Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review
Abstract
:1. Introduction
2. Application of UAV and Remote Sensing Technique for Weed Management in Agricultural Crops
2.1. UAV in Agriculture
Weed Mapping and Management
2.2. Red-Green-Blue (RGB) Camera in Weed Management
2.3. Multispectral Remote Sensing Imagery for Agricultural Purpose
2.4. Hyperspectral Remote Sensing Imagery for the Agricultural Sector
3. Future Challenge and Overcome through Modern Technologies
3.1. Food Security
3.2. Sustainable Agriculture
3.3. Food Supply Demand
3.4. Herbicide Resistance in Weeds
3.5. Climate Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barba, P.; Sawicka, B.; Marczak, B.K.; Pszczółkowski, P. Effect of Mechanical and Herbicide Treatments on Weed Densities and Biomass in Two Potato Cultivars. Agriculture 2020, 10, 455. [Google Scholar] [CrossRef]
- Mahé, I.; Cordeau, S.; Bohan, D.A.; Derrouch, D.; Dessaint, F.; Millot, D.; Chauvel, B. Soil seedbank: Old methods for new challenges in agroecology? Ann. Appl. Biol. 2020, 178, 23–38. [Google Scholar] [CrossRef]
- Hasan, M.; Ahmad-Hamdani, M.S.; Rosli, A.M.; Hamdan, H. Bioherbicides: An Eco-Friendly Tool for Sustainable Weed Management. Plants 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed Management in 2050: Perspectives on the Future of Weed Science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef] [Green Version]
- MacLaren, C.; Storkey, J.; Menegat, A.; Metcalfe, H.; Dehnen-Schmutz, K. An ecological future for weed science to sustain crop production and the environment. A review. Agron. Sustain. Dev. 2020, 40, 24. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Osipitan, O.A.; Begcy, K.; Werle, R. Cover crops, hormones and herbicides: Priming an integrated weed management strategy. Plant Sci. 2020, 301, 110550. [Google Scholar] [CrossRef] [PubMed]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Assessment of allelopathic compounds to develop new natural herbicides: A review. Allelopath. J. 2021, 52, 19–38. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management impact and benefit of cover crops on soil quality: A review. Soil Till. Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Allelopathic potential of Malaysian invasive weed species on Weedy rice (Oryza sativa f. spontanea Roshev). Allelopath. J. 2021, 53, 53–68. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.; Asib, N.B.; Islam, A.K.M.M.; Hasan, M. Bioherbicidal Properties of Parthenium hysterophorus, Cleome rutidosperma and Borreria alata Extracts on Selected Crop and Weed Species. Agronomy 2021, 11, 643. [Google Scholar] [CrossRef]
- Hagner, M.; Lindqvist, B.; Vepsäläinen, J.; Samorì, C.; Keskinen, R.; Rasa, K.; Hyvönen, T. Potential of pyrolysis liquids to control the environmental weed Heracleum mantegazzianum. Environ. Technol. Innov. 2020, 20, 101154. [Google Scholar] [CrossRef]
- BK, I.A.; Prakash, A.; Prakash, A. An Approach for Digital Farming using Mobile Robot. In Proceedings of the Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020; pp. 580–585. [Google Scholar]
- Bini, D.; Pamela, D.; Prince, S. Machine Vision and Machine Learning for Intelligent Agrobots: A review, ICDCS 2020–2020. In Proceedings of the 5th International Conference on Devices, Circuits and Systems, Coimbatore, India, 5–6 March 2020; pp. 12–16. [Google Scholar]
- Wang, G.; Lan, Y.; Yuan, H.; Qi, H.; Chen, P.; Ouyang, F.; Han, Y. Comparison of spray deposition, control efficacy on wheat aphids and working efficiency in the wheat field of the unmanned aerial vehicle with boom sprayer and two conventional knapsack sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Coleman, G.; Zeng, S.; Wang, Z.; Walsh, M. Graph weeds net: A graph-based deep learning method for weed recognition. Comput. Electron. Agric. 2020, 174, 105520. [Google Scholar] [CrossRef]
- De Castro, A.; Torres-Sánchez, J.; Peña, J.; Jiménez-Brenes, F.; Csillik, O.; López-Granados, F. An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Smith, A.M.; Blackshaw, R.E. Weed–Crop Discrimination Using Remote Sensing: A Detached Leaf Experiment. Weed Technol. 2003, 17, 811–820. [Google Scholar] [CrossRef]
- Du, Q.; Chang, N.B.; Yang, C.; Srilakshmi, K.R. Combination of multi-spectral remote sensing, variable rate technology and environmental modeling for citrus pest management. J. Environ. Manag. 2008, 86, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Steven, M.D.; Clark, J.A. Application of Remote Sensing in Agriculture; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef] [Green Version]
- Berni, J.A.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based multi-spectral remote sensing for precision agriculture: A comparison between different cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Lamb, D.W.; Brown, R.B. Remote-sensing and mapping of weeds in crops. J. Agric. Eng. Res. 2001, 78, 117–125. [Google Scholar] [CrossRef]
- Moran, M.S.; Inoue, Y.; Barnes, E.M. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Thorp, K.R.; Tian, L.F. A review on remote sensing of weeds in agriculture. Precis. Agric. 2004, 5, 477–508. [Google Scholar] [CrossRef]
- Zwiggelaar, R. A review of spectral properties of plants and their potential use for crop/weed discrimination in row-crops. Crop Prot. 1998, 17, 189–206. [Google Scholar] [CrossRef]
- Aggarwal, S. Principles of Remote Sensing. In Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun; World Meteorological Organization: Geneva, Switzerland, 2004; pp. 23–38. [Google Scholar]
- Shaw, D.R. Translation of remote sensing data into weed management decisions. Weed Sci. 2005, 53, 264–273. [Google Scholar] [CrossRef]
- Burwood-Taylor, L. The Next Generation of Drone Technologies for Agriculture. AgFunderNews Website. Available online: https://agfundernews.com/the-next-generation-of-drone-technologies-for-agriculture.html (accessed on 14 March 2018).
- Ahirwar, S.; Swarnkar, R.; Bhukya, S.; Namwade, G. Application of Drone in Agriculture. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2500–2505. [Google Scholar] [CrossRef]
- Iwasaki, K.; Torita, H.; Abe, T.; Uraike, T.; Touze, M.; Fukuchi, M.; Sato, H.; Iijima, T.; Imaoka, K.; Igawa, H. Spatial pattern of windbreak effects on maize growth evaluated by an unmanned aerial vehicle in Hokkaido, northern Japan. Agrofor. Syst. 2019, 93, 1133–1145. [Google Scholar] [CrossRef]
- Suhaizi, M.A.; Azmi, Y.; Norida, M.; Saiful, A.M. Evaluation of the Spraying Dispersion and Uniformity Using Drone in Rice Field Application. In Proceedings of the MSAE Conference, Serdang, Malaysia, 7–8 February 2018. [Google Scholar]
- Wadke, R. Insurers Deploy Drones to Check Claims by Farmers. Agri Business Website, 2018. Available online: https://www.thehindubusinessline.com/economy/agri-business/insurers-deploy-drones-to-check-claims-by-farmers/article9583909.ece (accessed on 27 May 2021).
- Saha, A.K.; Saha, J.; Ray, R.; Sircar, S.; Dutta, S.; Chattopadhyay, S.P.; Saha, H.N. IOT-based drone for improvement of crop quality in agricultural field. In Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference, C.C.W.C., Las Vegas, NV, USA, 8–10 January 2018; pp. 612–615. [Google Scholar]
- Veroustraete, F. The Rise of the Drones in Agriculture. EC Agric. 2015, 2, 325–327. [Google Scholar]
- Muazu, A.; Yahya, A.; Ishak, W.I.W.; Khairunniza-Bejo, S. Energy audit for sustainable wetland paddy cultivation in Malaysia. Energy 2015, 87, 182–191. [Google Scholar] [CrossRef]
- Tripicchio, P.; Satler, M.; Dabisias, G.; Ruffaldi, E.; Avizzano, C.A. Towards Smart Farming and Sustainable Agriculture with Drones. In Proceedings of the International Conference on Intelligent Environments, Prague, Czech Republic, 15–17 July 2015; pp. 140–143. [Google Scholar]
- Reinecke, M.; Prinsloo, T. The influence of drone monitoring on crop health and harvest size. In Proceedings of the 1st International Conference on Next Generation Computing Applications, NextComp, Moka, Mauritius, 19–21 July 2017; pp. 5–10. [Google Scholar]
- Murugan, D.; Garg, A.; Singh, D. Development of an Adaptive Approach for Precision Agriculture Monitoring with Drone and Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2017, 10, 5322–5328. [Google Scholar] [CrossRef]
- López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Ses. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of Weed Detection Methods Based on Computer Vision. Sensors 2021, 21, 3647. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; López-Granados, F.; De Castro, A.; Peña-Barragán, J. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site SpecificWeed Management. PLoS ONE 2013, 8, e58210. [Google Scholar] [CrossRef] [Green Version]
- Mink, R.; Dutta, A.; Peteinatos, G.; Sökefeld, M.; Engels, J.; Hahn, M.; Gerhards, R. Multi-temporal site-specific weed control of Cirsium arvense (L.) Scop. and Rumex crispus L. in maize and sugar beet using Unmanned Aerial Vehicle based mapping. Agriculture 2018, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, J.; Nielsen, J.; Garcia-Ruiz, F.; Christensen, S.; Streibig, J.C. Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Res. 2013, 53, 242–248. [Google Scholar] [CrossRef]
- Prey, L.; von Bloh, M.; Schmidhalter, U. Evaluating RGB imaging and multi-spectral active and hyperspectral passive sensing for assessing early plant vigor in winter wheat. Sensors 2018, 18, 2931. [Google Scholar] [CrossRef] [Green Version]
- Rosell-Polo, J.R.; Cheeinx, F.A.; Gregorio, E.; Andújar, D.; Puigdomènech, L.; Masip, J.; Escolà, A. Advances in Structured Light Sensors Applications in Precision Agriculture and Livestock Farming. Adv. Agron. 2015, 133, 71–112. [Google Scholar]
- Madsen, S.L.; Mathiassen, S.K.; Dyrmann, M.; Laursen, M.S.; Paz, L.C.; Jørgensen, R.N. Open plant phenotype database of common weeds in Denmark. Remote Sens. 2020, 12, 10–12. [Google Scholar]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- Baresel, J.P.; Rischbeck, P.; Hu, Y.; Kipp, S.; Hu, Y.; Barmeier, G.; Mistele, B. Use of a digital camera as alternative method for non-destructive detection of the leaf chlorophyll content and the nitrogen nutrition status in wheat. Comput. Electron. Agric. 2017, 140, 25–33. [Google Scholar] [CrossRef]
- Hassler, S.C.; Baysal-Gurel, F. Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy 2019, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, F.; Qian, X.; Zhu, Y.; Shen, G. Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sens. Lett. 2015, 6, 183–189. [Google Scholar] [CrossRef]
- Sudars, K.; Jasko, J.; Namatevs, I.; Ozola, L.; Badaukis, N. Dataset of annotated food crops and weed images for robotic computer vision control. Data Brief 2020, 31, 105833. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Cen, H.; Lu, Y.; Yu, X.; He, Y.; Pieters, J.G. Automated spectral feature extraction from hyperspectral images to differentiate weedy rice and barnyard grass from a rice crop. Comput. Electron. Agric. 2019, 159, 42–49. [Google Scholar] [CrossRef]
- Barnes, E.M.; Moran, M.S.; Pinter, P.J.; Clarke, T.R. Multi-spectral Remote Sensing and Site-Specific Agriculture: Examples of Current Technology and Future Possibilities. In Proceedings of the 3rd International Conference on Precision Agriculture, Minneapolis, MN, USA, 23–26 June 1996; pp. 845–854. [Google Scholar]
- Chang, N.B.; Vannah, B.; Jeffrey Yang, Y. Comparative sensor fusion between hyperspectral and multi-spectral satellite sensors for monitoring microcystin distribution in lake erie. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2426–2442. [Google Scholar] [CrossRef]
- Mapasyst. What Is the Difference between Multi-Spectral & Hyperspectral Imagery? Geospatial Technology Website. Available online: https://mapasyst.extension.org/what-is-the-difference-between-multispectral-and-hyperspectral-imagery/ (accessed on 21 May 2021).
- Nelson, S.A.C.; Khorram, S. Image Processing and Data Analysis with ERDAS IMAGINE. Taylor & Francis Group, Ed.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Chang, N.B.; Bai, K. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Mink, R.; Linn, A.I.; Santel, H.J.; Gerhards, R. Sensor-based evaluation of maize (Zea mays) and weed response to post-emergence herbicide applications of Isoxaflutole and Cyprosulfamide applied as crop seed treatment or herbicide mixing partner. Pest Manag. Sci. 2020, 76, 1856–1865. [Google Scholar] [CrossRef]
- Borengasser, M.; Hungate, W.S.; Watkins, R. Hyperspectral Remote Sensing: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Groeneveld, D.P.; Watson, R.P. Near-infrared discrimination of leafless saltcedar in wintertime Landsat TM. Int. J. Remote Sens. 2008, 29, 3577–3588. [Google Scholar] [CrossRef]
- He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of hyperspectral remote sensing for tracking plant invasions. Divers Distrib. 2011, 17, 381–392. [Google Scholar] [CrossRef]
- Wilfong, B.N.; Gorchov, D.L.; Henry, M.C. Detecting an Invasive Shrub in Deciduous Forest Understories Using Remote Sensing. Weed Sci. 2009, 57, 512–520. [Google Scholar] [CrossRef]
- Qian, S.E. Hyperspectral Satellites and System Design; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Okamoto, H.; Lee, W.S. Green citrus detection using hyperspectral imaging. Comput. Electron. Agric. 2009, 66, 201–208. [Google Scholar] [CrossRef]
- Suzuki, Y.; Okamoto, H.; Kataoka, T. Image Segmentation between Crop and Weed using Hyperspectral Imaging for Weed Detection in Soybean Field. Environ. Control Biol. 2008, 46, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H.; Murata, T.; Kataoka, T.; Hata, S.I. Plant classification for weed detection using hyperspectral imaging with wavelet analysis: Research paper. Weed Biol. Manag. 2007, 7, 31–37. [Google Scholar] [CrossRef]
- Nishimoto, R. Global trends in the crop protection industry. J. Pestic. Sci. 2019, 44, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, F.; Rafii, M.Y.; Ismail, M.R.; Juraimi, A.S.; Rahim, H.A.; Latif, M.A.; Hasan, M.M.; Tanweer, F.A. The addition of submergence-tolerant Sub1 gene into high yielding MR219 rice variety and analysis of its BC2F3 population in terms of yield and yield contributing characters to select advance lines as a variety. Biotechnol. Biotechnol. Equip. 2016, 30, 853–863. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F.; Juraimi, A.S.; Ahmad-Hamdani, M.S.; Hashemi, F.S.G.; Alam, M.A.; Hakim, M.A.; Uddin, M.K. Effects of Tinospora tuberculata leaf methanol extract on seedling growth of rice and associated weed species in hydroponic culture. J. Integr. Agric. 2016, 15, 1521–1531. [Google Scholar] [CrossRef]
- Jalil, M.A.; Juraimi, A.S.; Yusop, M.R.; Uddin, M.K.; Hakim, M.A. Introgression of root trait genes for drought tolerance to a Malaysian rice variety by marker-assisted backcross breeding. Int. J. Agric. Biol. 2018, 20, 119–126. [Google Scholar]
- Take-tsaba, A.I.; Bin Juraimi, A.S.; Bin Yusop, M.R.; Othman, R.B.; Singh, A. Weed Competitiveness of some Aerobic Rice Genotypes. Int. J. Agric. Biol. 2018, 20, 583–593. [Google Scholar] [CrossRef]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Ahmad-Hamdani, M.S.; Berahim, Z.; Hasan, M. Physiological and Biochemical Responses of Ageratum conyzoides, Oryza sativa f. spontanea (Weedy Rice) and Cyperus iria to Parthenium hysterophorus Methanol Extract. Plants 2021, 10, 1205. [Google Scholar] [CrossRef]
- Ghose, B.; Sarker, S.; Kpoghomou, M.A.; Gao, H.; Jun, L.; Yin, D.; Ghosh, S. Self-sufficiency in rice and food security: A South Asian perspective. Agric. Food Sec. 2013, 2, 10. [Google Scholar]
- Rahim, F.H.A.; Abidin, N.Z.; Hawari, N.N. Analyzing the impact of price subsidy on rice self-sufficiency level in Malaysia: A preliminary finding. AIP Conf. Proc. 2017, 1905, 801–806. [Google Scholar]
- Vaghefi, N.; Shamsudin, M.N.; Radam, A.; Rahim, K.A. Impact of climate change on food security in Malaysia: Economic and policy adjustments for rice industry. J. Integr. Environ. Sci. 2016, 13, 19–35. [Google Scholar] [CrossRef]
- Shivrain, V.K.; Burgos, N.R.; Gealy, D.R.; Smith, K.L.; Scott, R.C.; Mauromoustakos, A.; Black, H. Red Rice (Oryza sativa) Emergence Characteristics and Influence on Rice Yield at Different Planting Dates. Weed Sci. 2009, 57, 94–102. [Google Scholar] [CrossRef]
- Bzour, M.I.; Zuki, F.M.; Mispan, M.S. Introduction of Imidazolinone Herbicide and Clearfield® Rice between Weedy Rice Control Efficiency and Environmental Concerns (Residues/Resistance): A Review. Environ. Rev. 2017, 26, 181–198. [Google Scholar] [CrossRef]
- Rahman, A.A.D. Dugaan. Harian Metro website. Available online: https://www.hmetro.com.my/mutakhir/2018/01/304201/dugaan (accessed on 21 May 2021).
- Seufert, V.; Ramankutty, N.; Mayerhofer, T. What is this thing called organic?—How organic farming is codified in regulations. Food Policy 2017, 68, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Basche, A.D.; Roesch-McNally, G.E. Research topics to scale up cover crop use: Reflections from innovative Iowa farmers. J. Soil Water Conserv. 2017, 72, 59A–63A. [Google Scholar] [CrossRef] [Green Version]
- Sengar, R.S.; Singh, A. Eco-Friendly Agro-Biological Techniques for Enhancing Crop Productivity; Springer: Berlin, Germany, 2018; pp. 1–282. [Google Scholar]
- Kniss, A.R. Genetically Engineered Herbicide-Resistant Crops and Herbicide-Resistant Weed Evolution in the United States. Weed Sci. 2018, 66, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Gross, J.; Gündermann, G. Advances in Insect Control and Resistance Management; Springer: Berlin, Germany, 2016; pp. 1–339. [Google Scholar]
- Heryanto, M.A.; Kurnia, G.; Perdana, T.; Ginanjar, T. Integrating Bioresources and Advanced Technology for Sustainable Development. In Proceedings of the 6 International Symposium for Sustainable Humanosphere Humanosphere Science School, Bogor, Indonesia, 15–16 November 2016; pp. 109–116, Research Center for Biomaterials—LIPI. [Google Scholar]
- Sarker, M.N.I.; Wu, M.; Alam, G.M.M.; Islam, M.S. Role of climate smart agriculture in promoting sustainable agriculture: A systematic literature review. Int. J. Agric. Resour. Gov. Ecol. 2019, 15, 323–337. [Google Scholar]
- Szparaga, A.; Kuboń, M.; Kocira, S.; Czerwińska, E.; Pawłowska, A.; Hara, P.; Kobus, Z.; Kwaśniewski, D. Towards sustainable agriculture-agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability 2019, 11, 4575. [Google Scholar] [CrossRef] [Green Version]
- Alreshidi, E. Smart Sustainable Agriculture (SSA) solution underpinned by Internet of Things (IoT) and Artificial Intelligence (AI). Int. J. Adv. Comput. Sci. Appl. 2019, 10, 93–102. [Google Scholar] [CrossRef]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Glob. Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Jussaume, J.; Ervin, D. Understanding Weed Resistance as a Wicked Problem to Improve Weed Management Decisions. Weed Sci. 2016, 64, 559–569. [Google Scholar] [CrossRef]
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef] [PubMed]
- Beckie, H.J.; Harker, K.N. Our top 10 herbicide-resistant weed management practices. Pest Manag. Sci. 2017, 73, 1045–1052. [Google Scholar] [CrossRef]
- López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; Mesas-Carrascosa, F.J.; Pena, J.M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2016, 17, 183–199. [Google Scholar] [CrossRef]
- Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Nugent, P.W.; Shaw, J.A.; Jha, P.; Scherrer, B.; Donelick, A.; Kumar, V. Discrimination of herbicide-resistant kochia with hyperspectral imaging. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, B.; Sheppard, J.; Jha, P.; Shaw, J.A. Hyperspectral imaging and neural networks to classify herbicide-resistant weeds. J. Appl. Remote Sens. 2019, 13, 1. [Google Scholar] [CrossRef]
- Singh, V.; Dou, T.; Krimmer, M.; Singh, S.; Humpal, D.; Payne, W.Z.; Sanchez, L.; Voronine, D.V.; Prosvirin, A.; Scully, M.; et al. Raman Spectroscopy Can Distinguish Glyphosate-Susceptible and -Resistant Palmer Amaranth (Amaranthus palmeri). Front. Plant Sci. 2021, 12, 657963. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.A.; Huang, Y.; Nandula, V.K.; Reddy, K.N. Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery. Sens. Agric. Food Qual. Saf. VI 2014, 9108, 91080B. [Google Scholar]
- Reddy, K.N.; Huang, Y.; Lee, M.A.; Nandula, V.K.; Fletcher, R.S.; Thomson, S.J.; Zhao, F. Glyphosate-resistant and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S. Wats.): Hyperspectral reflectance properties of plants and potential for classification. Pest Manag. Sci. 2014, 70, 1910–1917. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Shojaeiarani, J. Development of spectral indices for identifying glyphosate-resistant weeds. Comput. Electron. Agric. 2020, 170, 105276. [Google Scholar] [CrossRef]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Bazrafkan, A. Field identification of weed species and glyphosate-resistant weeds using high resolution imagery in early growing season. Biosyst. Eng. 2020, 200, 200–214. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand Challenges in Weed Management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Sheppard, C.S.; Burns, B.R.; Stanley, M.C. Future-proofing weed management for the effects of climate change: Is New Zealand underestimating the risk of increased plant invasions? N. Z. J. Ecol. 2016, 40, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Mokhtar, A.S.; Rosli, A.M.; Hamdan, H.; Motmainna, M.; Ahmad-Hamdani, M.S. Weed Control Efficacy and Crop-Weed Selectivity of a New Bioherbicide WeedLock. Agronomy 2021, 11, 1488. [Google Scholar] [CrossRef]
- Sen, H.S. Coastal ecosystems: Risk factors for development and threats due to climate change. In Soil Salinity Management in Agriculture; Apple Academic Press: Cambridge, MA, USA, 2017; pp. 63–95. [Google Scholar]
- Piveta, L.B.; Roma-Burgos, N.; Noldin, J.A.; Viana, V.E.; de Oliveira, C.; Lamego, F.P.; de Avila, L.A. Molecular and physiological responses of rice and weedy rice to heat and drought stress. Agriculture 2021, 11, 9. [Google Scholar] [CrossRef]
Landsat 8 Bands | Wavelength (um) | Resolution (m) |
---|---|---|
Band 1—Ultra Blue | 0.435–0.451 | 30 |
Band 2—Blue | 0.452–0.512 | 30 |
Band 3—Green | 0.533–0.5990 | 30 |
Band 4—Red | 0.636–0.673 | 30 |
Band 5—Near Infrared (NIR) | 0.851–0.879 | 30 |
Band 6—Shortwave Infrared (SWIR) 1 | 1.566–1.651 | 30 |
Band 7—Shortwave Infrared (SWIR) 2 | 2.107–2.294 | 30 |
Band 8—Panchromatic | 0.503–0.676 | 15 |
Band 9—Cirrus | 1.363–1.384 | 30 |
Band 10—Thermal Infrared (TIRS) 1 | 10.60–11.19 | 100 |
Band 11—Thermal Infrared (TIRS) 2 | 11.50–12.51 | 100 |
Spaceborne (Satellite Sensor) | Airborne (Fixed-Wing/Airplane) |
---|---|
Landsat, Ikonos, Quickbird, ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), Hyperion | AISA, AVIRIS (Airborne Visual and Infra-Red Imaging Spectrometer), CASI, HyMAP |
Weed | Herbicide | Sensor | Accuracy (%) | References |
---|---|---|---|---|
Kochia | Dicamba, glyphosate | Hyperspectral camera (Resonon Pika IIg) | 67.0–80.0 | Nugent et al. [100] |
Kochia, marestail, lambsquarters | Dicamba, glyphosate | Hyperspectral camera (Resonon Pika L) | 77.0–90.0 25.0–79.0 (Drone) | Scherrer et al. [101] |
Palmer amaranth | Glyphosate | Raman spectroscopy (Resolve Agilent) | 71.9–84.7 | Singh et al. [102] |
Italian ryegrass | Glyphosate | Hyperspectral camera (Resonon Pika II) | 75.0–80.0 | Lee et al. [103] |
Palmer amaranth | Glyphosate | Hyperspectral camera (Resonon Pika II) | 94.0–96.0 | Reddy et al. [104] |
Kochia, ragweed, waterhemp | Glyphosate | Hyperspectral camera (USB2000 Vis/NIR) | 96.0–100.0 | Shirzadifar et al. [105] |
Kochia, ragweed, waterhemp | Glyphosate | Multispectral camera (Quad sensor, Sentera), Thermal camera (Infrared Camera Inc.) | 88.0–92.0 (Drone) | Shirzadifar et al. [106] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roslim, M.H.M.; Juraimi, A.S.; Che’Ya, N.N.; Sulaiman, N.; Manaf, M.N.H.A.; Ramli, Z.; Motmainna, M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy 2021, 11, 1809. https://doi.org/10.3390/agronomy11091809
Roslim MHM, Juraimi AS, Che’Ya NN, Sulaiman N, Manaf MNHA, Ramli Z, Motmainna M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy. 2021; 11(9):1809. https://doi.org/10.3390/agronomy11091809
Chicago/Turabian StyleRoslim, Muhammad Huzaifah Mohd, Abdul Shukor Juraimi, Nik Norasma Che’Ya, Nursyazyla Sulaiman, Muhammad Noor Hazwan Abd Manaf, Zaid Ramli, and Mst. Motmainna. 2021. "Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review" Agronomy 11, no. 9: 1809. https://doi.org/10.3390/agronomy11091809