Fertilizer Effects on Endosperm Physicochemical Properties and Resistance to Larger Grain Borer, Prostephanus truncatus (Coleoptera: Bostrichidae), in Malawian Local Maize (Zea mays L.) Varieties: Potential for Utilization of Ca and Mg Nutrition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maize Varieties and Experimental Field Design
2.2. Sample Collection, Preparation, and Kernel Classification
2.3. Prostephanus truncatus Resistance
2.4. Physical Properties
2.5. Biochemical Properties
2.6. Statistical Analysis
3. Results
3.1. Effect of Fertilizer Type on Maize Resistance to P. truncatus Infestation
3.2. Effect of Fertilizer Type on Physicochemical Properties of Maize Grains
3.3. Pearson’s Correlation Coefficients of Kernel Hardness with P. truncatus Resistance and Biochemical Parameters
4. Discussion
4.1. Fertilizer Type and Maize Varietal Character Influence Maize Grain Resistance to P. truncatus Infestation
4.2. Fertilizer Type Influence the Physicochemical Properties in Maize Grain
4.3. Relationship between Physicochemical Properties and Maize Grain Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smale, M.; Byerlee, D.; Jayne, T. Maize Revolutions in Sub-Saharan Africa. In An African Green Revolution; Otsuka, K., Larson, D., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 165–195. [Google Scholar] [CrossRef] [Green Version]
- Nankar, A.; Grant, L.; Scott, P.; Pratt, R.C. Agronomic and kernel compositional traits of blue maize landraces from the southwestern United States. Crop Sci. 2016, 56, 2663–2674. [Google Scholar] [CrossRef] [Green Version]
- Hwang, T.; Ndolo, V.U.; Katundu, M.; Nyirenda, B.; Bezner-Kerr, R.; Arntfield, S.; Beta, T. Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chem. 2016, 196, 1315–1324. [Google Scholar] [CrossRef]
- Murayama, D.; Tomoka, Y.; Munthali, C.; Nguma, E.; Gondwe, R.L.; Palta, J.P.; Tani, M.; Koaze, H.; Aiuchi, D. Superiority of Malawian orange local maize variety in nutrients, cookability and storability. Afr. J. Agric. Res. 2017, 12, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
- Nguma, E.; Murayama, D.; Munthali, C.; Onishi, K.; Mori, M.; Tani, M.; Palta, J.P.; Koaze, H.; Aiuchi, D. Effect of kernel type on hardness and interrelationship with endosperm chemical components of Malawian local maize (Zea mays L.) varieties during storage. Afric. J. Agric. Res. 2020, 16, 1449–1457. [Google Scholar] [CrossRef]
- Heisey, P.W.; Smale, M. Maize Technology in Malawi: A Green Revolution in the Making? CIMMYT Research Report No. 4; CIMMYT: Mexico City, Mexico, 1995. [Google Scholar]
- Nyirenda, H.; Mwangomba, W.; Nyirenda, E.M. Delving into possible missing links for attainment of food security in Central Malawi: Farmers’ perceptions and long-term dynamics in maize (Zea mays L.) production. Heliyon 2021, 7, e07130. [Google Scholar] [CrossRef]
- Boxall, R. Damage and loss caused by the larger grain borer Protephanus truncatus. Integr. Pest Manag. Rev. 2002, 7, 105–121. [Google Scholar] [CrossRef]
- Kamanula, J.; Sileshi, G.W.; Belmain, S.R.; Sola, P.; Mvumi, B.M.; Nyirenda, G.K.C.; Nyirenda, S.P.; Stevenson, P.C. Farmers’ insect pest management practices and pesticidal plant use in the protection of stored maize and beans in Southern Africa. Int. J. Pest Manag. 2010, 57, 41–49. [Google Scholar] [CrossRef]
- Matewele, M.; Singano, C. The breeding potential of local maize varieties as source of resistance to the maize weevil and larger grain borer in Malawi. Malawi J. Agric. Nat. Resour. Dev. Stud. 2015, 1, 21–29. [Google Scholar]
- Denning, G.; Kabambe, P.; Sanchez, P.; Malik, A.; Flor, R.; Harawa, R.; Nkhoma, P.; Zamba, C.; Banda, C.; Magombo, C.; et al. Input subsidies to improve smallholder maize productivity in Malawi: Toward an African green revolution. PLoS Biol. 2009, 7, e1000023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous effects of chemical pesticides on human health—Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Mwololo, J.; Mugo, S.N.; Tefera, T.; Okori, P.; Munyiri, S.; Semagn, K.; Otim, M.; Beyene, Y. Resistance of tropical maize genotypes to the larger grain borer. J. Pest Sci. 2012, 85, 267–275. [Google Scholar] [CrossRef]
- Mihm, J.A. Insect Resistant Maize: Recent Advances and Utilization. In Proceedings of the an International Symposium Held at the International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico, 27 November–3 December 1994. [Google Scholar]
- Ngom, D.; Fauconnier, M.L.; Malumba, P.; Dia, C.A.K.M.; Thiaw, C.; Sembène, M. Varietal susceptibility of maize to larger grain borer, Prostephanus truncatus (Horn) (Coleoptera; Bostrichidae), based on grain physicochemical parameters. PLoS ONE 2020, 15, e0232164. [Google Scholar] [CrossRef]
- Jaradat, A.; Goldstein, W. Diversity of maize kernels from a breeding program for protein quality: I. Physical, biochemical, nutrient and color traits. Crop Sci. 2013, 53, 956–976. [Google Scholar] [CrossRef] [Green Version]
- Maliro, D.; Kandiwa, V. Gender Analysis of Maize Post-Harvest Management in Malawi: A Case Study of Lilongwe and Mchinji Districts; Lilongwe, Malawi; Swiss Agency for Cooperation and Development: Bern, Switzerland, 2015. [Google Scholar]
- Dalei, L.; Xuli, S.; Xin, W.; Fabao, Y.; Weiping, L. Effects of basic fertilizer ratio and nitrogen top-dressing at jointing stage on flour thermal properties of waxy maize. Acta Agron. Sin. 2013, 39, 557–562. [Google Scholar]
- Khan, A. Maize (Zea mays L.) genotypes differ in phenology, seed weight and quality (protein and oil content) when applied with variable rate and source of nitrogen. J. Plant Biochem. Physiol. 2016, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gerde, J.; Tamagno, S.; Paola, J.; Borras, L. Genotype and nitrogen effects over maize kernel hardness and endosperm zein profile. Crop Sci. 2016, 56, 1225–1233. [Google Scholar] [CrossRef]
- Tamagno, S.; Greco, I.A.; Almeida, H.; Borrás, L. Physiological differences in yield related traits between flint and dent Argentinean commercial maize genotypes. Eur. J. Agron. 2015, 68, 50–56. [Google Scholar] [CrossRef]
- Harvey, M. Characterization of the 22kDa Alpha Zein Gene Family and Determination of the Impact of Opaque2 on Two Transgenes Containing Zein Promoters. Master’s Thesis, Iowa State University, Ames, Iowa, 2007. [Google Scholar]
- Li, W.; Wu, P.; Yan, S. Effects of phosphorus fertilizer on starch granule size distribution in corn kernels. Braz. J. Bot. 2019, 42, 201–207. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Che Fauziah, I.; Bell, L.C. Effect of dolomitic limestone and gypsum applications on soil solution properties and yield of corn and groundnut grown on Ultisols. Malays. J. Soil Sci. 2009, 13, 1–12. [Google Scholar]
- Chaganti, V.N.; Culman, S.W.; Dick, W.A.; Kost, D. Effects of gypsum application rate and frequency on corn response to nitrogen. Agron. J. 2019, 111, 1109–1117. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Marques, R.R.; Carmeis Filho, A.C.A.; Soratto, R.P.; Costa, C.H.M.; Ferrari Neto, J.; Castro, G.S.A.; Pariz, C.M.; Castilhos, A.M.; Franzluebbers, A.J. Lime and gypsum combination improves crop and forage yields and estimated meat production and revenue in a variable charge tropical soil. Nutr. Cycl. Agroecosysts. 2019, 115, 347–372. [Google Scholar] [CrossRef] [Green Version]
- Palta, J.P. Role of calcium in plant responses to stresses: Linking basic research to the solution of practical problems. Am. Soc. Hortic. Sci. 1996, 31, 29–57. [Google Scholar] [CrossRef] [Green Version]
- Hirschi, K.D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 2004, 136, 2438–2442. [Google Scholar] [CrossRef] [Green Version]
- Pardede, E. A Study on Effect of Calcium-Magnesium-Phosphorus Fertilizer on Potato Tubers (Solanum tuberosum L.) and on Physicochemical Properties of Potato Flour during Storage; Cuvillier Verlag: Gottingen, Germany, 2005. [Google Scholar]
- Mutegi, J.; Kabambe, V.; Zingore, S.; Harawa, R.; Wairegi, L. The Status of Fertilizer Recommendation in Malawi: Gaps, Challenges, Opportunities and Guidelines: Soil Health Consortium of Malawi; Soil Health Consortium of Malawi: Lilongwe, Malawi, 2015. [Google Scholar]
- Joy, E.J.M.; Broadley, M.R.; Young, S.D.; Black, C.R.; Chilimba, A.D.C.; Ander, E.L.; Barlow, T.S.; Watts, M.J. Soil type influences crop mineral composition in Malawi. Sci. Total Environ. 2015, 505, 587–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malawi/USAID. Promoting Small and Medium Scale Manufacturing of Products from the Minerals and Rocks of Malawi; Montfort Press Malawi: Balaka, Malawi, 1990; pp. 237–266. [Google Scholar]
- Government of Malawi. Guide to Agricultural Production; Ministry of Agriculture, Irrigation and Food Security, Lilongwe, Agricultural Communication Branch: Lilongwe, Malawi, 2018. [Google Scholar]
- Suleiman, R.; Williams, D.; Nissen, A.; Bern, C.; Rosentrater, K. Is flint corn naturally resistant to Sitophilus zeamais infestation? J. Stored Prod. Res. 2015, 60, 19–24. [Google Scholar] [CrossRef]
- Tefera, T.; Mugo, S.; Likhayo, P. Effects of insect population density and storage time on grain damage and weight loss in maize due to the maize weevil (Sitophilus zeamais) and the larger grain. Afr. J. Agric. Res. 2011, 6, 2249–2254. [Google Scholar]
- Abebe, F.; Tefera, T.; Mugo, S.; Beyene, Y.; Vidal, S. Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). Afr. J. Biotechnol. 2009, 8, 5937–5943. [Google Scholar] [CrossRef]
- Blandino, M.; Mancini, M.; Peila, A.; Rolle, L.; Vanara, F.; Reyneri, A. Determination of maize kernel hardness: Comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 2010, 90, 1870–1878. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Wallace, J.; Lopes, M.; Paiva, E.; Larkins, B. New methods for extraction and quantitation of zeins reveal a high content of y-zein in modified opaque-2 maize. Plant Physiol. 1990, 92, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, W.; Messing, J. Balancing of sulfur storage in maize seed. BMC Plant Biol. 2012, 12, 1471–2229. [Google Scholar] [CrossRef] [Green Version]
- Schägger, H. Tricine—SDS-PAGE. Nat. Protoc. 2006, 1, 16–23. [Google Scholar] [CrossRef]
- Gayral, M.; Bakan, B.; Dalgalarrondo, M.; Elmorjani, K.; Delluc, C.; Brunet, S.; Linossier, L.; Morel, M.H.; Marion, D. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness. J. Agric. Food Chem. 2015, 63, 3551–3558. [Google Scholar] [CrossRef]
- Yamashita, S.; Shimada, K.; Sakurai, R.; Yasuda, N.; Oikawa, N.; Kamiyoshihara, R.; Otoki, Y.; Nakagawa, K.; Miyazawa, T.; Kinoshita, M. Decrease in intramuscular levels of phosphatidylethanolamine bearing Arachidonic Acid during postmortem aging depends on meat cuts and breed. Eur. J. Lipid Sci. Technol. 2019, 121, 1800370. [Google Scholar] [CrossRef]
- Nguma, E.; Tominaga, Y.; Yamashita, S.; Otoki, Y.; Yamamoto, A.; Nakagawa, K.; Miyazawa, T.; Kinoshita, M. Dietary ethanolamine plasmalogen ameliorates colon mucosa inflammatory stress and pre-cancerous ACF in 1,2-DMH-induced colon carcinogenesis mice model: Protective role of vinyl ether linkage. Lipids 2021, 56, 167–180. [Google Scholar] [CrossRef]
- Gayral, M.; Gaillard, C.; Bakan, B.; Dalgalarrondo, M.; Elmorjani, K.; Delluc, C.; Brunet, S.; Linossier, L.; Morel, M.; Marion, D. Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. J. Cereal Sci. 2016, 68, 148–154. [Google Scholar] [CrossRef]
- Jeon, J.S.; Ryoo, N.; Hahn, T.R.; Walia, H.; Nakamura, Y. Starch biosynthesis in cereal endosperm. Plant Physiol. Biochem. 2010, 48, 383–392. [Google Scholar] [CrossRef]
- Mestres, C.; Davo, K.; Hounhouigan, J. Small-scale production and storage quality of dry-milled degermed maize products for tropical countries. Afr. J. Biotechnol. 2009, 8, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Nwosu, L.C. Chemical bases for maize grain resistance to infestation and damage by the maize weevil, Sitophilus zeamais Motschulsky. J. Stored Prod. Res. 2016, 69, 41–50. [Google Scholar] [CrossRef]
- Lazzari, S.; Lazzari, F. Insects pests in stored grain. In Insect Bioecology and Nutrition for Integrated Pest Management; Panizzi, R., Paria, R., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 450–471. [Google Scholar]
- Siyame, E.; Hurst, R.; Anna, W.; Young, S.; Broadley, M.; Chilimba, A.; Ander, L.; Watta, M.; Chilima, B.; Gondwe, J.; et al. A high prevalence of zinc but not iron deficiency among women in rural Malawi: A cross-sectional study. Int. J. Vitam. Nutr. Res. 2013, 83, 176–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, S.L.; Morrison, W.R. Lipids in the germ, endosperm and pericarp of the developing maize kernel. J. Am. Oil Chem. Soc. 1979, 56, 759–764. [Google Scholar] [CrossRef]
- Saoussem, H.; Sadok, B.; Habib, K.; Mayer, P.M. Fatty acid accumulation in the different fractions of the developing corn kernel. Food Chem. 2009, 117, 432–437. [Google Scholar] [CrossRef]
- Hou, N.S.; Taubert, S. Membrane lipids and the endoplasmic reticulum unfolded protein response: An interesting relationship. Worm 2014, 3, e962405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricker-Gilbert, J.; Jones, M. Does access to storage protectant increase smallholder adoption of improved maize seed? Insights from Malawi. In Proceedings of the Agricultural and Applied Economics Association (AAEA) Conferences, Seattle, WA, USA, 12–14 August 2012; p. 31. [Google Scholar]
- Landry, J.; Delhaye, S.; Damerval, C. Protein distribution pattern in floury and vitreous endosperm of maize grain. Cereal Chem. 2004, 81, 153–158. [Google Scholar] [CrossRef]
Variable | N | Mean Difference | SD Across Reps | Adjusted p |
---|---|---|---|---|
Live Adult P. truncatus | 27 | −7.6 | 216.9 | 0.877 |
Adult P. truncatus Cadavers | 27 | −2.2 | 25.2 | 0.657 |
% Damaged Grains | 27 | −7.0 | 8.2 | 0.0039 |
Damaged Grains (g) | 27 | −1.5 | 1.4 | 0.0016 |
Flour (g) | 27 | −3.9 | 12.2 | 0.243 |
Variable | A | B | ||||||
---|---|---|---|---|---|---|---|---|
Hybrid | Local 1 | Local 2 | p-Value | NPK | NPK + Dolomite | NPK + Gypsum | p-Value | |
Live Adult P. truncatus | 693 (43) | 652 (55) | 633 (49) | 0.07 | 848 (197) | 774 (192) | 656 (180) | 0.72 |
Adult P. truncatus Cadavers | 74 (2.2) | 67 (10) | 61 (9.4) | 0.13 | 67 (23) | 79 (20) | 59 (19) | 0.12 |
% Damaged Grains | 87 (2.2) | 85 (10) | 82 (2.1) | 0.17 | 86 (3.1) | 84 (5.3) | 85 (2.3) | 0.64 |
Damaged Grains (g) | 16 (1.5) | 14 (0.3) | 13 (0.6) | 0.01 | 14 (1.2) | 15 (0.8) | 15 (2.0) | 0.72 |
Flour * (g) | 62 (4.1) | 59 (5.4) | 58 (3.4) | 0.63 | 22 (2.8) | 21 (2.9) | 19 (3.4) | 0.032 |
Variable | N | Mean Difference | SD across Reps | Adjusted p |
---|---|---|---|---|
Physical Property | ||||
Hardness | 27 | 46.4 | 22.1 | <0.0001 |
Biochemical Properties | ||||
Total Starch, % dwb | 27 | −1.0 | 2.7 | 0.154 |
Amylose, % ww | 27 | 1.5 | 3.9 | 0.143 |
Crude Protein, % dwb | 27 | −0.2 | 0.2 | 0.127 |
Total zein, % db | 27 | 0.2 | 0.4 | 0.340 |
γ-27kDa, % Total Zein dwb | 27 | 0.1 | 0.1 | 0.150 |
α-19kDa, % Total Zein dwb | 27 | 1.0 | 0.6 | <0.0001 |
β-14kDa, % Total Zein dwb | 27 | 0.1 | 0.1 | 0.011 |
Total α-Zein, % Total Zein dwb | 27 | 1.1 | 1.0 | 0.0004 |
Ash (%) | 27 | 0.03 | 0.04 | 0.88 |
Mg (mg/100 g, dwb) | 27 | 2.8 | 4.0 | 0.33 |
P (mg/100 g, dwb) | 27 | 6.9 | 6.4 | 0.29 |
K (mg/100 g, dwb) | 27 | 13.2 | 6.0 | 0.036 |
Ca (mg/100 g, dwb) | 27 | 2.0 | 1.4 | 0.0005 |
Zn (mg/100 g, dwb) | 27 | 0.3 | 0.25 | 0.052 |
Starch Palmitic Acid (mol%) | 27 | −0.2 | 1.9 | 0.4687 |
Starch Stearic Acid (mol%) | 27 | −0.2 | 1.3 | 0.4026 |
Starch Oleic Acid (mol%) | 27 | 0.03 | 1.1 | 0.9933 |
Starch Linoleic Acid (mol%) | 27 | 0.2 | 2.0 | 0.7465 |
Starch Linolenic Acid (mol%) | 27 | 0.2 | 0.5 | 0.1790 |
Starch FFA (% of Total Starch) | 27 | −3.3 | 4.6 | 0.0093 |
Starch lysoPC (% of Total Starch) | 27 | 3.1 | 4.2 | 0.0109 |
Non-Starch Palmitic Acid (mol%) | 27 | −0.5 | 1.8 | 0.2195 |
Non-Starch Stearic Acid (mol%) | 27 | 0.2 | 1.5 | 0.2616 |
Non-Starch Oleic Acid (mol%) | 27 | 0.3 | 2.1 | 0.3326 |
Non-Starch Linoleic Acid (mol%) | 27 | −0.1 | 3.0 | 0.8933 |
Non-Starch Linolenic Acid (mol%) | 27 | 0.02 | 0.2 | 0.6030 |
Non-Starch FFA (%) | 27 | 2.6 | 7.2 | 0.1011 |
Non-Starch MGDG (%) | 27 | 1.7 | 1.7 | 0.4661 |
Non-Starch MGMG (%) | 27 | −3.6 | 7.4 | 0.2004 |
Non-Starch PE (%) | 27 | −3.2 | 5.5 | 0.0054 |
Non-Starch PC (%) | 27 | 3.6 | 5.2 | 0.0032 |
Non-Starch lysoPC (%) | 27 | −0.2 | 1.4 | 0.4174 |
Variable | A | B | ||||||
---|---|---|---|---|---|---|---|---|
Hybrid | Local 1 | Local 2 | p-Value | NPK | NPK + Dolomite | NPK + Gypsum | p-Value | |
Hardness (N) | 197.9 (7.7) | 207.2 (2.9) | 233.4 (7.2) | 0.0036 | 210.0 (14.6) | 215.2 (10.1) | 213.2 (15.5) | 1.00 |
Total Starch, % dwb | 71.0 (0.7) | 70.4 (1.2) | 69.0 (1.5) | 0.439 | 69.6 (1.7) | 70.4 (1.5) | 69.4 (1.8) | 0.1690 |
Amylose, % ww | 19.8 (0.9) | 21.0 (1.1) | 19.1 (1.2) | 0.254 | 18.04 (1.2) | 20.8 (1.5) | 21.1 (1.6) | 0.0048 |
Crude Protein, % dwb | 11.9 (0.1) | 12.3 (0.04) | 11.8 (0.1) | 0.011 | 11.7 (0.1) | 12.1 (0.1) | 12.2 (0.1) | 0.0011 |
Total Zein, % db | 10.0 (0.1) | 10.1 (0.04) | 10.4 (0.1) | 0.050 | 10.1 (0.2) | 10.3 (0.1) | 10.2 (0.1) | 0.0319 |
γ-27kDa, % Total Zein dwb | 0.3 (0.03) | 0.2 (0.01) | 0.2 (0.01) | 0.025 | 0.2 (0.03) | 0.3 (0.1) | 0.2 (0.04) | 0.0018 |
α-19 kDa, % Total Zein dwb | 3.9 (0.1) | 3.5 (0.2) | 3.7 (0.1) | 0.011 | 3.6 (0.5) | 3.7 (0.1) | 3.8 (0.4) | 0.6412 |
β-14 kDa, % Total Zein dwb | 0.5 (0.04) | 0.8 (0.01) | 0.8 (0.1) | 0.050 | 0.6 (0.1) | 0.8 (0.1) | 0.7 (0.04) | 0.0183 |
Total α-zein, % Total Zein dwb | 8.1 (0.01) | 8.0 (0.4) | 8.0 (0.4) | 0.1964 | 7.7 (0.8) | 8.0 (0.4) | 7.8 (0.8) | 0.3679 |
Ash (%) | 1.1 (0.01) | 1.2 (0.01) | 1.2 (0.01) | 0.0038 | 1.1 (0.06) | 1.2 (0.04) | 1.2 (0.02) | 0.0446 |
Mg (mg/100 g, dwb) | 100.0 (0.8) | 107.9 (0.9) | 108.1 (0.6) | 0.0036 | 107.9 (1.4) | 109.3 (1.5) | 108.9 (1.7) | 0.0970 |
P (mg/100 g, dwb) | 243.7 (0.7) | 289.2 (1.1) | 292.2 (0.9) | 0.0029 | 280.5 (1.7) | 284.2 (3.5) | 283.7 (1.5) | 0.8948 |
K (mg/100 g, dwb) | 145.6 (0.5) | 146.9 (1.1) | 148.1 (0.8) | 0.0033 | 148.9 (1.5) | 150.3 (2.4) | 149.7 (1.6) | 0.3679 |
Ca (mg/100 g, dwb) | 5.5 (0.1) | 5.8 (0.4) | 5.8 (0.4) | 0.2964 | 5.9 (0.4) | 5.6 (0.5) | 5.7 (0.6) | 0.2359 |
Zn (mg/100 g, dwb) | 1.5 (0.1) | 1.9 (0.1) | 1.9 (0.1) | 0.0714 | 1.8 (0.2) | 1.8 (0.2) | 1.8 (0.1) | 1.0000 |
Starch Palmitic Acid (mol%) | 42.1 (0.4 | 39.9 (0.6) | 42.7 (0.7) | 0.2050 | 41.2 (0.7) | 41.8 (0.6) | 41.6 (1.1) | 0.0970 |
Starch Stearic Acid (mol%) | 2.7 (0.6) | 3.6 (0.7) | 3.0 (0.2) | 0.1964 | 3.0 (0.6) | 3.2 (0.5) | 3.1 (0.3) | 0.8948 |
Starch Oleic Acid (mol%) | 7.8 (0.4) | 8.1 (0.3) | 8.5 (0.1) | 0.0857 | 8.3 (0.4) | 8.0 (0.4) | 8.1 (0.4) | 0.2636 |
Starch Linoleic Acid (mol%) | 45.4 (1.5) | 49.9 (1.0) | 43.3 (0.8) | 0.1000 | 45.3 (1.1) | 44.5 (0.9) | 44.9 (1.9) | 0.7165 |
Starch Linolenic Acid (mol%) | 2.1 (0.5) | 2.4 (0.02) | 2.5 (0.03) | 0.0036 | 2.3 (0.5) | 2.5 (0.04) | 2.3 (0.4) | 0.5945 |
Starch FFA (% of Total Starch) | 48.2 (12.3) | 53.9 (2.8) | 46.6 (12.4) | 0.7214 | 48.4 (11.2) | 51.1 (11.4) | 49.9 (8.9) | 0.4594 |
Starch lysoPC (% of Total Starch) | 15.4 (8.4) | 12.6 (2.0) | 17.2 (9.7) | 0.9286 | 5.4 (3.3) | 14.7 (8.7) | 4.8 (2.8) | 0.4594 |
Non-Starch Palmitic Acid (mol%) | 16.3 (0.5) | 17.2 (0.6) | 18.5 (1.3) | 0.0857 | 17.1 (1.6) | 17.2 (1.0) | 17.6 (0.6) | 0.0970 |
Non-Starch Stearic Acid (mol%) | 3.1 (0.4) | 3.2 (0.2) | 3.2 (0.2) | 0.8286 | 3.1 (0.5) | 3.3 (0.5) | 3.1 (0.3) | 0.6412 |
Non-Starch Oleic Acid (mol%) | 25.7 (0.5) | 25.6 (0.4) | 24.5 (0.9) | 0.1321 | 26.2 (1.9) | 25.1 (0.6) | 24.4 (0.5) | 0.0084 |
Non-Starch Linoleic Acid (mol%) | 52.9 (0.2) | 51.9 (0.5) | 51.4 (0.6) | 0.0520 | 21.5 (0.8) | 52.2 (0.8) | 52.6 (0.6) | 0.1211 |
Non-Starch Linolenic Acid (mol%) | 2.0 (0.03) | 2.2 (0.04) | 2.4 (0.02) | 0.0036 | 2.1 (0.1) | 2.2 (0.1) | 2.3 (0.1) | 0.0446 |
Non-Starch FFA (%) | 28.6 (12.4) | 34.7 (4.5) | 40.1 (17.0) | 0.6286 | 36.8 (12.3) | 34.0 (14.6) | 32.6 (12.3) | 0.2359 |
Non-Starch MGDG (%) | 27.8 (8.1) | 30.2 (2.2) | 23.0 (2.5) | 0.5333 | 28.5 (7.1) | 22.4 (1.5) | 30.1 (14.3) | 0.8465 |
Non-Starch MGMG (%) | 22.3 (2.4) | 13.0 (4.2) | 13.6 (3.0) | 0.050 | 19.4 (7.5) | 15.5 (6.0) | 13.8 (5.6) | 0.2636 |
Non-Starch PE (%) | 30.4 (0.8) | 24.8 (0.3) | 26.8 (1.7) | 0.0107 | 25.6 (3.9) | 27.7 (1.4) | 28.7 (4.1) | 0.0622 |
Non-Starch PC (%) | 67.8 (0.6) | 73.7 (0.1) | 70.9 (1.4) | 0.0036 | 72.6 (4.1) | 70.6 (0.7) | 69.2 (3.8) | 0.1211 |
Non-Starch lysoPC (%) | 1.8 (0.3) | 1.6 (0.3) | 2.4 (0.3) | 0.0714 | 1.9 (0.5) | 1.7 (0.8) | 2.1 (0.5) | 0.2636 |
Variable | Kernel Hardness | Variable | Kernel Hardness | ||
---|---|---|---|---|---|
p Value | p Value | ||||
P. truncatus Resistance | Starch FAME (mol%) | Palmitic Acid (16:0) | 0.047 | ||
Live Adult P. truncatus | −0.091 | Stearic Acid (18:0) | −0.165 | ||
Adult P. truncatus Cadavers | −0.309 | Oleic Acid (18:1 N-9) | 0.035 | ||
% Damaged Grains | −0.801 ** | Linoleic Acid (18:2 N-6) | −0.109 | ||
Damaged Grains (g) | −0.477 * | Linolenic Acid (18:3 N-3) | 0.585 * | ||
Flour (g) | −0.349 | Starch Lipids (%) | FFA | −0.588 * | |
Biochemical Properties | LysoPC | 0.623 ** | |||
Total Starch, % dwb | −0.608 ** | Non-Starch FAME (mol%) | Palmitic Acid (16:0) | 0.183 | |
Amylose, % ww | 0.198 | Stearic Acid (18:0) | 0.207 | ||
Crude Protein, % dwb | −0.292 | Oleic Acid (18:1 N-9) | −0.156 | ||
Total Zein, % dwb | 0.495 * | Linoleic Acid (18:2 N-6) | −0.130 | ||
γ-27 kDa | 0.423 | Linolenic Acid (18:3 N-3) | 0.465 | ||
α-19 kDa | 0.686 ** | Non-Starch Lipids(%) | Neutral Lipids | FFA | 0.668 ** |
β-14 kDa | 0.593 ** | Galactolipids | MGDG | −0.279 | |
Total α-Zein | 0.670 ** | MGMG | −0.319 | ||
Ash, % | 0.196 | Phospholipids | PE | −0.481 * | |
Mg (mg/100 g) | 0.257 | PC | 0.433 | ||
P (mg/100 g) | 0.330 | LysoPC | 0.180 | ||
K (mg/100 g) | 0.492 * | ||||
Ca (mg/100 g) | 0.749 ** | ||||
Zn (mg/100 g) | 0.592 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguma, E.; Munthali, C.; Murayama, D.; Onishi, K.; Mori, M.; Kinoshita, R.; Yamashita, S.; Kinoshita, M.; Tani, M.; Palta, M.; et al. Fertilizer Effects on Endosperm Physicochemical Properties and Resistance to Larger Grain Borer, Prostephanus truncatus (Coleoptera: Bostrichidae), in Malawian Local Maize (Zea mays L.) Varieties: Potential for Utilization of Ca and Mg Nutrition. Agronomy 2022, 12, 46. https://doi.org/10.3390/agronomy12010046
Nguma E, Munthali C, Murayama D, Onishi K, Mori M, Kinoshita R, Yamashita S, Kinoshita M, Tani M, Palta M, et al. Fertilizer Effects on Endosperm Physicochemical Properties and Resistance to Larger Grain Borer, Prostephanus truncatus (Coleoptera: Bostrichidae), in Malawian Local Maize (Zea mays L.) Varieties: Potential for Utilization of Ca and Mg Nutrition. Agronomy. 2022; 12(1):46. https://doi.org/10.3390/agronomy12010046
Chicago/Turabian StyleNguma, Ephantus, Chandiona Munthali, Daiki Murayama, Kazumitsu Onishi, Masahiko Mori, Rintaro Kinoshita, Shinji Yamashita, Mikio Kinoshita, Masayuki Tani, Mari Palta, and et al. 2022. "Fertilizer Effects on Endosperm Physicochemical Properties and Resistance to Larger Grain Borer, Prostephanus truncatus (Coleoptera: Bostrichidae), in Malawian Local Maize (Zea mays L.) Varieties: Potential for Utilization of Ca and Mg Nutrition" Agronomy 12, no. 1: 46. https://doi.org/10.3390/agronomy12010046