Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field and Plant Coltivation
2.2. Terminating Products and Experimental Design
- Glyphosate (GLY): sprayed at a dose of 6 L ha−1 20 days before harvesting
- Spotlight© BASF (DEF): Sprayed at a dose of 6 L ha−1 20 days before harvesting
- Diquat sprayed (DIQ): At a dose of 5 L ha−1 10 days before harvesting
- Control (CON): No chemicals were applied.
2.3. Pre-Harvest Test: Aerial Biomass, Expected Seed Yield and Dehiscence
2.4. Settings of the Combine Harvester
2.5. Harvest and Seed Loss Evaluation
2.6. Evaluation of the Combine Harvester’s Cleaning Shoe: Percentage of Damaged Seeds, Undamaged Seeds, Broken Seeds
2.7. Statistics
3. Results and Discussions
3.1. Pre-Harvest
3.2. Seed Loss and Dehulling Capacity of the Combine Harvester’s Cleaning Shoe
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carrino, L.; Visconti, D.; Fiorentino, N.; Fagnano, M. Biofuel Production with Castor Bean: A Win–Win Strategy for Marginal Land. Agronomy 2020, 10, 1690. [Google Scholar] [CrossRef]
- European Union (EU). Renewable Energy Directive II (EU) 2018/2001. 11 December 2018. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32018L2001&from=IT (accessed on 10 July 2020).
- Bateni, H.; Karimi, K.; Zamani, A.; Benakashani, F. Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl. Energy 2014, 136, 14–22. [Google Scholar] [CrossRef]
- Scholz, V.; Silva, J. Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 2008, 32, 95–100. [Google Scholar] [CrossRef]
- Polito, L.; Bortolotti, M.; Battelli, M.G.; Calafato, G.; Bolognesi, A. Ricin: An ancient story for a timeless plant toxin. Toxins 2019, 11, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexopoulou, E.; Papatheohari, Y.; Zanetti, F.; Tsiotas, K.; Papamichael, I.; Christou, M.; Namatov, I.; Monti, A. Comparative studies on several castor (Ricinus communis L.) hybrids: Growth, yields, seed oil and biomass characterization. Ind. Crops Prod. 2015, 75, 8–13. [Google Scholar] [CrossRef]
- Zanetti, F.; Monti, A.; Berti, M.T. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crops Prod. 2013, 50, 580–595. [Google Scholar] [CrossRef]
- Pari, L.; Latterini, F.; Stefanoni, W. Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art. Agriculture 2020, 10, 309. [Google Scholar] [CrossRef]
- Fernández, J.; Pari, L.; Müller, M.; Márquez, L.; Fedrizzi, M.; Curt, M. Strategies for the mechanical harvesting of Cynara. In Proceedings of the 15th European Biomass Conference & Exhibition, Berlin, Germany, 7–11 May 2007; pp. 7–11. [Google Scholar]
- Chan, A.P.; Crabtree, J.; Zhao, Q.; Lorenzi, H.; Orvis, J.; Puiu, D.; Melake-Berhan, A.; Jones, K.M.; Redman, J.; Chen, G.; et al. Draft genome sequence of the oilseed species Ricinus communis. Nat. Biotechnol. 2010, 28, 951–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldanzi, M.; Pugliesi, C. Selection for non-branching in castor, Ricinus communis L. Plant Breed. 1998, 117, 392–394. [Google Scholar] [CrossRef]
- Baldanzi, M.; Myczkowski, M.L.; Salvini, M.; Macchia, M. Description of 90 inbred lines of castor plant (Ricinus communis L.). Euphytica 2015, 202, 13–33. [Google Scholar] [CrossRef]
- Anjani, K. Castor genetic resources: A primary gene pool for exploitation. Ind. Crops Prod. 2012, 35, 1–14. [Google Scholar] [CrossRef]
- Zanetti, F.; Chieco, C.; Alexopoulou, E.; Vecchi, A.; Bertazza, G.; Monti, A. Comparison of new castor (Ricinus communis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. Ind. Crops Prod. 2017, 107, 581–587. [Google Scholar] [CrossRef]
- Roberts, T.R.; Hutson, D.H.; Lee, P.W.; Nicholls, P.H.; Plimmer, J.R.; Roberts, M.C.; Croucher, L. Metabolic Pathways of Agrochemicals: Part 1: Herbicides and Plant Growth Regulators; Royal Society of Chemistry: Cambridge, United Kingdom, 2007; ISBN 1847551386. [Google Scholar]
- International Agency for Research on Cancer. Evaluation of five organophosphate insecticides and herbicides. IARC Monogr. 2015, 112. Available online: https://www.iarc.who.int/news-events/iarc-monographs-volume-112-evaluation-of-five-organophosphate-insecticides-and-herbicides (accessed on 20 October 2021).
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basi, S.; Noga, G.; Hunsche, M. Relevance of the deposit structure for the uptake and bio-efficacy of diquat, as monitored by the spatially resolved chlorophyll fluorescence. Pestic. Biochem. Physiol. 2013, 107, 218–225. [Google Scholar] [CrossRef]
- Anastasiadis, B.; Garcia, B.A.; Laffranque, J.P.; Shires, S.W. Carfentrazone-Ethyl (F8426): A New Low-Dose Cotton Defoliant. In Proceedings of the World Cotton Research Conference-2, Athens, Greece, 6–12 September 1998; pp. 1175–1178. [Google Scholar]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), version 7.0; StatSoft, Inc.: Round Rock, TX, USA, 2007; Available online: www.statsoft.com (accessed on 1 October 2021).
- Sadeghi-Bakhtavari, A.R.; Hazrati, S. Growth, yield, and fatty acids as affected by water-deficit and foliar application of nitrogen, phosphorus, and sulfur in castor bean. J. Crop Improv. 2021, 35, 453–468. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L. A framework for the study of the growth and development of castor plant. Ind. Crops Prod. 2013, 46, 25–38. [Google Scholar] [CrossRef]
- Reddy, K.R.; Matcha, S.K. Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Ind. Crops Prod. 2010, 31, 185–191. [Google Scholar] [CrossRef]
- de Carvalho Teixeira Vasconcelos, P.; Loureiro, M.B.; Lima, Á.M.M.F.; Ribeiro, P.R.; Bernal, D.T.; Moreno, M.L.V.; Fernandez, L.G.; de Castro, R.D. New insights into the mechanism underlying Ricinus communis L. tolerance to drought stress during germination. Ind. Crops Prod. 2017, 103, 99–106. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.; Hilhorst, H.; Nogonaki, H. Seeds: Physiology of Development, Germination and Dormancy; Finch-Savage, B., Ed.; Springer Science & Business Media: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2012; ISBN 1461446929. [Google Scholar]
- Merkouropoulos, G.; Kapazoglou, A.; Drosou, V.; Jacobs, E.; Krolzig, A.; Papadopoulos, C.; Hilioti, Z. Dwarf hybrids of the bioenergy crop Ricinus communis suitable for mechanized harvesting reveal differences in morpho-physiological characteristics and seed metabolic profiles. Euphytica 2016, 210, 207–219. [Google Scholar] [CrossRef]
- Evogene Ltd. Evofuel and Fantini s.r.l Announce Breakthrough in Mechanical Harvesting for Castor Bean. 2018. Available online: https://www.globenewswire.com/news-release/2018/10/29/1638116/32507/en/Evofuel-and-Fantini-s-r-l-Announce-Breakthrough-in-Mechanical-Harvesting-for-Castor-Bean.html (accessed on 25 October 2021).
- Goneli, A.L.D.; Corrêa, P.C.; Oliveira, A.P.L.R.; Filho, C.P.H.; Oba, G.C. Castor beans quality subjected to different storage temperatures and periods. Eng. Agric. 2018, 38, 361–368. [Google Scholar] [CrossRef]
- Pari, L.; Assirelli, A.; Suardi, A.; Civitarese, V.; Del Giudice, A.; Costa, C.; Santangelo, E. The harvest of oilseed rape (Brassica napus L.): The effective yield losses at on-farm scale in the Italian area. Biomass Bioenergy 2012, 46, 453–458. [Google Scholar] [CrossRef]
- Latterini, F.; Stefanoni, W.; Sebastiano, S.; Baldi, G.M.; Pari, L. Evaluating the suitability of a combine harvester equipped with the sunflower header to harvest cardoon seeds: A case study in central Italy. Agronomy 2020, 10, 1981. [Google Scholar] [CrossRef]
- Stefanoni, W.; Latterini, F.; Ruiz, J.P.; Bergonzoli, S.; Attolico, C.; Pari, L. Mechanical harvesting of camelina: Work productivity, costs and seed loss evaluation. Energies 2020, 13, 5329. [Google Scholar] [CrossRef]
- Stefanoni, W.; Latterini, F.; Ruiz, J.P.; Bergonzoli, S.; Palmieri, N.; Pari, L. Assessing the Camelina (Camelina sativa (L.) Crantz) Seed Harvesting Using a Combine Harvester: A Case-Study on the Assessment of Work Performance and Seed Loss. Sustainability 2021, 13, 195. [Google Scholar] [CrossRef]
Variable | Significance | GLY | DEF | DIQ | CON |
---|---|---|---|---|---|
Plant height (cm) | ns | 55.63 | 59.88 | 64.53 | 61.43 |
Truss height (cm) | ns | 20.05 | 22.38 | 21.75 | 21.25 |
Raceme height (cm) | ns | 35.15 | 37.50 | 37.95 | 40.18 |
Plant density (n m−2) | ns | 4.42 | 4.58 | 4.50 | 4.58 |
Raceme density (n m−2) | ns | 9.96 | 10.21 | 9.88 | 9.54 |
Racemes per plant (n plant−1) | ns | 2.27 | 2.23 | 2.17 | 2.10 |
PSY (kg DW ha−1) | ns | 1181.7 | 1245.86 | 1259.49 | 1165.35 |
Seed moisture (%) | ns | 4.46 | 4.51 | 4.75 | 5.26 |
Capsules biomass (kg DW ha−1) | ns | 538.19 | 538.86 | 576.55 | 543.26 |
Capsules moisture (%) | * | 8.39 ab | 7.63 ab | 7.32 b | 9.53 a |
Plant biomass (kg DW ha−1) | ns | 592.83 | 760.21 | 681.29 | 968.46 |
Plant moisture 1 (%) | *** | 59.12 b | 69.63 a | 62.38 b | 74.06 a |
H-index | * | 0.51 a | 0.49 a | 0.51 a | 0.43 b |
1000-seed weight (g) | ns | 260.28 | 253.52 | 253.28 | 255.69 |
Variable | Significance | GLY | DEF | DIQ | CON |
---|---|---|---|---|---|
DSL (kg ha−1) | * | 66.10 ab | 135.84 a | 38.75 b | 60.17 ab |
ISL (kg ha−1) | ** | 549.55 ab | 342.97 b | 729.71 a | |
CSL (kg ha−1) | *** | 18.87 b | 51.54 a | 4.83 c | |
DSL (%) | * | 5.59 ab | 11.50 a | 3.28 b | 3.28 ab |
ISL (%) | ** | 46.50 ab | 29.02 b | 61.75 a | |
CSL (%) | *** | 1.60 b | 4.36 a | 0.41 c | |
Undamaged seeds DW (%) | ** | 26.79 b | 38.34 a | 26.91 b | |
Not opened seeds DW (%) | ns | 50.72 | 39.65 | 48.95 | |
Damaged seeds DW (%) | ns | 22.49 | 22.01 | 24.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latterini, F.; Stefanoni, W.; Cavalaris, C.; Karamoutis, C.; Pari, L.; Alexopoulou, E. Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece. Agronomy 2022, 12, 146. https://doi.org/10.3390/agronomy12010146
Latterini F, Stefanoni W, Cavalaris C, Karamoutis C, Pari L, Alexopoulou E. Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece. Agronomy. 2022; 12(1):146. https://doi.org/10.3390/agronomy12010146
Chicago/Turabian StyleLatterini, Francesco, Walter Stefanoni, Chris Cavalaris, Christos Karamoutis, Luigi Pari, and Efthymia Alexopoulou. 2022. "Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece" Agronomy 12, no. 1: 146. https://doi.org/10.3390/agronomy12010146
APA StyleLatterini, F., Stefanoni, W., Cavalaris, C., Karamoutis, C., Pari, L., & Alexopoulou, E. (2022). Effectiveness of Three Terminating Products on Reducing the Residual Moisture in Dwarf Castor Plants: A Preliminary Study of Direct Mechanical Harvesting in Central Greece. Agronomy, 12(1), 146. https://doi.org/10.3390/agronomy12010146