Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasound Assisted Extraction (UAE)
2.3. Cold Pressed Extraction (CP)
2.4. Total Oil Content—Soxhlet Method (SE)
2.5. Fatty Acids Composition
2.6. Total Phenolic Content (TPC)
2.7. α-Tocopherol Content
2.8. Oxidative Stability
2.9. Antioxidant Capacity
2.10. Physicochemical Analysis
2.11. Statistical Analysis
3. Results
3.1. Bioactive Compounds of Oils
3.2. Oxidative Status and Antioxidative Capacity of Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.L.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Pardo, J.E.; Fernández, E.; Rubio, M.; Alvarruiz, A.; Alonso, G.L. Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Technol. 2009, 111, 188–193. [Google Scholar] [CrossRef]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; de la Paz, S.M. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef] [PubMed]
- Dimić, I.; Teslić, N.; Putnik, P.; Kovačević, B.D.; Zeković, Z.; Šojić, B.; Mrkonjić, Ž.; Colović, D.; Montesano, D.; Pavlić, B. Innovative and Conventional Valorizations of Grape Seeds from Winery By-Products as Sustainable Source of Lipophilic Antioxidants. Antioxidants 2020, 9, 568. [Google Scholar] [CrossRef]
- Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.; Xu, C.; Huang, K.; Lu, J.; Zhang, Y. Evaluation of phenolic compounds, antioxidant and antiproliferative activities of 31 grape cultivars with different genotypes. J. Food Biochem. 2019, 43, e12626. [Google Scholar] [CrossRef]
- Kamal-Eldin, A. Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Technol. 2006, 58, 1051–1061. [Google Scholar] [CrossRef]
- Bjelica, M.; Vujasinović, V.; Rabrenović, B.; Dimić, S. Some Chemical Characteristics and Oxidative Stability of Cold Pressed Grape Seed Oils Obtained from Different Winery Waste. Eur. J. Lipid Sci. Technol. 2019, 121, 1–10. [Google Scholar] [CrossRef]
- Ergović-Ravančić, M.; Obradović, V.; Mesić, J.S.; Marčetić, H.; Prtenjača, K.; Škrabal, S. The influence of grape seed drying temperature on the quality of grape seed oil. J. Proc. Ener. Agri. 2020, 24, 22–25. [Google Scholar] [CrossRef]
- Nde, D.B.; Foncha, A.C. Optimization Methods for the Extraction of Vegetable Oils: A Review. Processes 2020, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Goula, A.M.; Ververi, M.; Adamopoulou, A.; Kaderides, K. Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem. 2017, 34, 821–830. [Google Scholar] [CrossRef]
- Mushtaq, A.; Roobab, U.; Denoya, G.I.; Inam-Ur-Raheem, M.; Gullón, B.; Loorenco, J.M.; Francisco, B.J.; Zeng, X.A.; Wali, A.; Aadil, R.M. Advances in green processing of seed oils using ultrasound-assisted extraction: A review. J. Food Process Preserv. 2020, 44, e14740. [Google Scholar] [CrossRef]
- Malićanin, M.; Rac, V.; Antić, V.; Antic, M.; Palade, L.M.; Kefalas, P.; Rakic, V. Content of Antioxidants, Antioxidant Capacity and Oxidative Stability of Grape Seed Oil Obtained by Ultra Sound Assisted Extraction. J. Am. Oil Chem. Soc. 2014, 91, 989–999. [Google Scholar] [CrossRef]
- SRPS EN ISO 659:2011. Seme Uljarica—Odredjivanje Sadržaja Ulja (Referentna Metoda); Institut za Standardizaciju Srbije: Belgrade, Serbia, 2011. (In Serbian) [Google Scholar]
- IUPAC. Standard methods for the analysis of oils, fats and derivates. In International Union of Pure and Applied Chemistry, 7th ed.; Paquot, C., Hautffenne, A., Eds.; Blackwell Scientific: Oxford, UK, 1992. [Google Scholar]
- Ceci, L.N.; Carelli, A.A. Relation between oxidative stability and composition in Argentinian olive oils. J. Am. Oil Chem. Soc. 2010, 87, 1189–1197. [Google Scholar] [CrossRef]
- Bail, S.; Stuebiger, G.; Krist, S.; Unterweger, H.; Buchbauer, G. Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem. 2008, 108, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Dabbou, S.; Brahmi, F.; Taamali, A.; Issaoui, M.; Ouni, Y.; Braham, M.; Zarrouk, M.; Hammami, M. Extra virgin olive oil components and oxidative stability from olives grown in Tunisia. J. Am. Oil Chem. Soc. 2010, 87, 1199–1209. [Google Scholar] [CrossRef]
- Ulkowski, M.; Musialik, M.; Litwinenko, G. Use of differential scanning calorimetry to study lipid oxidation. 1. Oxidative stability of lecithin and linolenic acid. J. Agric. Food. Chem. 2005, 53, 9073–9077. [Google Scholar] [CrossRef]
- Vujasinovic, V.; Djilas, S.; Dimic, E.; Basic, Z.; Radocaj, O. The effect of roasting on the chemical composition and oxidative stability of pumpkin oil. Eur. J. Lipid Sci. Technol. 2012, 114, 568–574. [Google Scholar] [CrossRef]
- Martinez, M.; Maestri, D. Oil chemical variation in walnut (Juglans regia L.) genotypes grown in Argentina. Eur. J. Lipid Sci. Technol. 2008, 110, 1183–1189. [Google Scholar] [CrossRef]
- AOCS Methods. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 6th ed.; AOCS Press: Champaign, IL, USA, 2017. [Google Scholar]
- SRPS EN ISO 6883:2017. Određivanje Konvencionalne Zapreminske Mase (“Litarske Mase na Vazduhu”); Institut za Standardizaciju Srbije: Belgrade, Serbia, 2017. (In Serbian) [Google Scholar]
- SRPS EN ISO 660:2011. Masti i Ulja Životinjskog i Biljnog Porekla—Određivanje Kiselinskog Broja i Kiselosti; Institut za Standardizaciju Srbije: Belgrade, Serbia, 2011. (In Serbian) [Google Scholar]
- FAO/WHO. Codex Alimentarius Commission/FAO/WHO Food Standards. In Standard for Named Vegetable Oils, CODEX-STAN 210 ed.; FAO/WHO: Rome, Italy, 2011. [Google Scholar]
- Pravilnik o Kvalitetu i Drugim Zahtevima za Jestiva Biljna Ulja i Masti, Margarin i Druge Masne Namaze, Majonez i Srodne Proizvode, “Sl. List SCG”, br. 23/2006 i “Sl. Glasnik RS”, br. 43/2013. Available online: https://www.paragraf.rs/propisi/pravilnik-o-kvalitetu-ulja-masti-margarina-namaza-majoneza.html (accessed on 13 September 2021). (In Serbian).
- Morvarid, Y.; Leila, N.; Mohammad, G. Physicochemical properties of two type of shahrodi grape seed oil (Lal and Khalili). Eur. J. Exp. Biol. 2013, 3, 115–118. [Google Scholar]
- Ozcan, M.M.; Endes, Z.; Er, F. Physical and Chemical Properties of Some Seed and Kernel Oils. Asian J. Chem. 2010, 22, 6531–6536. [Google Scholar]
- Wang, T. Soybean oil. In Vegetable Oils in Food Technology, Composition, Properties and Uses; Gunston, F.D., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2002; pp. 43–44. [Google Scholar]
- de Souza, R.C.; Machado, B.A.S.; Barreto, G.A.; Leal, I.L.; Anjos, J.P.; Umsza-Guez, M.A. Effect of Experimental Parameters on the Extraction of Grape Seed Oil Obtained by Low Pressure and Supercritical Fluid Extraction. Molecules 2020, 25, 1634. [Google Scholar] [CrossRef] [Green Version]
- Da Porto, C.; Porretto, E.; Decorti, E. Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis vinifera L.) seeds. Ultrason. Sonochem. 2013, 20, 1076–1080. [Google Scholar] [CrossRef]
- Konuskan, D.B.; Kamiloglu, O.; Demirkeser, O. Fatty Acid Composition, Total Phenolic Content and Antioxidant Activity of Grape Seed Oils Obtained by Cold-Pressed and Solvent Extraction. Indian J. Pharm. Educ. 2019, 53, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Dong, W.; Chen, Q.; Wei, C.; Hu, R.; Long, Y.; Zong, Y.; Chu, Z. Comparison of the effect of extraction methods on the quality of green coffee oil from Arabica coffee beans: Lipid yield, fatty acid composition, bioactive components, and antioxidant activity. Ultrason Sonochem. 2021, 74, 105578. [Google Scholar] [CrossRef]
- Hernández-Santos, B.; Rodríguez-Miranda, J.; Herman-Lara, E.; Torruco-Uco, J.G.; Carmona-García, R.; Juárez-Barrientos, J.M.; Chávez-Zamudio, R.; Martínez-Sánchez, C.E. Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrason Sonochem. 2016, 31, 429–436. [Google Scholar] [CrossRef]
- Yu, H.; Seow, Y.X.; Ong, P.K.C.; Zhou, W. Effects of high-intensity ultrasound and oil type on the Maillard reaction of D-glucose and glycine in oil-in-water systems. NPJ Sci. Food. 2018, 2. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xu, Z.; Zheng, B.; Lo, Y.M. Optimization of ultrasonic-assisted extraction of pomegranate (Punica granatum L.) seed oil. Ultrason Sonochem. 2013, 20, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Alireza, S.; Tan, C.P.; Hamed, M.; Che Man, Y.B. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. Int. Food Res. J. 2010, 17, 295–302. [Google Scholar]
- Crews, C.; Hough, P.; Godward, J.; Brereton, P.; Lees, M.; Guiet, S.; Winkelmann, W. Quantitation of the Main Constituents of Some Authentic Grape-Seed Oils of Different Origin. J. Agric. Food Chem. 2006, 54, 6261–6265. [Google Scholar] [CrossRef]
- Rubio, M.; Alvarez-Orti, M.; Alvarruiz, A.; Fernandez, E.; Pardo, J.E. Characterization of Oil Obtained from Grape Seeds Collected during Berry Development. J. Agric. Food Chem. 2009, 57, 2812–2815. [Google Scholar] [CrossRef]
- Baydar, G.N.; Akkurt, M. Oil content and oil quality properties of some grape seeds. Turk. J. Agric. For. 2001, 25, 163–168. [Google Scholar]
- Shinagawa, F.B.; Santana, F.C.; Araujo, E.; Purgatto, E.; Mancini-Filho, J. Chemical composition of cold pressed Brazilian grape seed oil. Food Sci. Technol. 2018, 38, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Milinčić, D.D.; Kostić, A.Ž.; Špirović-Trifunović, B.D.; Tešić, Ž.L.; Tosti, T.B.; Dramićanin, A.M.; Barać, M.B.; Pešić, M.B. Grape seed flour of different grape pomaces: Fatty acid profile, soluble sugar profile andnutritional value. J. Serbian Chem. Soc. 2020, 85, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Martin-Polvillo, M.; Marquez-Ruiz, G.; Dobarganes, M.C. Oxidative stability of sunflower oils differing in unsaturation degree during long-term storage at room temperature. J. Am. Oil Chem. Soc. 2004, 81, 577–583. [Google Scholar] [CrossRef]
- Gray, J.I. Measurement of lipid oxidation: A review. J. Am. Oil Chem. Soc. 1978, 55, 539–546. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, C.; Wang, B.; Yagoub, A.A.E.; Ma, H.; Zhang, X.; Wu, M. Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies. Ultrason Sonochem. 2017, 37, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Madawala, S.R.P.; Kochhar, S.P.; Dutta, P.C. Lipid components and oxidative status of selected specialty oils. Grasas Aceites. 2012, 63, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Lutterodt, H.; Slavin, M.; Whent, M.; Turner, E.; Yu, L.L. Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem. 2011, 128, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Symoniuk, E.; Ratusz, K.; Ostrowska-Ligęza, E.; Krygier, K. Impact of Selected Chemical Characteristics of Cold-Pressed Oils on their Oxidative Stability Determined Using the Rancimat and Pressure Differential Scanning Calorimetry Method. Food Anal. Methods 2018, 11, 1095–1104. [Google Scholar] [CrossRef] [Green Version]
- Burčova, S.; Kreps, F.; Schmidt, Š.; Strižincova, P.; Jablonsky, M.; Kiselka, J.; Haz, A.; Šurina, I. Antioxidant activita and Tocopherol and Phenol contents of grape Residues. BioResources 2019, 14, 4146–4156. [Google Scholar] [CrossRef]
- Freitas, L.S.; Jacques, R.A.; Richter, M.F.; Silva, A.L.; Caramao, E.B. Pressurized liquid extraction of vitamin E from Brazilian grape seed oil. J. Chromatogr. A 2008, 1200, 80–83. [Google Scholar] [CrossRef]
- Al Juhaimi, F.Y.; Özcan, M.M. Effect of cold press and soxhlet extraction systems on fatty acid, tocopherol contents, and phenolic compounds of various grape seed oils. J. Food Process. Preserv. 2017, 42, e13417. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, A.; Beltrán, G.; Uceda, M. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrason. Sonochem. 2007, 14, 725–731. [Google Scholar] [CrossRef]
- Siger, A.; Nogala-Kalucka, M.; Lampart-Szczapa, E. The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. J. Food Lipids 2008, 15, 137–149. [Google Scholar] [CrossRef]
- Matthäus, B. Virgin grape seed oil: Is it really a nutritional highlight? Eur. J. Lipid Sci. Technol. 2008, 110, 645–650. [Google Scholar] [CrossRef]
- Xu, C.; Yagiz, Y.; Hsu, W.Y.; Simonne, A.; Lu, J.; Marshall, M.R. Antioxidant, antibacterial and antibiofilm properties of polyphenols from muscadine grape (Vitis rotundifolia Michx.) pomace against selected foodborne pathogens. J. Agric. Food Chem. 2014, 62, 6640–6649. [Google Scholar] [CrossRef]
Parameter | Extraction Method | Grape Variety | ||||
---|---|---|---|---|---|---|
Pinot Noir | Gamay | Prokupac | Cabernet Sauvignon | Merlot | ||
Relative density at 20 °C/water at 20 °C | CP | 0.915 ± 0.00 Ba | 0.920 Cb ± 0.00 | 0.918 BCb ± 0.00 | 0.919 ± 0.00 Cb | 0.911 ± 0.00 Aa |
UAE | 0.915 ± 0.00 Ca | 0.912 ± 0.00 ABa | 0.913 ± 0.00 BCa | 0.910 ± 0.00 Aa | 0.912 ± 0.00 ABa | |
Smoking point, °C | CP | 214.13 ± 0.35 Bb | 216.10 ± 0.00 Db | 213.20 ± 0.20 Ab | 216.13 ± 0.06 Db | 215.07 ± 0.06 Cb |
UAE | 210.17 ± 0.06 Aa | 211.13 ± 0.06 Ba | 212.17 ± 0.12 Ca | 210.23 ± 0.06 Aa | 210.20 ± 0.10 Aa | |
Saponification value, mg KOH g−1 | CP | 190.67 ± 1.15 Ba | 185.00 ± 2.00 Aa | 185.00 ± 0.00 Aa | 187.33 ± 0.58 Aa | 191.00 ± 0.00 Ba |
UAE | 195.33 ±0.58 Db | 187.00 ± 1.00 Aa | 191.67 ± 1.3 BCb | 191.00 ± 1.00 Bb | 194.00 ± 0.0 CDb | |
Iodine value, g 100 g−1 | CP | 135.00 ± 0.00 Bb | 128.33 ± 0.58 Aa | 138.00 ± 2.00 Cb | 134.00 ± 0.00 Bb | 130.33 ± 0.58 Aa |
UAE | 133.00 ± 0.00 Ba | 132.00 ± 0.00 Bb | 134.67 ± 0.58 Ca | 130.33 ± 0.58 Aa | 134.67 ± 0.58 Cb | |
Acid value, mg KOH g−1 | CP | 0.653 ± 0.01 Ea | 0.573 ± 0.01 Ca | 0.613 ± 0.01 Da | 0.547 ± 0.01 Ba | 0.520 ± 0.01 Aa |
UAE | 0.710 ± 0.01 Bb | 0.813 ± 0.01 Db | 0.677 ± 0.01 Ab | 0.757 ± 0.01 Cb | 0.717 ± 0.01 Bb |
Content, % | Extraction Method | Grape Variety | ||||
---|---|---|---|---|---|---|
Pinot Noir | Gamay | Prokupac | Cabernet Sauvignon | Merlot | ||
Oil yield | CP | 11.48 ± 0.11 Ca | 11.51 ± 0.18 Ca | 8.78 ± 0.16 Aa | 10.29 ± 0.09 Ba | 9.56 ± 0.14 Aa |
UAE | 12.84 ± 0.21 Cb | 13.01 ± 0.15 Cb | 10.06 ± 0.12 Ab | 11.69 ± 0.05 Bb | 11.45 ± 0.23 Bb | |
SE | 15.22 ± 0.04 Dc | 14.25 ± 0.03 Cc | 11.84 ± 0.05 Ac | 15.77 ± 0.04 Ec | 12.84 ± 0.03 Bc | |
Palmitic acid | CP | 6.86 ± 0.01 Aa | 6.76 ± 0.17 ABa | 7.08 ± 0.18 ABCa | 7.39 ± 0.03 Ca | 7.22 ± 0.17 BCa |
UAE | 7.27 ± 0.02 Bb | 6.85 ± 0.02 Aa | 7.75 ± 0.06 Cb | 7.59 ± 0.17 Ca | 7.59 ± 0.02 Cb | |
Stearic acid | CP | 3.53 ± 0.01 Aa | 3.59 ± 0.00 Bb | 4.23 ± 0.02 Ea | 4.09 ± 0.00 Da | 3.70 ± 0.01 Ca |
UAE | 3.52 ± 0.01 Ba | 3.28 ± 0.01 Aa | 4.37 ± 0.01 Eb | 4.29 ± 0.00 Db | 3.76 ± 0.03 Cb | |
Oleic acid | CP | 16.02 ± 0.03 Cb | 16.32 ± 0.02 Da | 16.59 ± 0.04 Eb | 13.84 ± 0.00 Ab | 14.36 ± 0.02 Bb |
UAE | 15.69 ± 0.14 Ba | 16.85 ± 0.03 Db | 16.28 ± 0.09 Ca | 13.58 ± 0.04 Aa | 13.49 ± 0.04 Aa | |
Linoleic acid | CP | 73.05 ± 0.07 Ca | 72.57 ± 0.09 Ba | 71.54 ± 0.11 Ab | 74.17 ± 0.04 Db | 74.15 ± 0.13 Da |
UAE | 73.05 ± 0.1 Ca | 72.53 ± 0.01 Ba | 70.83 ± 0.05 Aa | 73.92 ± 0.08 Da | 74.66 ± 0.07 Eb | |
Linolenic acid | CP | 0.28 ± 0.00 Aa | 0.29 ± 0.01 Aa | 0.31 ± 0.00 Aa | 0.29 ± 0.02 Aa | 0.31 ± 0.00 Aa |
UAE | 0.26 ± 0.00 Aa | 0.28 ± 0.02 Aa | 0.36 ± 0.11 Aa | 0.31 ± 0.01 Aa | 0.29 ± 0.01 Aa | |
Arachidic acid | CP | 0.11 ± 0.01 ABb | 0.13 ± 0.0 BCb | 0.11 ± 0.01 ABCa | 0.10 ± 0.02 Aa | 0.14 ± 0.00 Cb |
UAE | 0.08 ± 0.00 Aa | 0.08 ± 0.00 Aa | 0.20 ± 0.02 Bb | 0.17 ± 0.02 Bb | 0.10 ± 0.02 Aa | |
Behenic acid | CP | 0.15 ± 0.01 Aa | 0.14 ± 0.04 Aa | 0.14 ± 0.02 Aa | 0.12 ± 0.01 Aa | 0.13 ± 0.03 Aa |
UAE | 0.14 ± 0.00 Aa | 0.12 ± 0.01 Aa | 0.21 ± 0.08 Aa | 0.14 ± 0.00 Aa | 0.11 ± 0.01 Aa | |
SFA | CP | 10.65 ± 0.13 Aa | 10.82 ± 0.08 ACa | 11.56 ± 0.13 Ba | 11.7 ± 0.26 Ba | 11.18 ± 0.08 BCa |
UAE | 11 ± 0.19 Aa | 10.34 ± 0.02 Bb | 12.53 ± 0.14 Cb | 12.19 ± 0.10 Db | 11.56 ± 0.10 Eb | |
MUFA | CP | 16.02 ± 0.02 Aa | 16.32 ± 0.08 Ba | 16.59 ± 0.20 Ba | 13.84 ± 0.09 Ca | 14.36 ± 0.06 Da |
UAE | 15.69 ± 0.04 Ab | 16.85 ± 0.06 Bb | 16.28 ± 0.08 Ca | 13.58 ± 0.17 Da | 13.49 ± 0.08 Db | |
PUFA | CP | 73.33 ± 0.20 Aa | 72.86 ± 0.04 Ba | 71.85 ± 0.09 Ca | 74.46 ± 0.11 Da | 74.46 ± 0.13 Da |
UAE | 73.4 ± 0.12 Aa | 72.81 ± 0.04 Ba | 71.19 ± 0.08 Cb | 74.23 ± 0.15 Da | 74.91 ± 0.10 Eb | |
UFA | CP | 89.35 ± 0.02 Aa | 89.18 ± 0.04 ABa | 88.44 ± 0.13 CDa | 88.3 ± 0.26 Da | 88.82 ± 0.12 BCa |
UAE | 89 ± 0.04 Ab | 89.66 ± 0.12 Bb | 87.47 ± 0.15 Cb | 87.81 ± 0.10 Db | 88.44 ± 0.16 Eb |
Parameter | Extraction Method | Grape Variety | ||||
---|---|---|---|---|---|---|
Pinot Noir | Gamay | Prokupac | Cabernet Sauvignon | Merlot | ||
Peroxide value, mmol kg−1 | CP | 3.47 ± 0.058 Ca | 3.07 ± 0.056 Ba | 3.80 ± 0.00 Db | 2.53 ± 0.062 Aa | 3.10 ± 0.10 Ba |
UAE | 4.10 ± 0.10 Bb | 6.80 ± 0.00 Cb | 4.47 ± 0.06 Aa | 7.50 ± 0.00 Eb | 7.07 ± 0.06 Db | |
Anisidine value, 100A1%350nm | CP | 10.70 ± 0.00 Cb | 10.33 ± 0.06 Aa | 10.33 ± 0.06 Ab | 11.07 ± 0.06 Db | 10.50 ± 0.00 Ba |
UAE | 10.13 ± 0.06 Aa | 10.37 ± 0.06 Ca | 10.20 ± 0.00 ABa | 10.33 ± 0.06 BCa | 11.03 ± 0.06 Db | |
Induction period, h | CP | 2.82 ± 0.14 Ba | 2.86 ± 0.02 Ba | 2.79 ± 0.05 Ba | 1.38 ± 0.01 Aa | 1.30 ± 0.11 Aa |
UAE | 8.09 ± 0.08 Db | 7.11 ± 0.11 Cb | 7.17 ± 0.08 Cb | 5.48 ± 0.18 Bb | 4.71 ± 0.04 Ab | |
OOT, °C | CP | 166.80 ± 1.65 ABa | 167.10 ± 1.61 Ba | 166.90 ± 1.1 ABa | 162.50 ± 2.23 ABa | 162.20 ± 1.75 ABa |
UAE | 184.30 ± 1.21 Db | 179.67 ± 1.27 Cb | 181.27 ± 1.55 DCb | 173.80 ± 1.05 Bb | 170.47 ± 1.03 Ab | |
EC50, mg mg−1 | CP | 52.97 ± 0.66 Bb | 54.31 ± 0.76 Bb | 43.32 ± 0.79 Ab | 58.97 ± 1.12 Cb | 65.18 ± 1.25 Db |
UAE | 37.26 ± 1.25 Ba | 38.66 ± 0.96 Ba | 32.96 ± 0.77 Aa | 42.25 ± 0.75 Ca | 42.68 ± 0.56 Ca | |
α- tocopherol, mg 100 g−1 | CP | 1.47 ± 0.16 Ca | 1.34 ± 0.04 Ba | 1.67 ± 0.06 Ca | 0.54 ± 0.26 Aa | 1.06 ± 0.16 Ba |
UAE | 2.32 ± 0.12 Bb | 2.01 ± 0.15 Ab | 2.77 ± 0.09 Cb | 1.83 ± 0.09 Ab | 2.43 ± 0.14 Bb | |
TPC, mg 100 g−1 | CP | 6.85 ± 0.23 Ba | 7.18 ± 0.16 Ba | 7.45 ± 0.09 Ca | 6.28 ± 0.25 Aa | 5.99 ± 0.34 Aa |
UAE | 6.99 ± 0.27 BCa | 7.24 ± 0.30 Ca | 7.64 ± 0.28 Ca | 6.35 ± 0.28 ABa | 5.85 ± 0.27 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanović, J.; Malićanin, M.; Rakić, V.; Jevremović, N.; Karabegović, I.; Danilović, B. Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil. Agronomy 2021, 11, 1864. https://doi.org/10.3390/agronomy11091864
Milanović J, Malićanin M, Rakić V, Jevremović N, Karabegović I, Danilović B. Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil. Agronomy. 2021; 11(9):1864. https://doi.org/10.3390/agronomy11091864
Chicago/Turabian StyleMilanović, Jelena, Marko Malićanin, Vesna Rakić, Nenad Jevremović, Ivana Karabegović, and Bojana Danilović. 2021. "Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil" Agronomy 11, no. 9: 1864. https://doi.org/10.3390/agronomy11091864
APA StyleMilanović, J., Malićanin, M., Rakić, V., Jevremović, N., Karabegović, I., & Danilović, B. (2021). Valorization of Winery Waste: Prokupac Grape Seed as a Source of Nutritionally Valuable Oil. Agronomy, 11(9), 1864. https://doi.org/10.3390/agronomy11091864