The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kechaikina, I.O.; Ryumin, A.G.; Chukov, S.N. Postagrogenic transformation of organic matter in soddy-podzolic soils. Eurasian Soil Sci. 2011, 44, 1077–1089. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Swift, R.S. Chapter one—Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1018–1020. [Google Scholar] [CrossRef]
- Guo, X.; Liu, H.; Wu, S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef]
- Koković, N.; Saljnikov, E.; Eulenstein, F.; Čakmak, D.; Buntić, A.; Sikirić, B.; Ugrenović, V. Changes in soil labile organic matter as affected by 50 years of fertilization with increasing amounts of nitrogen. Agronomy 2021, 11, 2026. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification, 1st ed.; Taylor & Francis: London, UK, 1995; 325p. [Google Scholar] [CrossRef]
- Lentz, H.; Lüdemann, H.D.; Ziechmann, W. Proton resonance spectra of humic acid from the solum of a podzol. Geoderma 1973, 18, 325–328. [Google Scholar] [CrossRef]
- Lodygin, E.; Shamrikova, E. Use of the pK spectroscopy method in the study of protolytic properties of humic substances and other soil polyelectrolytes. Agronomy 2021, 11, 1051. [Google Scholar] [CrossRef]
- Ndzelu, B.S.; Dou, S.; Zhang, X.; Zhang, Y.; Ma, R.; Liu, X. Tillage Effects on humus composition and humic acid structural characteristics in soil aggregate-size fractions. Soil Tillage Res. 2021, 216, 105090. [Google Scholar] [CrossRef]
- Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. Temperature dependences of IR spectra of humic substances of brown coal. Agronomy 2021, 11, 1822. [Google Scholar] [CrossRef]
- Fründ, R.; Lüdemann, H.D. The quantitative analysis of solution- and CPMAS-C-13 NMR spectra of humic material. Sci. Total Environ. 1989, 81/82, 157–168. [Google Scholar] [CrossRef]
- Wershaw, R.L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I. Use of 13C NMR and FTIR for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation. Soil Sci. 1996, 161, 667–679. [Google Scholar] [CrossRef]
- Wilson, M.A. Application of nuclear magnetic resonance spectroscopy to the study of the structure of soil organic matter. Soil Sci. 1981, 32, 167–186. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Chukov, S.N. Paramagnetic properties of humus acids of podzolic and bog-podzolic soils. Eurasian Soil Sci. 2007, 40, 726–728. [Google Scholar] [CrossRef]
- Chukov, S.N.; Lodygin, E.D.; Abakumov, E.V. Application of 13C NMR spectroscopy to the study of soil organic matter: A review of publications. Eurasian Soil Sci. 2018, 51, 889–900. [Google Scholar] [CrossRef]
- Al-Faiyz, Y.S.S. CPMAS 13C NMR characterization of humic acids from composted agricultural saudi waste. Arab. J. Chem. 2017, 10, S839–S853. [Google Scholar] [CrossRef]
- Savarese, C.; Drosos, M.; Spaccini, R.; Cozzolino, V.; Piccolo, A. Molecular characterization of soil organic matter and its extractable humic fraction from long-term field experiments under different cropping systems. Geoderma 2020, 383, 114700. [Google Scholar] [CrossRef]
- Sarker, T.C.; Incerti, G.; Spaccini, R.; Piccolo, A.; Mazzoleni, S.; Bonanomi, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biol. Biochem. 2017, 117, 175–184. [Google Scholar] [CrossRef]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Polish Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Preston, C.M. Using NMR to characterize the development of soil organic matter with varying climate and vegetation. In Stable Isotopes in Plant Nutrition. Soil Fertility and Environmental Studies; Proceedings Series; International Atomic Energy Agency: Vienna, Austria, 1991; pp. 27–36. [Google Scholar]
- Rodríguez-Murillo, J.C.; Almendros, G.; Knicker, H. Humic acid composition and humification processes in wetland soils of a mediterranean semiarid wetland. J. Soils Sediments 2017, 17, 2104–2115. [Google Scholar] [CrossRef] [Green Version]
- Savel’eva, A.V.; Yudina, N.V.; Inisheva, L.I. Characteristics of humic acids in a system of geochemically linked bog landscapes. Solid Fuel Chem. 2020, 54, 253–259. [Google Scholar] [CrossRef]
- Szajdak, L.W.; Jezierski, A.; Wegner, K.; Meysner, T.; Szczepánski, M. Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules 2020, 25, 2587. [Google Scholar] [CrossRef]
- Chukov, S.N. Study of humus acids in anthropogenically disturbed soils using 13C-NMR spectroscopy. Eurasian Soil Sci. 1998, 31, 979–986. [Google Scholar]
- Danchenko, N.N.; Artemyeva, Z.S.; Kogut, B.M. Features of the chemical structure of different organic matter pools in haplic chernozem of the streletskaya steppe: 13C MAS NMR study. Environ. Res. 2020, 191, 110205. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and molecular composition of humic acids isolated from soils of tallgrass temperate rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR spectroscopy. Agronomy 2021, 11, 1998. [Google Scholar] [CrossRef]
- Shamrikova, E.V.; Kubik, O.S.; Deneva, S.V.; Punegov, V.V. Composition of the water-soluble soil fraction on the barents sea coast: Organic carbon and nitrogen, low-molecular weight components. Eurasian Soil Sci. 2019, 52, 1347–1362. [Google Scholar] [CrossRef]
- Khabibullina, F.M.; Kuznetsova, E.G.; Vaseneva, I.Z. Micromycetes in podzolic and bog-podzolic soils in the middle taiga subzone of Northeastern European Russia. Eurasian Soil Sci. 2014, 47, 1027–1032. [Google Scholar] [CrossRef]
- Kholodov, V.A.; Yaroslavtseva, N.V.; Konstantinov, A.I.; Perminova, I.V. Preparative yield and properties of humic acids obtained by sequential alkaline extractions. Eurasian Soil Sci. 2015, 48, 1101–1109. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vanchikova, E.V. Functional groups of fulvic acids from gleyic peaty-podzolic soil. Eurasian Soil Sci. 2001, 34, 382–386. [Google Scholar]
- Dergacheva, M.I.; Nekrasova, O.A.; Okoneshnikova, M.V.; Vasil’eva, D.I.; Gavrilov, D.A.; Ochur, K.O.; Ondar, E.E. Ratio of Elements in humic acids as a source of information on the environment of soil formation. Contemp. Probl. Ecol. 2012, 5, 497–504. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A. The molecular structure and elemental composition of humic substances from Albeluvisols. Chem. Ecol. 2010, 26, 87–95. [Google Scholar] [CrossRef]
- Kukuļs, I.; Kļaviņš, M.; Nikodemus, O.; Kasparinskis, R.; Brūmelis, G. Changes in soil organic matter and soil humic substances following the afforestation of former agricultural lands in the boreal-nemoral ecotone (Latvia). Geoderma Reg. 2019, 16, e00213. [Google Scholar] [CrossRef]
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef] [PubMed]
Chemical Shift, ppm | Molecular Groups and Fragments |
---|---|
0–47 | Aliphatic –CH, –CH2, and –CH3 groups |
47–60 | Amino group C and –O–CH3 structures |
60–108 | Carbohydrate, alcohol, and ether –C–O groups |
108–144 | Aromatic CAr |
144–164 | Phenol CAr –O |
164–183 | Carboxyl C |
183–190 | Quinone CAr =O |
190–204 | Aldehyde and ketone –C=O groups |
Horizon | HS Type | Chemical Shift, ppm | Σ CAr Σ CAL | Aromaticity, % | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0–47 | 47–60 | 60–108 | 108–144 | 144–164 | 164–183 | 183–190 | 190–204 | ||||
Eutric Albic Retisols (Loamic) | |||||||||||
O | HAs | 22.4 | 8.1 | 12.8 | 33.5 | 10.0 | 11.3 | 0.5 | 1.4 | 0.79 | 44.0 |
FAs | 23.3 | 6.6 | 23.2 | 18.6 | 7.4 | 19.6 | 0.6 | 0.7 | 0.36 | 26.6 | |
OEL | HAs | 40.7 | 8.6 | 8.9 | 18.8 | 7.1 | 12.1 | 1.7 | 2.1 | 0.38 | 27.6 |
FAs | 25.1 | 6.4 | 18.6 | 10.3 | 4.2 | 25.0 | 3.2 | 7.2 | 0.22 | 17.7 | |
Eutric Albic Stagnic Histic Retisol (Loamic) | |||||||||||
T | HAs | 23.2 | 6.0 | 11.8 | 22.4 | 8.8 | 17.0 | 4.3 | 6.5 | 0.55 | 35.5 |
FAs | 19.5 | 2.4 | 20.2 | 12.9 | 4.2 | 26.3 | 5.1 | 9.4 | 0.29 | 22.2 | |
ELg | HAs | 50.5 | 2.8 | 7.3 | 16.9 | 4.7 | 12.8 | 2.7 | 2.3 | 0.32 | 24.3 |
FAs | 31.2 | 2.7 | 17.9 | 8.7 | 3.3 | 27.1 | 2.5 | 6.6 | 0.17 | 14.5 |
Horizon | HS Type | Content, g/kg Soil | Molar Content, % | Atomic Ratio | (H/C)cor 1 | Degree of Oxidation (ω) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O | N | H/C | O/C | C/N | |||||
Eutric Albic Retisols (Loamic) | |||||||||||
O | HAs | 5.6 ± 0.28 | 35.6 ± 0.4 | 44.6 ± 0.9 | 17.88 ± 0.18 | 1.96 ± 0.10 | 1.25 | 0.50 | 18.2 | 1.92 | −0.08 |
FAs | 18.2 ± 0.9 | 33.3 ± 0.3 | 39.1 ± 0.8 | 26.16 ± 0.26 | 1.42 ± 0.07 | 1.17 | 0.786 | 23.4 | 2.22 | +0.52 | |
OEL | HAs | 6.0 ± 0.3 | 35.2 ± 0.4 | 44.7 ± 0.9 | 18.00 ± 0.18 | 2.12 ± 0.11 | 1.27 | 0.51 | 16.6 | 1.95 | −0.07 |
FAs | 5.50 ± 0.28 | 33.0 ± 0.3 | 39.5 ± 0.8 | 26.75 ± 0.27 | 0.76 ± 0.04 | 1.20 | 0.811 | 43.4 | 2.29 | +0.49 | |
Eutric Albic Retisols (Loamic) arable | |||||||||||
Oara | HAs | 6.1 ± 0.3 | 36.8 ± 0.4 | 46.0 ± 0.9 | 15.10 ± 0.15 | 2.07 ± 0.10 | 1.25 | 0.41 | 17.8 | 1.80 | −0.26 |
FAs | 4.23 ± 0.21 | 32.2 ± 0.3 | 39.6 ± 0.8 | 27.35 ± 0.27 | 0.83 ± 0.04 | 1.23 | 0.849 | 38.8 | 2.37 | +0.55 | |
Eutric Albic Stagnic Histic Retisol (Loamic) | |||||||||||
T | HAs | 11.0 ± 0.6 | 34.5 ± 0.3 | 44.8 ± 0.9 | 18.91 ± 0.19 | 1.81 ± 0.09 | 1.30 | 0.55 | 19.1 | 2.04 | −0.04 |
FAs | 18.3 ± 0.9 | 33.9 ± 0.3 | 37.9 ± 0.8 | 26.65 ± 0.27 | 1.54 ± 0.08 | 1.12 | 0.786 | 22.0 | 2.17 | +0.59 | |
EL | HAs | 8.5 ± 0.4 | 32.2 ± 0.3 | 54.1 ± 1.1 | 12.48 ± 0.13 | 1.25 ± 0.06 | 1.68 | 0.39 | 25.7 | 2.20 | −0.79 |
FAs | 10.5 ± 0.5 | 31.9 ± 0.3 | 39.8 ± 0.8 | 27.24 ± 0.27 | 1.08 ± 0.05 | 1.25 | 0.854 | 29.5 | 2.39 | +0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Abakumov, E. The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances. Agronomy 2022, 12, 144. https://doi.org/10.3390/agronomy12010144
Lodygin E, Abakumov E. The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances. Agronomy. 2022; 12(1):144. https://doi.org/10.3390/agronomy12010144
Chicago/Turabian StyleLodygin, Evgeny, and Evgeny Abakumov. 2022. "The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances" Agronomy 12, no. 1: 144. https://doi.org/10.3390/agronomy12010144
APA StyleLodygin, E., & Abakumov, E. (2022). The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances. Agronomy, 12(1), 144. https://doi.org/10.3390/agronomy12010144