pseudomonas thivervalensis SBK26T (NR_024951.1) | 99.6 |
MRBN07 | Terribacillus saccharophilus 002-048T (NR_041356.1) | 99.9 |
Isolate | Species | SDW | RDW | RE § | Chlorophyll ¥ | N | P | K | Ca | Mg | Fe | Cu | Mn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-- (mg plant−1) -- | (%) | (SPAD units) | (%) | ---------- (mg g dw−1) ---------- | ----------- (µg g dw−1) ----------- | |||||||||
Control | 1609 | 369 | 40.1 | 1.99 | 2.57 | 44.7 | 3.95 | 9.46 | 32.7 | 3.41 | 89.3 | 0.30 | ||
MRBN01 | Paenibacillus amylolyticus | 2009 | 497 | 125 | 43.4 | 2.03 | 2.23 | 42.8 | 2.89 | 7.36 | 44.7 | 3.30 | 73.9 | 0.36 |
MRBN17.2 * | Paenibacillus sp. | 2020 | 468 | 126 | 41.6 | 1.97 | 2.52 | 44.3 | 3.06 | 7.72 | 49.8 | 3.42 | 76.7 | 0.40 |
MRBN26 | Peribacillus simplex | 2040 | 387 | 127 | 38.9 | 2.05 | 2.59 | 46.9 | 3.71 | 8.45 | 38.9 | 3.81 | 96.5 | 0.49 |
MRBN31 | Paenibacillus polymyxa | 1820 | 387 | 113 | 40.2 | 1.84 | 2.48 | 43.9 | 3.51 | 8.41 | 52.2 | 2.94 | 81.6 | 0.33 |
MRBN43 | Paenibacillus amylolyticus | 1947 | 397 | 121 | 40.9 | 2.04 | 2.63 | 46.5 | 3.47 | 7.92 | 42.3 | 3.49 | 81.9 | 0.40 |
MRBN45 | Paenibacillus polymyxa | 2441 | 534 | 152 | 44.7 | 2.02 | 2.50 | 44.5 | 3.28 | 6.87 | 57.4 | 4.53 | 94.0 | 0.68 |
MRBN47 | Paenibacillus amylolyticus | 1887 | 431 | 117 | 40.3 | 2.11 | 2.37 | 44.8 | 3.06 | 7.67 | 53.3 | 3.64 | 76.1 | 0.38 |
MRBN52 * | Paenibacillus sp. | 1979 | 425 | 123 | 42.3 | 1.98 | 2.45 | 44.3 | 3.61 | 7.74 | 43.7 | 4.26 | 109.5 | 0.56 |
MRBN55 * | Paenibacillus sp. | 2089 | 413 | 130 | 43.4 | 1.97 | 2.54 | 45.8 | 3.95 | 8.51 | 60.6 | 4.72 | 120.8 | 0.62 |
MRBN56 | Peribacillus simplex | 1963 | 444 | 122 | 42.4 | 2.01 | 2.72 | 46.7 | 3.96 | 8.41 | 37.5 | 4.23 | 103.4 | 0.55 |
VABN20 | Pseudomonas thivervalensis | 1849 | 412 | 115 | 42.9 | 2.09 | 2.72 | 46.8 | 3.84 | 8.12 | 44.8 | 4.61 | 111.4 | 0.60 |
VABN21 | Pseudomonas thivervalensis | 2025 | 373 | 126 | 41.2 | 2.10 | 2.62 | 43.9 | 3.40 | 7.68 | 53.7 | 3.53 | 78.2 | 0.40 |
VABN22 | Pseudomonas thivervalensis | 1760 | 457 | 109 | 41.7 | 2.14 | 2.45 | 45.6 | 3.38 | 7.51 | 68.6 | 4.74 | 99.6 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Hidalgo, P.; Flores-Félix, J.D.; Sánchez-Juanes, F.; Rivas, R.; Mateos, P.F.; Santa Regina, I.; Peix, Á.; Martínez-Molina, E.; Igual, J.M.; Velázquez, E. Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy 2021, 11, 1796. https://doi.org/10.3390/agronomy11091796
Martínez-Hidalgo P, Flores-Félix JD, Sánchez-Juanes F, Rivas R, Mateos PF, Santa Regina I, Peix Á, Martínez-Molina E, Igual JM, Velázquez E. Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy. 2021; 11(9):1796. https://doi.org/10.3390/agronomy11091796
Chicago/Turabian StyleMartínez-Hidalgo, Pilar, José David Flores-Félix, Fernando Sánchez-Juanes, Raúl Rivas, Pedro F. Mateos, Ignacio Santa Regina, Álvaro Peix, Eustoquio Martínez-Molina, José M. Igual, and Encarna Velázquez. 2021. "Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria" Agronomy 11, no. 9: 1796. https://doi.org/10.3390/agronomy11091796
APA StyleMartínez-Hidalgo, P., Flores-Félix, J. D., Sánchez-Juanes, F., Rivas, R., Mateos, P. F., Santa Regina, I., Peix, Á., Martínez-Molina, E., Igual, J. M., & Velázquez, E. (2021). Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy, 11(9), 1796. https://doi.org/10.3390/agronomy11091796