The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Arrangement of the Experiment
2.2. Statistical Analysis
2.3. Weather Conditions
3. Results
3.1. The Influence of Different Rates of Nitrogen Fertilizer, Urease Inhibitors, and Biological Preparations on the Yield of the Aboveground Part of the Maize in the First Year of the Experiment
3.2. The Influence of Different Rates of Nitrogen Fertilizer, Urease Inhibitors, and Biological Preparations on the Yield of the Aboveground Part of the Maize in the Second Year of the Experiment
3.3. The Influence of Different Rates of Nitrogen Fertilizer, Urease Inhibitors, and Biological Preparations on the Yield of the Aboveground Part of the Maize in the Third Year of the Experiment
3.4. Correlation and Regression Analysis of Nitrogen Fertilizer Rate, Urease Inhibitor, and Biological Preparation Influence on the Yield of the Aboveground Part of the Maize
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kannan, R.L.; Dhivya, M.; Abinaya, D.; Krishna, R.L.; Krishnakumar, S. Effect of integrated nutrient management on soil fertility and productivity in maize. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 61–67. [Google Scholar]
- Almaz, M.G.; Halim, R.A.; Martini, M.Y. Effect of Combined Application of Poultry Manure and Inorganic Fertiliser on Yield and Yield Components of Maize Intercropped with Soybean. Pertanika J. Trop. Agric. Sci. 2017, 40, 174–184. [Google Scholar]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Han, X.; Si, W.; Wu, Z.; Chien, H.; Okamoto, K. An assessment of climate change impacts on maize yields in Hebei Province of China. Sci. Total Environ. 2017, 581, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Dellar, M.; Topp, C.F.E.; Banos, G.; Wall, E. A meta-analysis on the effects of climate change on the yield and quality of European pastures. Agric. Ecosyst. Environ. 2018, 265, 413–420. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W.; Yin, J.; Chadwick, D.; Norse, D.; Lu, Y.; Liu, X.; Chen, X.; Zhang, F.; Powlson, D.; et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Change Biol. 2018, 24, e511–e521. [Google Scholar] [CrossRef]
- Naujokienė, V.; Šarauskis, E.; Lekavičienė, K.; Adamavičienė, A.; Buragienė, S.; Kriaučiūnienė, Z. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage. Sci. Total Environ. 2018, 621, 1402–1413. [Google Scholar] [CrossRef]
- Fenu, G.; Malloci, F.M. DSS LANDS: A decision support system for agriculture in Sardinia. HighTech Innov. J. 2020, 1, 129–135. [Google Scholar] [CrossRef]
- Kumar, S.; Lai, L.; Kumar, P.; Valentín Feliciano, Y.M.; Battaglia, M.L.; Hong, C.O.; Owens, V.N.; Fike, J.; Farris, R.; Galbraith, J. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 2019, 111, 1046–1059. [Google Scholar] [CrossRef]
- FAO. Available online: https://www.fao.org/food-agriculture-statistics/en/ (accessed on 5 May 2022).
- Galindo, F.S.; Teixeira Filho, M.C.M.; Buzetti, S.; Rodrigues, W.L.; Boleta, E.H.; Rosa, P.A.; Gaspareto, R.N.; Biagini, A.L.C.; Baratella, E.B.; Pereira, I.T. Technical and economic viability of corn with Azospirillum brasilense associated with acidity correctives and nitrogen. J. Agric. Sci. 2018, 10, 213–227. [Google Scholar] [CrossRef]
- Afshar, R.K.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system: Field and laboratory investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.; Wieder, W.R.; Grandy, A.S. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Panday, D.; Mikha, M.M.; Collins, H.P.; Jin, V.L.; Kaiser, M.; Cooper, J.; Malakar, A.; Maharjan, B. Optimum rates of surface-applied coal char decreased soil ammonia volatilization loss. J. Environ. Qual. 2020, 49, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Ochieng, I.O.; Gitari, H.I.; Mochoge, B.; Rezaei-Chiyaneh, E.; Gweyi-Onyango, J.P. Optimizing maize yield, nitrogen efficacy and grain protein content under different N forms and rates. J. Soil Sci. Plant Nutr. 2021, 21, 1867–1880. [Google Scholar] [CrossRef]
- Xu, R.; Zhao, H.; Liu, G.; You, Y.; Ma, L.; Liu, N.; Zhang, Y. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Res. 2021, 263, 108068. [Google Scholar] [CrossRef]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.M.; McGrath, J.M.; et al. Strengths and limitations of nitrogen rate recommendations for corn and opportunities for improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef]
- Sela, S.; Van Es, H.M.; Moebius-Clune, B.N.; Marjerison, R.; Kneubuhler, G. Dynamic model-based recommendations increase the precision and sustainability of N fertilization in midwestern US maize production. Comput. Electron. Agric. 2018, 153, 256–265. [Google Scholar] [CrossRef]
- Sela, S.; Woodbury, P.B.; Van Es, H.M. Dynamic model-based N management reduces surplus nitrogen and improves the environmental performance of corn production. Environ. Res. Lett. 2018, 13, 054010. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- San Francisco, S.; Urrutia, O.; Martin, V.; Peristeropoulos, A.; Garcia-Mina, J.M. Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching. J. Sci. Food Agric. 2011, 91, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Ibrikci, H.; Ryan, J.; Ulger, A.C.; Buyuk, G.; Cakir, B.; Korkmaz, K.; Karnez, E.; Ozgenturk, G.; Konuskan, O. Maintenance of phosphorus fertilizer and residual phosphorus effect on corn production. Nutr. Cycl. Agroecosyst. 2005, 72, 279–286. [Google Scholar] [CrossRef]
- Min, J.; Sun, H.; Kronzucker, H.J.; Wang, Y.; Shi, W. Comprehensive assessment of the effects of nitrification inhibitor application on reactive nitrogen loss in intensive vegetable production systems. Agric. Ecosyst. Environ. 2021, 307, 107227. [Google Scholar] [CrossRef]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Allende-Montalbán, R.; Martín-Lammerding, D.; Delgado, M.D.M.; Porcel, M.A.; Gabriel, J.L. Urease inhibitors effects on the nitrogen use efficiency in a maize–wheat rotation with or without water deficit. Agriculture 2021, 11, 684. [Google Scholar] [CrossRef]
- Cantarella, H.; Otto, R.; Soares, J.R.; Brito Silva, A.G. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Cantarella, H.; Trivelin, P.C.O.; Contin, T.L.M.; Dias, F.L.F.; Rossetto, R.; Marcelino, R.; Coimbra, R.B.; Quaggio, J.A. Ammonia volatilisation from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci. Agric. 2008, 65, 397–401. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Karapınar, N. Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J. Hazard. Mater. 2009, 170, 1186–1191. [Google Scholar] [CrossRef]
- Zamparas, M.; Drosos, M.; Georgiou, Y.; Deligiannakis, Y.; Zacharias, I. A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters. Chem. Eng. J. 2013, 225, 43–51. [Google Scholar] [CrossRef]
- Ali, J.; Li, Y.; Wang, X.; Zhao, J.; Xi, N.; Zhang, Z.; Xia, X. Climate-zone-dependent effect mechanism of humic acid and fulvic acid extracted from river sediments on aggregation behavior of graphene oxide. Sci. Total Environ. 2020, 721, 137682. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Morrison, L.; Shukla, P.S.; Critchley, A.T. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J. Appl. Phycol. 2020, 32, 3561–3584. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps—Update 2015; World Soil Resources Report 106; FAO: Rome, Italy, 2015; p. 188. [Google Scholar]
- Drulis, P.; Kriaučiūnienė, Z.; Liakas, V. The influence of different nitrogen fertilizer rates, urease inhibitors and biological preparations on maize grain yield and yield structure elements. Agronomy 2022, 12, 741. [Google Scholar] [CrossRef]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Heß, M.; Lancashire, P.D.; Schnock, U.; Stauß, R.; Boom, T.V.D.; et al. The BBCH system to coding the phenological growth stages of plants–history and publications. J. Kult. 2009, 61, 41–52. [Google Scholar]
- Žydelis, R.; Lazauskas, S.; Povilaitis, V. Biomass accumulation and N status in grain maize as affected by mineral and organic fertilizers in cool climate. J. Plant Nutr. 2018, 41, 2626–2636. [Google Scholar] [CrossRef]
- Dobermann, A.R. Nitrogen use efficiency-state of the art. In Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; Agronomy Faculty Publications: Lincoln, NE, USA, 2005; p. 316. [Google Scholar]
- Tarakanovas, P.; Raudonius, S. Statistical Analysis of Agronomic Research Data Using Computer Programs 540 ANOVA, STAT, SPLIT-PLOT from the Package SELEKCIJA and IRRISTAT; Lithuanian Institute of Agriculture: Kėdainiai, Lithuania, 2003; p. 57. [Google Scholar]
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirbyte Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, H.; Powlson, D.; Min, J.; Shi, W. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Res. 2015, 173, 1–7. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.Q.; Liu, P.; Dong, S.T.; Zhang, J.W.; Zhao, B.; Ren, B.Z. Nitrogen placement at sowing affects root growth, grain yield formation, N use efficiency in maize. Plant Soil 2020, 457, 355–373. [Google Scholar] [CrossRef]
- Koudjega, K.; Ablede, K.A.; Lawson, I.Y.D.; Abekoe, M.K.; Owusu-Bennoah, E.; Tsatsu, D.K. Reducing ammonia volatilization and improving nitrogen use efficiency of rice at different depths of urea supergranule application. Commun. Soil Sci. Plant Anal. 2019, 50, 974–986. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, M.; Tian, Y.; Zhao, M.; Zhang, B.; Zhao, M.; Zeng, K.; Yin, B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Res. 2018, 218, 254–266. [Google Scholar] [CrossRef]
- Xia, L.; Li, X.; Ma, Q.; Lam, S.K.; Wolf, B.; Kiese, R.; Butterbach-Bahl, K.; Chen, D.; Li, Z.; Yan, X. Simultaneous quantification of N2, NH3 and N2O emissions from a flooded paddy field under different N fertilization regimes. Glob. Change Biol. 2020, 26, 2292–2303. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liao, L.; Tan, J.; Shao, X. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: A pots experiment. Soil Tillage Res. 2013, 126, 169–176. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, S.; Guo, Z.; Cui, T.; Zhang, L.; Lu, C.; Yu, Y.; Luo, Z.; Fu, H.; Jin, Y. Effect of balanced nutrient fertilizer: A case study in Pinggu District, Beijing, China. Sci. Total Environ. 2021, 754, 142069. [Google Scholar] [CrossRef] [PubMed]
- Burney, J.A.; Davis, S.J.; Lobell, D.B. Greenhouse gas mitigation by agricultural intensification. Proc. Natl. Acad. Sci. USA 2010, 107, 12052–12057. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Huang, S.; Tian, B.; Ren, J.; Meng, Q.; Wang, P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front. Plant Sci. 2017, 8, 1234. [Google Scholar] [CrossRef]
- Marković, M.; Šoštarić, J.; Josipović, M.; Rastija, M.; Kočar, M.M.; Andrišić, K. Yield and yield components of maize hybrids (Zea mays L.) as affected by irrigation. J. Int. Sci. Publ. Agric. Food 2021, 9, 1–11. [Google Scholar]
- Mansouri-Far, C.; Sanavy, S.A.M.M.; Saberali, S.F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Fan, M.; Shen, J.; Yuan, L.; Jiang, R.; Chen, X.; Davies, W.J.; Zhang, F. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef]
- Hofmeier, M.; Roelcke, M.; Han, Y.; Lan, T.; Bergmann, H.; Böhm, D.; Cai, Z.; Nieder, R. Nitrogen management in a rice–wheat system in the Taihu Region: Recommendations based on field experiments and surveys. Agric. Ecosyst. Environ. 2015, 209, 60–73. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M.; Aneja, V.P.; Balasubramanian, R. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ. Sci. Pollut. Res. 2013, 20, 8092–8131. [Google Scholar] [CrossRef]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Gasser, M.O.; Bertrand, N. Reducing ammonia volatilization in a no-till soil by incorporating urea and pig slurry in shallow bands. Nutr. Cycl. Agroecosyst. 2009, 84, 71–80. [Google Scholar] [CrossRef]
- Guardia, G.; Sanz-Cobena, A.; Sanchez-Martín, L.; Fuertes-Mendizábal, T.; González-Murua, C.; Álvarez, J.M.; Chadwick, D.; Vallejo, A. Urea-based fertilization strategies to reduce yield-scaled N oxides and enhance bread-making quality in a rainfed Mediterranean wheat crop. Agric. Ecosyst. Environ. 2018, 265, 421–431. [Google Scholar] [CrossRef]
- Rose, T.J.; Wood, R.H.; Rose, M.T.; Van Zwieten, L. A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric. Ecosyst. Environ. 2018, 252, 69–73. [Google Scholar] [CrossRef]
- Blennerhassett, J.D.; Quin, B.F.; Zaman, M.; Ramakrishnan, C. The potential for increasing nitrogen responses using Agrotain treated urea. Proc. J. N. Z. Grassl. 2006, 68, 297–301. [Google Scholar] [CrossRef]
- Chen, Y.; Aviad, T. Effects of humic substances on plant growth. In Humic Substances in Soil and Crop Sciences: Selected Readings; MacCarthy, P., Clapp, C.E., Malcolm, R.L., Bloom, P.R., Eds.; ASA and SSSA (Madison American Society of Agronomy and Soil Science Society of America): Madison, WI, USA, 1990; pp. 161–186. [Google Scholar]
- Dawar, K.; Zaman, M.; Rowarth, J.S.; Blennerhassett, J.; Turnbull, M.H. The impact of urease inhibitor on the bioavailability of nitrogen in urea and in comparison with other nitrogen sources in ryegrass (Lolium perenne L.). Crop Pasture Sci. 2010, 61, 214–221. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Blennerhassett, J.D.; Quin, B.F. Reducing NH3, N2O and NO3–N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol. Fertil. Soils 2008, 44, 693–705. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Schrey, S.D.; Postma, J.A.; Temperton, V.M.; Jablonowski, N.D. Phosphorus uptake from struvite is modulated by the nitrogen form applied. J. Plant Nutr. Soil Sci. 2020, 183, 80–90. [Google Scholar] [CrossRef]
- Majidian, M.; Ghalavand, A.; Karimian, N.; Haghighi, A.K. Effects of water stress, nitrogen fertilizer and organic fertilizer in various farming systems in different growth stages on physiological characteristics, physical characteristics, quality and chlorophyll content of maize single cross hybrid 704. Iran. Crop Sci. J. 2006, 10, 303–330. [Google Scholar]
- Hindersah, R.; Kamaluddin, N.N.; Samanta, S.; Banerjee, S.; Sarkar, S. Role and perspective of Azotobacter in crops production. SAINS TANAH J. Soil Sci. Agroclimat. 2020, 17, 170–179. [Google Scholar] [CrossRef]
- Santner, A.; Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 2009, 459, 1071–1078. [Google Scholar] [CrossRef]
- Vishal, B.; Kumar, P.P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front. Plant Sci. 2018, 9, 838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.D.S.; Di, L.; Yu, E.G.; Tang, J.; Lin, L.; Zhang, C.; Yu, Z.; Gaigalas, J. Impact of climate change on soil salinity: A remote sensing based investigation in coastal Bangladesh. In Proceedings of the 2018 7th International Conference on Agrogeoinformatics (Agro-geoinformatics), Hangzhou, China, 6–9 August 2018; IEEE: Piscataway, NJ, USA; pp. 1–5. [Google Scholar]
Factor A | Characteristics |
---|---|
N100 | 238 L ha−1 KAS-32 (a solution of urea (CO(NH2)2) and ammonium nitrate (NH4 NO3)) applied to the soil surface immediately after sowing |
N140 | 333.2 L ha−1 KAS-32 (a solution of urea (CO(NH2)2) and ammonium nitrate (NH4 NO3)) applied to the soil surface immediately after sowing |
N180 | 428.4 L ha−1 KAS-32 (a solution of urea (CO(NH2)2) and ammonium nitrate (NH4 NO3)) applied to the soil surface immediately after sowing |
Factor B | Characteristics |
---|---|
UI and BP not used (control) | Urease inhibitors and biological preparations were not used |
UI ATS | Urease inhibitor—ammonium thiosulphate ((NH4)2S2O3 12-0-0-26 S) (10% spraying with KAS-32: in fields fertilized with N100—23.8 L ha−1; in fields fertilized with N140—33.3 L ha−1; in fields fertilized with N180—42.8 L ha−1 |
UI URN | Urease inhibitor—N-butyl-thiophosphorus triamide (NBPT) at 188 g L−1 and N-propyl-thiophosphorus triamide (NPPT) at 87 g L−1 (1.0 L ha−1 sprayed with KAS-32) |
BP HUM | Biological preparation—15% suspension of humic and fulvic acids, pH 4–5 (1.0 L ha−1 sprayed with KAS-32) |
BP FIT | Biological preparation—20% suspension of Ascophyllum nodosum (0.6 L ha−1 sprayed at the 6-leaf stage (BBCH 26) of maize |
Growing and Development Period by BBCH (from–to) | Sum of Temperatures per Period, °C | Average Daily Temperature per Period, °C | Sum of Precipitation per Period, mm | Precipitation Intensity per Period, mm day−1 |
---|---|---|---|---|
00–09 | 164.4 | 12.6 | 2.10 | 0.2 |
09–13 | 128.3 | 10.7 | 6.00 | 0.5 |
13–26 | 209.5 | 17.5 | 21.4 | 1.8 |
26–27 | 442.5 | 20.1 | 45.9 | 2.1 |
27–29 | 262.1 | 18.7 | 9.60 | 0.7 |
29–51 | 248.6 | 15.5 | 29.9 | 1.9 |
51–61 | 268.0 | 19.4 | 28.1 | 2.0 |
61–69 | 66.8 | 16.7 | 3.90 | 0.1 |
69–73 | 90.0 | 18.0 | 25.1 | 5.0 |
73–83 | 278.9 | 18.6 | 31.4 | 2.1 |
83–87 | 255.3 | 18.2 | 5.00 | 0.4 |
00–87 | 2558.4 | 16.7 | 218.4 | 1.4 |
Growing and Development Period by BBCH (from–to) | Sum of Temperatures per Period, °C | Average Daily Temperature per Period, °C | Sum of Precipitation per Period, mm | Precipitation Intensity per Period, mm day−1 |
---|---|---|---|---|
00–09 | 142.7 | 10.2 | 27.6 | 2.0 |
09–13 | 109.7 | 8.40 | 58.9 | 4.5 |
13–26 | 134.8 | 13.5 | 8.70 | 0.9 |
26–27 | 264.4 | 17.6 | 35.5 | 2.4 |
27–29 | 279.7 | 21.5 | 63.8 | 4.9 |
29–51 | 467.4 | 17.3 | 52.9 | 2.0 |
51–61 | 178.6 | 17.9 | 31.1 | 3.1 |
61–69 | 67.4 | 22.5 | 0 | 0 |
69–73 | 111.4 | 18.6 | 0 | 0 |
73–83 | 165.2 | 20.7 | 15.5 | 1.9 |
83–87 | 347.8 | 15.1 | 61.9 | 2.7 |
00–87 | 2454.0 | 15.9 | 361.0 | 2.3 |
Growing and Development Period by BBCH (from–to) | Sum of Temperatures per Period, °C | Average Daily Temperature per Period, °C | Sum of Precipitation per Period, mm | Precipitation Intensity per Period, mm day−1 |
---|---|---|---|---|
00–09 | 131.0 | 14.6 | 29.6 | 3.3 |
09–13 | 118.7 | 11.9 | 46.7 | 4.7 |
13–26 | 128.7 | 16.1 | 0 | 0 |
26–27 | 337.9 | 19.9 | 7.2 | 0.4 |
27–29 | 251.2 | 20.9 | 53.3 | 4.4 |
29–51 | 480.6 | 22.9 | 9.9 | 0.5 |
51–61 | 180.2 | 20.0 | 38.2 | 4.2 |
61–69 | 83.8 | 16.8 | 28.5 | 5.7 |
69–73 | 70.3 | 17.6 | 3.70 | 0.9 |
73–83 | 251.5 | 15.7 | 39.0 | 2.4 |
83–87 | 340.8 | 12.2 | 59.3 | 2.1 |
00–87 | 2492.7 | 16.6 | 319.8 | 2.1 |
Fertilization | Yield of Aboveground Dry Matter t ha−1 | ||||
---|---|---|---|---|---|
Whole | Including | ||||
Cobs | Leaves | Stems | |||
N100 | Without UIs and BPs | 17.48 ± 0.37 g | 11.29 ± 0.23 g | 2.06 ± 0.05 g | 4.13 ± 0.09 g |
UI ATS | 21.17 ± 0.44 cde | 13.59 ± 0.26 cde | 2.54 ± 0.06 cd | 5.04 ± 0.12 bcde | |
UI URN | 20.59 ± 0.41 cdef | 13.2 ± 0.26 cdef | 2.45 ± 0.05 def | 4.94 ± 0.11 cdef | |
BP HUM | 20.11 ± 0.39 ef | 12.89 ± 0.23 ef | 2.40 ± 0.06 def | 4.82 ± 0.11 def | |
BP FIT | 20.56 ± 0.50 cdef | 13.2 ± 0.34 cdef | 2.46 ± 0.06 def | 4.90 ± 0.13 cdef | |
N140 | Without UIs and BPs | 19.39 ± 0.50 f | 12.47 ± 0.33 f | 2.32 ± 0.07 f | 4.60 ± 0.11 f |
UI ATS | 22.85 ± 0.53 ab | 14.85 ± 0.36 ab | 2.67 ± 0.06 abc | 5.33 ± 0.14 ab | |
UI URN | 21.57 ± 0.61 bcd | 14.0 ± 0.46 bcd | 2.50 ± 0.06 cde | 5.07 ± 0.13 bcd | |
BP HUM | 20.52 ± 0.47 cdef | 13.3 ± 0.32 cdef | 2.45 ± 0.06 def | 4.77 ± 0.12 def | |
BP FIT | 20.92 ± 0.51 cde | 13.58 ± 0.40 cde | 2.48 ± 0.06 def | 4.86 ± 0.09 cdef | |
N180 | Without UIs and BPs | 20.04 ± 0.50 ef | 13.03 ± 0.36 def | 2.33 ± 0.05 ef | 4.68 ± 0.12 ef |
UI ATS | 24.09 ± 0.58 a | 15.68 ± 0.34 a | 2.80 ± 0.07 a | 5.61 ± 0.17 a | |
UI URN | 23.06 ± 0.59 ab | 14.95 ± 0.40 ab | 2.75 ± 0.07 ab | 5.36 ± 0.13 ab | |
BP HUM | 21.34 ± 0.57 cde | 13.82 ± 0.40 cde | 2.50 ± 0.07 cde | 5.02 ± 0.14 bcde | |
BP FIT | 22.01 ± 0.48 bc | 14.2 ± 0.34 bc | 2.60 ± 0.06 bc | 5.21 ± 0.14 bc |
Fertilization | Yield of Aboveground Dry Matter t ha−1 | ||||
---|---|---|---|---|---|
Whole | Including | ||||
Cobs | Leaves | Stems | |||
N100 | Without UIs and BPs | 14.75 ± 0.38 g | 9.19 ± 0.24 g | 1.82 ± 0.04 f | 3.74 ± 0.08 h |
UI ATS | 17.62 ± 0.45 e | 11.28 ± 0.30 e | 2.10 ± 0.04 d | 4.24 ± 0.13 e | |
UI URN | 15.94 ± 0.37 fg | 10.07 ± 0.21 f | 1.96 ± 0.05 def | 3.91 ± 0.12 gh | |
BP HUM | 16.18 ± 0.37 f | 10.31 ± 0.24 f | 1.95 ± 0.04 def | 3.92 ± 0.12 fgh | |
BP FIT | 17.66 ± 0.42 e | 11.37 ± 0.32 e | 2.09 ± 0.06 de | 4.20 ± 0.11 efg | |
N140 | Without UIs and BPs | 16.22 ± 0.36 f | 10.38 ± 0.20 f | 1.93 ± 0.06 ef | 3.91 ± 0.12 gh |
UI ATS | 20.86 ± 0.46 ab | 13.57 ± 0.31 a | 2.53 ± 0.07 a | 4.76 ± 0.09 abc | |
UI URN | 18.62 ± 0.34 de | 11.74 ± 0.24 de | 2.31 ± 0.06 c | 4.57 ± 0.09 cd | |
BP HUM | 19.47 ± 0.32 cd | 12.5 ± 0.15 cd | 2.34 ± 0.05 c | 4.63 ± 0.13 bc | |
BP FIT | 19.69 ± 0.46 bcd | 12.66 ± 0.30 bc | 2.36 ± 0.09 bc | 4.67 ± 0.08 bc | |
N180 | Without UIs and BPs | 17.61 ± 0.45 e | 11.25 ± 0.32 e | 2.10 ± 0.06 d | 4.26 ± 0.10 de |
UI ATS | 21.47 ± 0.54 a | 13.91 ± 0.40 a | 2.52 ± 0.06 ab | 5.04 ± 0.12 a | |
UI URN | 20.47 ± 0.47 abc | 13.2 ± 0.32 abc | 2.40 ± 0.06 abc | 4.87 ± 0.10 abc | |
BP HUM | 19.67 ± 0.46 bcd | 12.61 ± 0.29 bc | 2.36 ± 0.06 bc | 4.70 ± 0.11 bc | |
BP FIT | 20.73 ± 0.56 ab | 13.35 ± 0.38 ab | 2.43 ± 0.07 abc | 4.95 ± 0.15 ab |
Fertilization | Yield of Aboveground Dry Matter t ha−1 | ||||
---|---|---|---|---|---|
Whole | Including | ||||
Cobs | Leaves | Stems | |||
N100 | Without UIs and BPs | 13.41 ± 0.20 i | 8.69 ± 0.15 h | 1.42 ± 0.02 h | 3.30 ± 0.06 g |
UI ATS | 15.64 ± 0.04 f | 10.00 ± 0.16 def | 1.74 ± 0.03 f | 3.90 ± 0.12 de | |
UI URN | 14.64 ± 0.31 h | 9.45 ± 0.23 g | 1.73 ± 0.03 fg | 3.46 ± 0.09 fg | |
BP HUM | 15.07 ± 0.20 gh | 9.79 ± 0.12 fg | 1.61 ± 0.02 g | 3.67 ± 0.07 ef | |
BP FIT | 15.43 ± 0.09 fg | 9.95 ± 0.14 efg | 1.83 ± 0.03 ef | 3.65 ± 0.09 ef | |
N140 | Without UIs and BPs | 15.16 ± 0.16 fgh | 9.78 ± 0.21 fg | 1.73 ± 0.03 fg | 3.65 ± 0.07 ef |
UI ATS | 17.87 ± 0.35 ab | 11.2 ± 0.19 ab | 2.07 ± 0.07 abc | 4.60 ± 0.10 a | |
UI URN | 16.41 ± 0.09 e | 10.49 ± 0.15 cd | 1.92 ± 0.07 de | 4.00 ± 0.09 d | |
BP HUM | 16.82 ± 0.17 de | 10.81 ± 0.13 bc | 1.96 ± 0.05 cd | 4.05 ± 0.09 cd | |
BP FIT | 17.71 ± 0.21 bc | 11.16 ± 0.22 ab | 2.02 ± 0.04 bcd | 4.53 ± 0.07 ab | |
N180 | Without UIs and BPs | 16.5 ± 0.17 e | 10.42 ± 0.19 cde | 1.98 ± 0.04 bcd | 4.10 ± 0.10 cd |
UI ATS | 18.25 ± 0.09 a | 11.4 ± 0.20 a | 2.12 ± 0.04 ab | 4.73 ± 0.08 a | |
UI URN | 17.28 ± 0.09 cd | 10.93 ± 0.19 abc | 2.05 ± 0.04 abc | 4.30 ± 0.07 bc | |
BP HUM | 17.92 ± 0.10 ab | 11.22 ± 0.22 ab | 2.10 ± 0.05 ab | 4.60 ± 0.09 a | |
BP FIT | 18.22 ± 0.17 ab | 11.37 ± 0.18 a | 2.15 ± 0.04 a | 4.70 ± 0.08 a |
Fertilization | PFPN (kg Dry Biomass kg−1 N) | |||
---|---|---|---|---|
2019 | 2020 | 2021 | ||
N100 | Without UIs and BPs | 174.8 | 147.5 | 134.1 |
UI ATS | 211.7 | 176.2 | 156.4 | |
UI URN | 205.9 | 159.4 | 146.4 | |
BP HUM | 201.1 | 161.8 | 150.7 | |
BP FIT | 205.6 | 176.6 | 154.3 | |
N140 | Without UIs and BPs | 138.5 | 115.9 | 108.3 |
UI ATS | 163.2 | 149.0 | 127.6 | |
UI URN | 154.1 | 133.0 | 117.2 | |
BP HUM | 146.6 | 139.1 | 120.1 | |
BP FIT | 149.4 | 140.6 | 126.5 | |
N180 | Without UIs and BPs | 111.3 | 97.8 | 91.7 |
UI ATS | 133.8 | 119.3 | 101.4 | |
UI URN | 128.1 | 113.7 | 96.0 | |
BP HUM | 118.6 | 109.3 | 99.6 | |
BP FIT | 122.3 | 115.2 | 101.2 |
Dependent Variables Y | UIs and BPs (Factor B) | Regression Equation | Correlation Coefficient r | Coefficient of Determination r2 | p-Value |
---|---|---|---|---|---|
Y1—dry matter yield of the aboveground part of the plant, t ha−1 | Not used | y = 14.5 + 0.03x | 0.82 | 0.68 | p < 0.01 |
UI ATS | y = 17.6 + 0.04x | 0.85 | 0.72 | p < 0.01 | |
UI URN | y = 17.4 + 0.03x | 0.79 | 0.62 | p < 0.05 | |
BP HUM | - | - | - | p > 0.05 | |
BP FIT | - | - | - | p > 0.05 | |
Y2—dry matter yield of cobs (grains, kernels, and cotyledons), t ha−1 | Not used | y = 9.21 + 0.02x | 0.83 | 0.70 | p < 0.01 |
UI ATS | y = 11.05 + 0.03x | 0.88 | 0.77 | p < 0.01 | |
UI URN | y = 10.99 + 0.02x | 0.80 | 0.64 | p < 0.01 | |
BP HUM | y = 11.68 + 0.01x | 0.64 | 0.41 | p < 0.05 | |
BP FIT | y = 11.91 + 0.01x | 0.62 | 0.39 | p < 0.05 | |
Y3—dry matter yield of leaves, t ha−1 | Not used | y = 1.76 + 0.003x | 0.74 | 0.55 | p < 0.05 |
UI ATS | y = 2.22 + 0.003x | 0.78 | 0.61 | p < 0.05 | |
UI URN | y = 2.04 + 0.004x | 0.79 | 0.62 | p < 0.05 | |
BP HUM | - | - | - | p > 0.05 | |
BP FIT | - | - | - | p > 0.05 | |
Y4—dry matter yield of stems (ochreas, panicles, and undeveloped cobs), t ha−1 | Not used | y = 3.51 + 0.007x | 0.79 | 0.62 | p < 0.05 |
UI ATS | y = 4.33 + 0.007x | 0.75 | 0.56 | p < 0.05 | |
UI URN | y = 4.39 + 0.005x | 0.69 | 0.48 | p < 0.05 | |
BP HUM | - | - | - | p > 0.05 | |
BP FIT | - | - | - | p > 0.05 |
Dependent Variables Y | UIs and BPs (Factor B) | Regression Equation | Correlation Coefficient r | Coefficient of Determination r2 | p-Value |
---|---|---|---|---|---|
Y1—dry matter yield of the aboveground part of the plant, t ha−1 | Not used | y = 11.2 + 0.04x | 0.90 | 0.81 | p < 0.01 |
UI ATS | y = 13.2 + 0.05x | 0.86 | 0.74 | p < 0.01 | |
UI URN | y = 10.4 + 0.06x | 0.95 | 0.91 | p < 0.01 | |
BP HUM | y = 12.3 + 0.05x | 0.84 | 0.71 | p < 0.01 | |
BP FIT | y = 14.0 + 0.04x | 0.87 | 0.75 | p < 0.01 | |
Y2—dry matter yield of cobs (grains, kernels, and cotyledons), t ha−1 | Not used | y = 6.67 + 0.03x | 0.91 | 0.84 | p < 0.01 |
UI ATS | y = 8.32 + 0.03x | 0.85 | 0.72 | p < 0.01 | |
UI URN | y = 6.19 + 0.04x | 0.96 | 0.92 | p < 0.05 | |
BP HUM | y = 7.78 + 0.03x | 0.85 | 0.72 | p < 0.01 | |
BP FIT | y = 9.0 + 0.02x | 0.85 | 0.72 | p < 0.01 | |
Y3—dry matter yield of leaves, t ha−1 | Not used | y = 1.46 + 0.004x | 0.84 | 0.71 | p < 0.01 |
UI ATS | y = 1.65 + 0.005x | 0.79 | 0.63 | p < 0.05 | |
UI URN | y = 1.45 + 0.006x | 0.88 | 0.77 | p < 0.01 | |
BP HUM | y = 1.50 + 0.005x | 0.83 | 0.68 | p < 0.01 | |
BP FIT | y = 1.70 + 0.004x | 0.78 | 0.61 | p < 0.05 | |
Y4—dry matter yield of stems (ochreas, panicles, and undeveloped cobs), t ha−1 | Not used | y = 2.85 + 0.008x | 0.87 | 0.75 | p < 0.01 |
UI ATS | y = 3.25 + 0.01x | 0.88 | 0.78 | p < 0.01 | |
UI URN | y = 2.77 + 0.01x | 0.91 | 0.84 | p < 0.01 | |
BP HUM | y = 3.05 + 0.01x | 0.82 | 0.66 | p < 0.01 | |
BP FIT | y = 3.29 + 0.009x | 0.87 | 0.76 | p < 0.01 |
Dependent Variables Y | UIs and BPs (Factor B) | Regression Equation | Correlation Coefficient r | Coefficient of Determination r2 | p-Value |
---|---|---|---|---|---|
Y1—dry matter yield of the aboveground part of the plant, t ha−1 | Not used | y = 9.61 + 0.039x | 0.98 | 0.96 | p < 0.01 |
UI ATS | y = 12.78 + 0.032x | 0.89 | 0.79 | p < 0.01 | |
UI URN | y = 11.50 + 0.033x | 0.95 | 0.90 | p < 0.01 | |
BP HUM | y = 11.70 + 0.035x | 0.97 | 0.95 | p < 0.01 | |
BP FIT | y = 12.34 + 0.034x | 0.92 | 0.85 | p < 0.01 | |
Y2—dry matter yield of cobs (grains, kernels, and cotyledons), t ha−1 | Not used | y = 6.60 + 0.022x | 0.93 | 0.86 | p < 0.01 |
UI ATS | y = 8.42 + 0.018x | 0.85 | 0.73 | p < 0.01 | |
UI URN | y = 7.68 + 0.019x | 0.89 | 0.79 | p < 0.01 | |
BP HUM | y = 8.10 + 0.018x | 0.91 | 0.82 | p < 0.01 | |
BP FIT | y = 8.34 + 0.018x | 0.86 | 0.73 | p < 0.01 | |
Y3—dry matter yield of leaves, t ha−1 | Not used | y = 0.73 + 0.007x | 0.98 | 0.96 | p < 0.01 |
UI ATS | y = 1.31 + 0.005x | 0.86 | 0.73 | p < 0.01 | |
UI URN | y = 1.34 + 0.004x | 0.88 | 0.77 | p < 0.01 | |
BP HUM | y = 1.03 + 0.006x | 0.93 | 0.87 | p < 0.01 | |
BP FIT | - | - | - | p > 0.05 | |
Y4—dry matter yield of stems (ochreas, panicles, and undeveloped cobs), t ha−1 | Not used | y = 2.28 + 0.01x | 0.95 | 0.90 | p < 0.01 |
UI ATS | y = 2.96 + 0.01x | 0.86 | 0.75 | p < 0.01 | |
UI URN | y = 2.45 + 0.01x | 0.93 | 0.87 | p < 0.01 | |
BP HUM | y = 2.48 + 0.01x | 0.95 | 0.90 | p < 0.01 | |
BP FIT | y = 2.46 + 0.01x | 0.91 | 0.84 | p < 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drulis, P.; Kriaučiūnienė, Z.; Liakas, V. The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity. Agronomy 2022, 12, 2264. https://doi.org/10.3390/agronomy12102264
Drulis P, Kriaučiūnienė Z, Liakas V. The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity. Agronomy. 2022; 12(10):2264. https://doi.org/10.3390/agronomy12102264
Chicago/Turabian StyleDrulis, Povilas, Zita Kriaučiūnienė, and Vytautas Liakas. 2022. "The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity" Agronomy 12, no. 10: 2264. https://doi.org/10.3390/agronomy12102264
APA StyleDrulis, P., Kriaučiūnienė, Z., & Liakas, V. (2022). The Effect of Combining N-Fertilization with Urease Inhibitors and Biological Preparations on Maize Biological Productivity. Agronomy, 12(10), 2264. https://doi.org/10.3390/agronomy12102264