Evaluating the Effect of Cover Materials on Greenhouse Microclimates and Thermal Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Greenhouses
2.2. Measurements
2.3. TLL and Overall Heat Transfer Determination
3. Results and Discussion
3.1. Climate Conditions
3.2. Analysis of the Microclimate of Greenhouses with Different Covering Materials
3.3. Thermal Load Leveling and Energy Exchange
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Li, Y.; Wang, R.Z.; Liu, W. Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application. Energy 2014, 67, 63–73. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Kim, H.K.; Kang, G.C.; Moon, J.P.; Lee, T.S.; Oh, S.S. Estimation of thermal performance and heat loss in plastic greenhouses with and without thermal curtains. Energies 2018, 11, 578. [Google Scholar] [CrossRef] [Green Version]
- Bouadila, S.; Kooli, S.; Skouri, S.; Lazaar, M.; Farhat, A. Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 2014, 64, 663–672. [Google Scholar] [CrossRef]
- Yang, S.H.; Rhee, J.Y. Utilization and performance evaluation of a surplus air heat pump system for greenhouse cooling and heating. Appl. Energy 2013, 105, 244–251. [Google Scholar] [CrossRef]
- Nayak, S.; Tiwari, G.N. Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods. Energy Build. 2009, 41, 888–896. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.S.; Jeon, J.G.; Paek, Y.; Lee, J.H.; Khoshimkhujaev, B.; Kim, Y.C. Evaluation of optimal water flow and temperature in response to outdoor air temperature in plastic greenhouse with recirculated water curtain system. J. Mech. Sci. Technol. 2017, 31, 3043–3051. [Google Scholar] [CrossRef]
- Rural Development Administration (RDA). Energy Saving Technology for Protected Horticulture (Guide for Agricultural Techniques); RDA: Jeonju, Korea, 2014.
- Rural Development Administration (RDA). Guidebook of Energy Saving for Overcoming High Oil Price in Protected Horticulture; RDA: Suwon, Korea, 2008.
- Nam, S.W.; Yoon, Y.C.; Lee, H.W.; Lee, I.B.; Kim, H.T.; Lee, J.W.; Suh, I.H. Agricultural Facility Engineering, 2nd ed.; Hyangmunsa: Seoul, Korea, 2018. [Google Scholar]
- Teitel, M.; Barak, M.; Antler, A. Effect of cyclic heating and a thermal screen on the nocturnal heat loss and microclimate of a greenhouse. Biosyst. Eng. 2009, 102, 162–170. [Google Scholar] [CrossRef]
- Papadakis, G.; Briassoulis, D.; Scarascia Mungnozza, G.; Vox, G.; Feuilloley, P.; Stoffers, J.A. Review Paper (SE—Structures and Environment): Radiometric and thermal properties of, and testing methods for, greenhouse covering materials. J. Agric. Eng. Res. 2000, 77, 7–38. [Google Scholar] [CrossRef]
- Baneshi, M.; Gonome, H.; Maruyama, S. Wide-range spectral measurement of radiative properties of commercial greenhouse covering plastics and their impacts into the energy management in a greenhouse. Energy 2020, 210, 118535. [Google Scholar] [CrossRef]
- Japan Greenhouse Horticulture Association (JGHA). Handbook of Protected Horticulture, 5th ed.; JGHA: Tokyo, Japan, 2015.
- Shin, H.H.; Nam, S.W. Validation of load calculation method for greenhouse heating design and analysis of the influence of infiltration loss and ground heat exchange. Korean J. Hortic. Sci. Technol. 2015, 33, 647–657. [Google Scholar] [CrossRef]
- Perdigones, A.; García, J.L.; Pastor, M.; Benavente, R.M.; Luna, L.; Chaya, C.; de la Plaza, S. Effect of heating control strategies on greenhouse energy efficiency: Experimental results and modeling. Trans. ASABE 2006, 49, 143–155. [Google Scholar]
- American Society of Agricultural Engineers (ASAE). ASAE Standards 2003: ANSI/ASAE EP406.4 JAN03 Heating, Ventilating and Cooling Greenhouses. Available online: http://ceac.arizona.edu/sites/default/files/asae_-_heating_ventilating_and_cooling_greenhouses.pdf (accessed on 7 May 2020).
- Arinze, E.A.; Schoenau, G.J.; Besant, R.W. Experimental and computer performance evaluation of a movable thermal insulation for energy conservation in greenhouses. J. Agric. Eng. Res. 1986, 34, 97–113. [Google Scholar] [CrossRef]
- Baille, A.; López, J.C.; Bonachela, S.; González-Real, M.M.; Montero, J.I. Night energy balance in a heated low-cost plastic greenhouse. Agric. For. Meteorol. 2006, 137, 107–118. [Google Scholar]
- Baeza, E.; Hemming, S.; Stanghellini, C. Materials with switchable radiometric properties: Could they become the perfect greenhouse cover? Biosyst. Eng. 2020, 193, 157–173. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Hao, X. Effects of greenhouse covers on seedless cucumber growth, productivity, and energy use. Sci. Hortic. 1997, 68, 113–123. [Google Scholar] [CrossRef]
- Alsadon, A.; Al-Helal, I.; Ibrahim, A.; Abdel-Ghany, A.; Al-Zaharani, S.; Ashour, T. The effects of plastic greenhouse covering on cucumber (Cucumis sativus L.) growth. Ecol. Eng. 2016, 87, 305–312. [Google Scholar] [CrossRef]
- Subin, M.C.; Karthikeyan, R.; Periasamy, C.; Sozharajan, B. Verification of the greenhouse roof-covering-material selection using the finite element method. Mater. Today Proc. 2020, 21, 357–366. [Google Scholar] [CrossRef]
- Statuto, D.; Abdel-Ghany, A.M.; Starace, G.; Arrigoni, P.; Picuno, P. Comparison of the efficiency of plastic nets for shading greenhouse in different climates. In Proceedings of the International Mid-Term Conference of the Italian Association of Agricultural Engineering, Matera, Italy, 12–13 September; Springer: Cham, Switzerland, 2019; pp. 287–294. [Google Scholar]
- Ministry of Agriculture, Food and Rural Affairs (MAFRA). The Status of Vegetable Greenhouse Facilities and Vegetables Production in 2018; MAFRA: Sejong, Korea, 2019. Available online: http://library.mafra.go.kr/skyblueimage/12716.pdf (accessed on 7 May 2020).
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Fabrizio, E. Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy Build. 2012, 53, 57–63. [Google Scholar] [CrossRef]
- Fadel, M.A.; Hammad, B.; Faisal, A.H.; Iwaimer, O. Greenhouses covering materials: A comparative study. Agric. Eng. Int. CIGR J. 2016, 18, 48–57. [Google Scholar]
- Mills, A.F. Heat Transfer, International, Student ed.; Richard, D., Ed.; Irwin: Homewood, IL, USA, 1992. [Google Scholar]
- Ghosal, M.K.; Tiwari, G.N.; Das, D.K.; Pandey, K.P. Modeling and comparative thermal performance of ground air collectorand earth air heat exchanger for heating of greenhouse. Energy Build. 2005, 37, 613–621. [Google Scholar] [CrossRef]
- Rajoria, C.S.; Agrawal, S.; Chandra, S.; Tiwari, G.N.; Chauhan, D.S. A novel investigation of building integrated photovoltaic thermal (BiPVT) system: A comparative study. Sol. Energy 2016, 131, 107–118. [Google Scholar] [CrossRef]
- Tiwari, S.; Bhatti, J.; Tiwari, G.N.; Al-Helal, I.M. Thermal modelling of photovoltaic thermal (PVT) integrated greenhouse system for biogas heating. Sol. Energy 2016, 136, 639–649. [Google Scholar] [CrossRef]
- Tiwari, G.N.; Akhtar, M.A.; Shukla, A.; Emran Khan, M. Annual thermal performance of greenhouse with anearth–air heat exchanger: An experimental validation. Renew. Energy 2006, 31, 2432–2446. [Google Scholar] [CrossRef]
- Tomar, V.; Norton, B.; Tiwari, G.N. A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study. Renew. Energy 2019, 137, 93–108. [Google Scholar] [CrossRef]
- Fokaides, P.A.; Kalogirou, S.A. Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes. Appl. Energy 2011, 88, 4358–4365. [Google Scholar] [CrossRef]
- Suleiman, B.M. Estimation of U-value of traditional North African houses. Appl Therm. Eng. 2011, 31, 1923–1928. [Google Scholar] [CrossRef]
- Ozturk, H.H. Experimental determination of the overall heat loss coefficient for energy requirement of greenhouse heating. Int. J. Energy Res. 2005, 29, 937–944. [Google Scholar] [CrossRef]
- Papadakis, G.; Frangoudakis, A.; Kyritsis, S. Theoretical and experimental investigation of thermal radiation transfer in polyethylene covered greenhouses. J. Agric. Eng. Res. 1989, 44, 97–111. [Google Scholar]
- Montero, J.I.; Castilla, N.; Gutiérrez de Ravé, E.; Bretones, F. Climate under plastic in the Almería area. Acta Hortic. 1985, 170, 227–234. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Waheeb, S.A.; Ibrahim, A.A.; Shady, M.R.; Abdel-Ghany, A.M. Modified thermal model to predict the natural ventilation of greenhouses. Energy Build. 2015, 99, 1–8. [Google Scholar] [CrossRef]
- García, J.L.; De la Plaza, S.; Navas, L.M.; Benavente, R.M.; Luna, L. Evaluation of the feasibility of alternative energy sources for greenhouse heating. J. Agric. Eng. Res. 1998, 69, 107–114. [Google Scholar] [CrossRef]
Condition | Thickness (mm) | Thermal Conductivity (W m−1 K−1) | Specific Heat (J kg−1 K−1) | Emissivity | Solar Transmittance (%) |
---|---|---|---|---|---|
Plastic film | 0.15 | 0.33 [26] | − | 0.2 [26] | 87 [26] |
Polycarbonate | 6.0 | 0.06 [27] | 1220 [27] | 0.9 [27] | 86–86.8 [27,28] |
Glass | 4.0 | 0.76 [26] | 840 [29] | 0.9 [26] | 88–93 [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-K.; Lee, S.-Y.; Kwon, J.-K.; Kim, Y.-H. Evaluating the Effect of Cover Materials on Greenhouse Microclimates and Thermal Performance. Agronomy 2022, 12, 143. https://doi.org/10.3390/agronomy12010143
Kim H-K, Lee S-Y, Kwon J-K, Kim Y-H. Evaluating the Effect of Cover Materials on Greenhouse Microclimates and Thermal Performance. Agronomy. 2022; 12(1):143. https://doi.org/10.3390/agronomy12010143
Chicago/Turabian StyleKim, Hyung-Kweon, Si-Young Lee, Jin-Kyung Kwon, and Yong-Hyeon Kim. 2022. "Evaluating the Effect of Cover Materials on Greenhouse Microclimates and Thermal Performance" Agronomy 12, no. 1: 143. https://doi.org/10.3390/agronomy12010143
APA StyleKim, H.-K., Lee, S.-Y., Kwon, J.-K., & Kim, Y.-H. (2022). Evaluating the Effect of Cover Materials on Greenhouse Microclimates and Thermal Performance. Agronomy, 12(1), 143. https://doi.org/10.3390/agronomy12010143