Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Treatments
2.2.1. Data Collection
2.2.2. Rose
2.2.3. Camellia
2.2.4. ‘Southern Charm’ Magnolia
2.2.5. Statistical Analysis
3. Results
3.1. Rose
3.2. Camellia
3.3. ‘Southern Charm’ Magnolia
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Methods of auxin application in cutting propagation: A review of 70 years of scientific discovery and commercial practice. J. Environ. Hortic. 2007, 25, 166–185. [Google Scholar] [CrossRef]
- Kroin, J. Propagate plants from cuttings using foliar-applied aqueous (water-based) IBA rooting solutions: Tips-Do’s and Don’ts. Comb. Proc. Intl. Plant Prop. Soc. 2014, 64, 149–159. [Google Scholar] [CrossRef]
- Dole, J.M.; Gibson, J.L. Cutting Propagation: A Guide to Propagating and Producing Floriculture Crops; Ball Publishing: Batavia, IL, USA, 2006. [Google Scholar]
- Drain, S.R. Auxin application via foliar sprays. Comb. Proc. Intl. Plant Prop. Soc. 2007, 57, 274–277. [Google Scholar]
- Decker, B.M.; Graff, D. Foliar applications of rooting hormone at Decker Nursery. Comb. Proc. Intl. Plant Prop. Soc. 2016, 66, 191–196. [Google Scholar] [CrossRef]
- Blythe, E.K.; Sibley, J.L.; Ruter, J.M.; Tilt, K.M. Cutting propagation of foliage crops using a foliar application of auxin. Scientia Hortic. 2004, 103, 31–37. [Google Scholar] [CrossRef]
- Blythe, E.K.; Sibley, J.L.; Tilt, K.M.; Ruter, J.M. Foliar application of auxin for rooting stem cuttings of selected ornamental crops. J. Environ. Hortic. 2003, 21, 131–136. [Google Scholar] [CrossRef]
- Robertson, M.M.; Kirkwood, R.C. The mode of action of foliage-applied translocated herbicides with particular reference to the phenoxyacid compounds: 1. The mechanism and factors influencing herbicide absorption. Weed Res. 1969, 9, 224–240. [Google Scholar] [CrossRef]
- White, A.D.; Heaverlo, C.A.; Owen, M.D.K. Evaluation of methods to quantify herbicide penetration in leaves. Weed Technol. 2002, 16, 37–42. [Google Scholar] [CrossRef]
- Ruckenstein, E.; Nagarajan, R. Critical micelle concentration: A transition point for micellar size distribution. J. Phys. Chem. 1975, 79, 2622–2626. [Google Scholar] [CrossRef]
- Lownds, N.K.; Leon, J.M.; Bukovac, M.J. Effect of surfactants on foliar penetration of NAA and NAA-induced ethylene evolution in cowpea. J. Amer. Soc. Hortic. Sci. 1987, 112, 554–560. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Phys. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Devine, M.D.; Duke, S.O.; Fedtke, C. Foliar Absorption of Herbicides. Physiology of Herbicide Action; Prentice-Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Sibley, J.L.; Yang, X.; Lu, W.; Eakes, D.J.; Gillam, C.H.; Foshee, W.G.; Pickens, J.M.; Zinner, B. Effects of nonionic surfactant on growth, photosynthesis, and transpiration of New Guinea impatiens in the greenhouse. J. Environ. Hortic. 2018, 36, 73–81. [Google Scholar]
- Greene, D.W.; Bukovac, M.J. Stomatal penetration: Effect of surfactants and the role in foliar absorption. Amer. J. Bot. 1974, 61, 100–106. [Google Scholar] [CrossRef]
- Kubik, M.; Michalczuk, L. The influence of surfactants on transpiration of strawberry leaves. Can. J. Botany 1993, 71, 598–601. [Google Scholar] [CrossRef]
- Ueyama, S.; Ichimura, K. Effects of 2-hydroxy-3-ionene chloride polymer on the vase life of cut rose flowers. Postharvest Biol. Technol. 1998, 14, 65–70. [Google Scholar] [CrossRef]
- Dirr, M.A.; Heuser, C.W., Jr. The Reference Manual of Woody Plant Propagation: From Seed to Tissue Culture, 2nd ed.; Varsity Press Inc.: Athens, GA, USA, 2006. [Google Scholar]
- Dirr, M.A. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation, and Uses; Stipes Publishing: Champaign, IL, USA, 2009. [Google Scholar]
- Crawford, B.D.; Dole, J.M.; Bergmann, B.A. Influences of season and cutting week within a propagation cycle on rooting of ‘Stained Glass’ coleus shoot tip cuttings are not overcome by rooting compound treatment. HortTech 2016, 26, 620–627. [Google Scholar] [CrossRef]
- Wells, J.S. Plant Propagation Practices; MacMillian: New York, NJ, USA, 1955. [Google Scholar]
- Hitchcock, A.E.; Zimmerman, P.W. Comparative activity of root-inducing substances and methods for treating cuttings. Contrib. Boyce Thomp. Inst. 1939, 10, 461–480. [Google Scholar]
- Blazich, F.A. Chemicals and formulations used to promote adventitious rooting. In Adventitious Root Formation in Cuttings; Davis, T.E., Haissig, B.E., Sankhla, N., Eds.; Dioscorides Press: Portland, OR, USA, 1988; pp. 132–149. [Google Scholar]
- Hartmann, H.T.; Kester, D.E.; Davies, F.T.; Geneve, R.L. Hartmann and Kester’s Plant Propagation: Principles and Practices; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Macdonald, B. Practical Woody Plant Propagation for Nursery Growers; Timber Press: Portland, OR, USA, 1987. [Google Scholar]
- Wood, E. New horizons in rooting hormones. Comb. Proc. Intl. Plant Prop. Soc. 1981, 31, 116–118. [Google Scholar]
- Chadwick, L.C.; Kiplinger, D.C. The effect of synthetic growth substances on the rooting and subsequent growth of ornamental plants. Proc. Am. Soc. Hortic. Sci. 1938, 36, 809–816. [Google Scholar]
- Hildreth, A.C.; Mitchell, A.W. Spraying is a new method of applying root promoting substances. Florists’ Rev. 1939, 84, 13. [Google Scholar]
- Blythe, E.; Sibley, J.; Tilt, K.; Ruter, J.M. Cutting propagation with auxin applied via a stabilized organic rooting substrate. Comb. Proc. Intl. Plant Prop. Soc. 2003, 53, 275–283. [Google Scholar]
- Blommaert, K.L.J. Growth and inhibiting substances in relation to the rest period of the potato tuber. Nature 1954, 174, 970–972. [Google Scholar] [CrossRef]
- Fattorini, L.; Veloccia, A.; Rovere, F.D.; D’Angeli, S.; Falasca, G.; Altamura, M.M. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol. 2017, 17, 121. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S. Evaluation of different doses of indole-3-butyric acid (IBA) on the rooting, survival, and vegetative growth of performance of hardwood cuttings of Flordaguard peach (Prunus persica L. Batch). J. Appl. Nat. Sci. 2017, 9, 173–180. [Google Scholar] [CrossRef]
- Veloccia, A.; Fattorini, L.; Rovere, F.D.; Sofa, A.; D’Angeli, S.; Beti, C. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana. J. Exp. Bot. 2016, 67, 6445–6458. [Google Scholar] [CrossRef]
- Ludwig-Müller, J.; Vertocnik, A.; Town, C.D. Analysis of indole-3-butyric acid induced adventitious root formation on Arabidopsis stem segments. J. Exp. Bot. 2005, 56, 2095–2105. [Google Scholar] [CrossRef]
- Pacurar, D.I.; Perrone, I.; Bellini, C. Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol. Plant. 2014, 151, 83–96. [Google Scholar] [CrossRef]
- Rout, G.R. Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis and associated biochemical changes. Plant Growth Reg. 2006, 48, 111–117. [Google Scholar] [CrossRef]
- Salmi, M.S.; Hesami, M. Time of collection, cutting ages, auxin types, and concentrations influence rooting Ficus religiosa L. stem cuttings. J. Appl. Environ. Biol. Sci. 2016, 6, 124–132. [Google Scholar]
- McComb, J.A.; Wroth, M. Vegetative propagation of Eucalyptus resinifera and E. maculata using coppice cuttings and micropropagation. Aust. J. Res. 1986, 16, 231–242. [Google Scholar]
- Kentelky, E.; Jucan, D.; Cantor, M.; Szekely-Varga, Z. Efficacy of different concentration of NAA on selected ornamental woody shrubs cuttings. Horticulturae 2021, 7, 464. [Google Scholar] [CrossRef]
- Kroin, J. Advances using indole-3-butyric acid (IBA) dissolved in water for rooting cuttings, transplanting, and grafting. Comb. Proc. Intl. Plant Prop. Soc. 1992, 42, 489–492. [Google Scholar]
- Kibber, H.; Johnston, M.E.; Williams, R.R. Adventitious root formation in cuttings of Backhousia citriodora F. Muell 2. Seasonal influences of temperature, rainfall, flowering, and auxins on the stock plant. Sci. Hortic. 2004, 102, 343–358. [Google Scholar] [CrossRef]
- Sharma, J.; Knox, G.W.; Ishida, M.L. Adventitious rooting of stem cuttings of yellow-flowered magnolia cultivars is influenced by time after budbreak and indole-3-butyric acid. HortScience 2006, 41, 202–206. [Google Scholar] [CrossRef]
- Ellis, D.G. Propagating new magnolia cultivars. Comb. Proc. Intl. Plant Prop. Soc. 1988, 38, 453–456. [Google Scholar]
- Kabanova, S.A.; Musoni, W.; Zenkova, Z.N.; Danchenko, M.A.; Scott, S.A.; Kabanov, A.N. Selection of Scots pine seedling growth stimulants in extreme conditions of the Northern Kazakhstan steppe zone. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 611, p. 012039. [Google Scholar]
- Ghosh, A.; Dey, K.; Mani, A.; Bauri, F.K.; Mishra, D.K. Efficacy of different levels of IBA and NAA on rooting of Phalsa (Grewia asiatica L.) cuttings. Int. J. Chem. Stud. 2017, 5, 567–571. [Google Scholar]
- Kumar, S.; Muraleedharan, A.; Kamalakannan, S.; Sudhagar, R.; Sanjeevkumar, K. Effect of rooting hormone on rooting and survival of Nerium (Nerium odorum L.) var. Pink single. Plant Arch. 2020, 20, 3017–3019. [Google Scholar]
Rooting (%) | Roots (No.) | Avg. Length of Three Longest Roots (cm) | Shoot Height (cm) | RootQualityRating z | Net Photosynthesis (A) (µmol·m−2·s−1) | Stomatal Conductance (gsw) (mol·m−2·s−1) | ||
---|---|---|---|---|---|---|---|---|
Significance of treatment factors | ||||||||
Surfactant y | NS | NS | NS | NS | NS | NS | NS | |
Auxin Rate x | NS | NS | NS | NS | NS | 0.0192 | NS | |
Surfactant * Auxin Rate | NS | NS | NS | NS | NS | NS | NS | |
Least squares means for main effects | ||||||||
Surfactant | Auxin Rate | |||||||
0 ppm Regulaid | 97% | 1.4 a w | 12.5 a | 1.1 a | 2.7 a | 3.5 a | 0.3 a | |
0.85 ppm Regulaid | 97% | 1.4 a | 12.8 a | 1.0 a | 2.6 a | 3.1 a | 0.2 a | |
0 ppm foliar IBA | 97% | 1.4 A | 12.2 A | 1.0 A | 2.7 A | 3.2 AB | 0.3 a | |
50 ppm foliar IBA | 97% | 1.4 A | 12.8 A | 0.8 A | 2.5 A | 4.5 A | 0.1 a | |
75 ppm foliar IBA | 100% | 1.4 A | 13.0 A | 1.2 A | 2.6 A | 3.2 AB | 0.1 a | |
100 ppm foliar IBA | 93% | 1.5 A | 12.8 A | 1.3 A | 2.7 A | 4.4 A | 0.1 a | |
250 basal quick-dip | 100% | 1.4 A | 12.7 A | 0.9 A | 2.7 A | 1.2 B | 0.5 a |
Rooting (%) | Roots (No.) | Avg. Length of Three Longest Roots (cm) | Shoot Height (cm) | Root Quality Rating z | Net Photosynthesis (A) (µmol·m−2·s−1) | Stomatal Conductance (gsw) (mol·m−2·s−1) | ||
---|---|---|---|---|---|---|---|---|
Significance of treatment factors | ||||||||
Surfactant y | NS | <0.0001 | 0.005 | NS | 0.001 | 0.022 | NS | |
Auxin Rate x | NS | <0.0001 | NS | NS | NS | NS | NS | |
Surfactant * Auxin Rate | NS | NS | NS | NS | NS | NS | NS | |
Least squares means for main effects | ||||||||
Surfactant | Auxin Rate | |||||||
0 ppm Regulaid | 33% | 0.4 b w | 0.6 b | 0.3 a | 1.6 b | 2.3 a | 0.02 a | |
0.85 ppm Regulaid | 50% | 1.4 a | 2.6 a | 0.2 a | 2.2 a | 1.4 b | 0.02 a | |
0 ppm foliar IBA | 33% | 0.7 BC | 1.1 A | 0.3 A | 1.9 A | 2.0 A | 0.02 A | |
500 ppm foliar IBA | 26% | 0.8 B | 0.4 A | 0.4 A | 2.0 A | 1.7 A | 0.02 A | |
1000 ppm foliar IBA | 23% | 0.5 C | 2.2 A | 0.2 A | 1.6 A | 1.7 A | 0.03 A | |
1500 ppm foliar IBA | 23% | 0.8 BC | 1.9 A | 0.4 A | 1.8 A | 1.9 A | 0.02 A | |
4000 basal quick-dip | 40% | 1.6 A | 2.5 A | - | 2.4 A | 1.8 A | 0.01 A |
Rooting (%) | Roots (No.) | Avg. Length of Three Longest Roots (cm) | Shoot Height (cm) | Root Quality Rating z | Net Photosynthesis (A) (µmol·m−2·s−1) | Stomatal Conductance (gsw) (mol·m−2·s−1) | ||
---|---|---|---|---|---|---|---|---|
Significance of treatment factors | ||||||||
Surfactant y | NS | NS | NS | 0.0134 | 0.0844 | NS | NS | |
Auxin Rate x | NS | <0.0001 | NS | 0.0018 | <0.0001 | NS | NS | |
Surfactant * Auxin Rate | NS | NS | NS | NS | NS | NS | NS | |
Least squares means for main effects | ||||||||
Surfactant | Auxin Rate | |||||||
0 ppm Regulaid | 33% | 0.9 a w | 7.9 a | 0.6 b | 2.2 b | 6.3 a | 0.1 a | |
0.85 ppm Regulaid | 73% | 1.2 a | 7.2 a | 1.3 a | 2.5 a | 6.3 a | 0.1 a | |
0 ppm foliar IBA | 33% | 0.6 B | 6.4 A | 0.3 B | 1.8 B | 5.0 A | 0.1 A | |
500 ppm foliar IBA | 33% | 0.3 B | 7.8 A | 0.5 B | 1.7 B | 5.9 A | 0.1 A | |
1000 ppm foliar IBA | 60% | 0.9 B | 9.1 A | 0.5 B | 2.1 B | 5.9 A | 0.1 A | |
1500 ppm foliar IBA | 53% | 1.6 A | 8.4 A | 1.2 AB | 2.8 A | 7.1 A | 0.1 A | |
2500 basal quick-dip | 60% | 1.8 A | 5.9 A | 2.4 A | 3.3 A | 7.5 A | 0.1 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowden, A.T.; Knight, P.R.; Ryals, J.B.; Coker, C.E.H.; Langlois, S.A.; Broderick, S.R.; Blythe, E.K.; Sakhanokho, H.F.; Babiker, E.M. Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation. Agronomy 2022, 12, 2243. https://doi.org/10.3390/agronomy12102243
Bowden AT, Knight PR, Ryals JB, Coker CEH, Langlois SA, Broderick SR, Blythe EK, Sakhanokho HF, Babiker EM. Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation. Agronomy. 2022; 12(10):2243. https://doi.org/10.3390/agronomy12102243
Chicago/Turabian StyleBowden, Anthony T., Patricia R. Knight, Jenny B. Ryals, Christine E. H. Coker, Scott A. Langlois, Shaun R. Broderick, Eugene K. Blythe, Hamidou F. Sakhanokho, and Ebrahiem M. Babiker. 2022. "Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation" Agronomy 12, no. 10: 2243. https://doi.org/10.3390/agronomy12102243
APA StyleBowden, A. T., Knight, P. R., Ryals, J. B., Coker, C. E. H., Langlois, S. A., Broderick, S. R., Blythe, E. K., Sakhanokho, H. F., & Babiker, E. M. (2022). Evaluation of One-Time Applications of Foliar Applied Auxin Co-Applied with Surfactant for Use in Commercial Cutting Propagation. Agronomy, 12(10), 2243. https://doi.org/10.3390/agronomy12102243