Yield Advantage and Economic Performance of Rice–Maize, Rice–Soybean, and Maize–Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Intercropping Practices (IPs) and Monocropping Practices (MPs)
2.3. Cultural Practices
2.4. Parameters Evaluated
2.4.1. Crop Yield Assessment
2.4.2. Crop Competition Assessment
2.4.3. Economic Efficiency Assessment
2.5. Data Analysis
3. Results
3.1. Grain Yields of IP and MP
3.2. Yield Advantage
3.3. Crop Competition
3.4. Economic Efficiency
3.5. Gross Margin and Profit Analysis
4. Discussion
4.1. Yield Advantage of the Intercropping Systems
4.2. Economic Performance of the Intercropping Systems
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaluba, P.; Mwamba, S.; Moualeu-Ngangue, D.P.; Chiona, M.; Munyinda, K.; Winter, E.; Stützel, H.; Chishala, B.H. Cropping practices and effects on soil nutrient adequacy levels and cassava yield of smallholder farmers in Northern Zambia. Int. J. Agron. 2021, 2021, 1325964. [Google Scholar] [CrossRef]
- Sylvestre, H.; Saidi, R.M.; Antoine, K.; Francois, X.R.; Fabrice, R.M.; Eularie, M.; Ivan, G.; Christian, N.; Jean, C.A.; Athanase, R.C. Effect of intercropping aerobic rice with leafy vegetables on crop growth, yield and its economic efficiency. Afr. J. Biotechnol. 2021, 20, 313–317. [Google Scholar] [CrossRef]
- Ngongo, Y.; Basuki, T.; de Rosari, B.; Hosang, E.Y.; Nulik, J.; da Silva, H.; Hau, D.K.; Sitorus, A.; Kotta, N.R.E.; Njurumana, G.N.; et al. Local wisdom of West Timorese Farmers in land management. Sustainability 2022, 14, 6023. [Google Scholar] [CrossRef]
- Taah, J.; Adu, E.O. Relative time of planting of legumes (cowpea, soybean, and groundnut) on weed suppression and yield in cassava cropping system. Afr. J. Agric. Res. 2021, 17, 189–197. [Google Scholar] [CrossRef]
- Kebede, E. Grain legumes production and productivity in Ethiopian smallholder agricultural system, contribution to livelihoods and the way forward. Cogent Food Agric. 2020, 6, 1722353. [Google Scholar] [CrossRef]
- Yuan, S.; Linquist, B.; Wilson, L.; Cassman, K.; Stuart, A.; Pede, V.; Miro, B.; Saito, K.; Agustiani, N.; Aristya, V. A roadmap towards sustainable intensification for a larger global rice bowl. Res. Sq. 2021, 1–25. [Google Scholar] [CrossRef]
- Yuan, S.; Stuart, A.M.; Laborte, A.G.; Edreira, J.I.R.; Dobermann, A.; Kien, L.V.N.; Thúy, L.T.; Paothong, K.; Traesang, P.; Tint, K.M.; et al. Southeast Asia must narrow down the yield gap to continue to be a major rice bowl. Nat. Food 2022, 3, 217–226. [Google Scholar] [CrossRef]
- Agus, F.; Andrade, J.F.; Edreira, J.I.R.; Deng, N.; Purwantomo, D.K.; Agustiani, N.; Aristya, V.E.; Batubara, S.F.; Herniwati; Hosang, E.Y.; et al. Yield gaps in intensive rice-maize cropping sequences in the humid tropics of Indonesia. Field Crops Res. 2019, 237, 12–22. [Google Scholar] [CrossRef]
- Hayashi, K.; Llorca, L.; Rustini, S.; Setyanto, P.; Zaini, Z. Reducing vulnerability of rainfed agriculture through seasonal weather forecast: A case study on the rainfed rice production in Southeast Asia. Agric. Syst. 2018, 162, 66–76. [Google Scholar] [CrossRef]
- Rumanti, I.A.; Hairmansis, A.; Nugraha, Y.; Nafisah; Susanto, U.; Wardana, P.; Subandiono, R.E.; Zaini, Z.; Sembiring, H.; Khan, N.I.; et al. Development of tolerant rice varieties for stress-prone ecosystems in the coastal deltas of Indonesia. Field Crops Res. 2018, 223, 75–82. [Google Scholar] [CrossRef]
- Sembiring, H.; Subekti, N.A.; Erythrina; Nugraha, D.; Priatmojo, B.; Stuart, A.M. Yield gap management under seawater intrusion areas of Indonesia to improve rice productivity and resilience to climate change. Agriculture 2020, 10, 1. [Google Scholar] [CrossRef]
- Erythrina, E.; Anshori, A.; Bora, C.; Dewi, D.; Lestari, M.; Mustaha, M.; Ramija, K.; Rauf, A.; Mikasari, W.; Surdianto, Y.; et al. Assessing opportunities to increase yield and profit in rainfed lowland rice systems in Indonesia. Agronomy 2021, 11, 777. [Google Scholar] [CrossRef]
- Central Bureau of Statistics Indonesia. Results of Inter-Censal Agricultural Survey 2018 A2-Series. Number of Agricultural Households by Cultivated Subsector. 2018. Available online: https://www.bps.go.id/publication.html (accessed on 15 February 2022).
- Central Bureau of Statistics Indonesia. Harvest and Rice Production Area in Indonesia 2020. Results of Integrated Food Crops Agricultural Statistics Data Collection with Area Sample Framework Method. 2021. Available online: https://www.bps.go.id/publication.html (accessed on 20 January 2022).
- Huang, C.; Liu, Q.; Heerink, N.; Stomph, T.; Li, B.; Liu, R.; Zhang, H.; Wang, C.; Li, X.; Zhang, C.; et al. Economic Performance and Sustainability of a Novel Intercropping System on the North China Plain. PLoS ONE 2015, 10, e0135518. [Google Scholar] [CrossRef] [PubMed]
- Dwiratna, S.; Bafdal, N.; Asdak, C.; Carsono, N. Study of runoff farming system to improve dryland cropping index in Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 390–396. [Google Scholar] [CrossRef]
- Guilpart, N.; Grassini, P.; Sadras, V.O.; Timsina, J.; Cassman, K.G. Estimating yield gaps at the cropping system level. Field Crops Res. 2017, 206, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Berek, A.K. The Potential of Biochar as an Acid Soil Amendment to Support Indonesian Food and Energy Security-A Review. Pertanika J. Trop. Agric. Sci. 2019, 42. Available online: http://www.pertanika.upm.edu.my/ (accessed on 22 August 2022).
- McLeod, M.K.; Sufardi, S.; Harden, S. Soil fertility constraints and management to increase crop yields in the dryland farming systems of Aceh, Indonesia. Soil Res. 2020, 59, 68–82. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Hariah, K.; Guritno, B.; Sugito, Y.; Ismunandar, S. Biological management of soil fertility for sustainable agriculture on acid soils in Lampung (Sumatra). Agrivita 1996, 19, 131–136. [Google Scholar]
- Hong, Y.; Heerink, N.; van der Werf, W. Farm size and smallholders’ use of intercropping in Northwest China. Land Use Policy 2020, 99, 105004. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Madembo, C.; Mhlanga, B.; Thierfelder, C. Productivity or stability? Exploring maize-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe. Agric. Syst. 2020, 185, 102921. [Google Scholar] [CrossRef]
- Sogoba, B.; Traoré, B.; Safia, A.; Samaké, O.; Dembélé, G.; Diallo, S.; Kaboré, R.; Benié, G.; Zougmoré, R.B.; Goïta, K. On-farm evaluation on yield and economic performance of cereal-cowpea intercropping to support the smallholder farming system in the Soudano-Sahelian zone of mali. Agriculture 2020, 10, 214. [Google Scholar] [CrossRef]
- Suárez, J.C.; Anzola, J.A.; Contreras, A.T.; Salas, D.L.; Vanegas, J.I.; Urban, M.O.; Beebe, S.E.; Rao, I.M. Influence of simultaneous intercropping of maize-bean with input of inorganic or organic fertilizer on growth, development, and dry matter partitioning to yield components of two lines of common bean. Agronomy 2022, 12, 1216. [Google Scholar] [CrossRef]
- Kherif, O.; Seghouani, M.; Zemmouri, B.; Bouhenache, A.; Keskes, M.I.; Yacer-Nazih, R.; Ouaret, W.; Latati, M. Understanding the Response of Wheat-Chickpea Intercropping to Nitrogen Fertilization Using Agro-Ecological Competitive Indices under Contrasting Pedoclimatic Conditions. Agronomy 2021, 11, 1225. [Google Scholar] [CrossRef]
- Maitra, S.; Hossain, A.; Brestic, M.; Skalicky, M.; Ondrisik, P.; Gitari, H.; Brahmachari, K.; Shankar, T.; Bhadra, P.; Palai, J.B.; et al. Intercropping-A low input agricultural strategy for food and environmental security. Agronomy 2021, 11, 343. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Shen, L.; Wang, X.; Zhang, S.; Zhang, W. Effect of Maize (Zea mays) and Soybean (Glycine max) Intercropping on Yield and Root Development in Xinjiang, China. Agriculture 2022, 12, 996. [Google Scholar] [CrossRef]
- Suhi, A.A.; Mia, S.; Khanam, S.; Mithu, M.H.; Uddin, K.; Muktadir, A.; Ahmed, S.; Jindo, K. How Does Maize-Cowpea Intercropping Maximize Land Use and Economic Return? A Field Trial in Bangladesh. Land 2022, 11, 581. [Google Scholar] [CrossRef]
- Khanal, U.; Stott, K.; Armstrong, R.; Nuttall, J.; Henry, F.; Christy, B.; Mitchell, M.; Riffkin, P.; Wallace, A.; McCaskill, M.; et al. Intercropping—evaluating the advantages to broadacre systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Surmaini, E.; Hadi, T.W.; Subagyono, K.; Syahputra, M.R. Integrating seasonal prediction with crop model for adjusting rice planting time. Indones. Soil Clim. J. 2018, 42, 99–110. [Google Scholar]
- Saito, K.; Asai, H.; Zhao, D.; Laborte, A.G.; Grenier, C. Progress in varietal improvement for increasing upland rice productivity in the tropics. Plant Prod. Sci. 2018, 21, 145–158. [Google Scholar] [CrossRef]
- Central Bureau of Statistics Indonesia. Statistics of Paddy Producer Price in Indonesia-2019. 2019. Available online: https://www.bps.go.id/publication.html (accessed on 14 April 2022).
- Central Bureau of Statistics Indonesia. Agricultural Producer Price Statistics of Food Crops, Horticulture, and Smallholder Estate Crops Subsector-2019. 2019. Available online: https://www.bps.go.id/publication.html (accessed on 11 April 2022).
- Gitari, H.I.; Nyawade, S.O.; Kamau, S.; Karanja, N.N.; Gachene, C.K.; Raza, M.A.; Maitra, S.; Schulte-Geldermann, E. Revisiting intercropping indices with respect to potato-legume intercropping systems. Field Crops Res. 2020, 258, 107957. [Google Scholar] [CrossRef]
- Mead, R.; Milley, R.W. The Concept of a Land Equivalent Ratio and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Hiebsch, C.K.; Macollam, R.E. Area-×-time equivalency Ratio: A method for evaluating the productivity of intercrops. Agron. J. 1987, 75, 15–22. [Google Scholar] [CrossRef]
- Mason, S.C.; Leihner, D.E.; Vorst, J.J. Cassava-cowpea and cassava-peanut intercropping. 1. Yield and land use efficiency. Agron. J. 1986, 78, 43–46. [Google Scholar] [CrossRef]
- Adetiloye, P.O.; Ezedinma, F.O.C.; Okigbo, B.N. A land equivalent coefficient (LEC) concept for the evaluation of competitive and productive interactions in simple to complex crop mixtures. Ecol. Model. 1983, 19, 27–39. [Google Scholar] [CrossRef]
- Afe, A.I.; Atanda, S. Percentage yield difference, an index for evaluating intercropping efficiency. Am. J. Exp. Agric. 2015, 5, 459–465. [Google Scholar] [CrossRef]
- Machiani, M.A.; Javanmarda, A.; Morshedloo, M.A.; Maggi, F. Evaluation of competition, essential oil quality and quantity of peppermint intercropped with soybean. Ind. Crops Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Willey, R.W.; Rao, M.R. A competitive ratio for quantifying competition between intercrops. Exp. Agric. 1980, 16, 117–125. [Google Scholar] [CrossRef]
- Raza, M.A.; Feng, L.Y.; Van Der Werf, W.; Iqbal, N.; Khan, I.; Khan, A.; Din, A.M.U.; Naeem, M.; Meraj, T.A.; Hassan, M.J.; et al. Optimum strip width increases dry matter, nutrient accumulation, and seed yield of intercrops under the relay intercropping system. Food Energy Secur. 2020, 9, e199. [Google Scholar] [CrossRef]
- Banik, P.; Sharma, R.C. Yield and resource utilization efficiency in baby corn—legume-intercropping system in the Eastern Plateau of India. J. Sustain. Agric. 2009, 33, 379–395. [Google Scholar] [CrossRef]
- Tesfahun, M. Competition indices and monetary advantage index of intercropping maize (Zea mays L.) with legumes under supplementary irrigation in Tselemti District, Northern Ethiopia. J. Cereals Oilseeds 2020, 11, 30–36. [Google Scholar] [CrossRef]
- Glaze-Corcoran, S.; Hashemi, M.; Sadeghpour, A.; Jahanzad, E.; Afshar, R.K.; Liu, X.; Herbert, S.J. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Adv. Agron. 2020, 162, 199–256. [Google Scholar] [CrossRef]
- Soniya, T.; Kamalakannan, S.; Maheswari, T.; Sudhagar, R.; Kumar, S. Effect of intercropping on yield, system production efficiency and economics of tomato (Solanum lycopersicum). Crop Res. 2021, 56, 29. [Google Scholar] [CrossRef]
- Soratto, R.P.; Perdoná, M.J.; Parecido, R.J.; Pinotti, R.N.; Gitari, H.I. Turning biennial into biannual harvest: Long-term assessment of Arabica coffee–macadamia intercropping and irrigation synergism by biological and economic indices. Food Energy Secur. 2022, 11, e365. [Google Scholar] [CrossRef]
- Hossain, J.; Islam, M.R.; Ali, M.O.; Hossain, M.F.; Miah, M.A.K.; Hossain, A. Economic assessment of maize (Zea mays L.)–Spinach (Basella alba L.) intercropping system for improving the livelihood of smallholders in South-Asia. Acta Fytotech. Et Zootech. 2021, 24, 101–109. [Google Scholar] [CrossRef]
- Martin-Gorriz, B.; Zabala, J.A.; Sánchez-Navarro, V.; Gallego-Elvira, B.; Martínez-García, V.; Alcon, F.; Maestre-Valero, J.F. Intercropping Practices in Mediterranean Mandarin Orchards from an Environmental and Economic Perspective. Agriculture 2022, 12, 574. [Google Scholar] [CrossRef]
- Aboah, J.; Setsoafia, E.D. Examining the synergistic effect of cocoa-plantain intercropping system on gross margin: A system dynamics modelling approach. Agric. Syst. 2022, 195, 103301. [Google Scholar] [CrossRef]
- Kumar, R.; Yada, M.R.; Arif, M.; Mahala, D.M.; Kumar, D.; Ghasal, R.C.; Verma, R.K.; Yadav, K.C. Multiple agroecosystem services of forage legumes towards agriculture sustainability: An overview. Indian J. Agric. Sci. 2020, 90, 1367–1377. Available online: http://krishi.icar.gov.in/jspui/handle/123456789/43327 (accessed on 4 May 2022).
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; Wiley: Singapore, 2004; pp. 215–240. [Google Scholar]
- Hairmansis, A. Inpago 12 Agritan: New high yielding variety of upland rice adaptive to acid soils. War. Penelit. Dan Pengemb. Pertan. 2019, 41. Available online: https://www.researchgate.net/publication/345315918 (accessed on 6 July 2022).
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice blast: A disease with implications for global food security. Agronomy. 2019, 9, 451. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; Van Der Werf, W. Syndromes of production in intercropping impact yield gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Wolińska, A.; Kruczyńska, A.; Podlewski, J.; Słomczewski, A.; Grządziel, J.; Gałązka, A.; Kuźniar, A. Does the Use of an Intercropping Mixture Really Improve the Biology of Monocultural Soils? —A Search for Bacterial Indicators of Sensitivity and Resistance to Long-Term Maize Monoculture. Agronomy 2022, 12, 613. [Google Scholar] [CrossRef]
- Mu, Y.; Chai, Q.; Yu, A.; Yang, C.; Qi, W.; Feng, F.; Kong, X. Performance of wheat/maize intercropping is a function of belowground interspecies interactions. Crop Sci. 2013, 53, 2186–2194. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.; Wu, P.; Chen, X. Effects of water limitation on yield advantage and water use in wheat (Triticum aestivum L.)/maize (Zea mays L.) strip intercropping. Eur. J. Agron. 2015, 71, 149–159. [Google Scholar] [CrossRef]
- Mugisa, I.; Fungo, B.; Kabiri, S.; Seruwu, G.; Kabanyoro, R. Productivity Optimization in Rice-Based Intercropping Systems of Central Uganda. Int. J. Environ. Agric. Biotechnol. 2020, 5, 142–149. [Google Scholar] [CrossRef]
- Iijima, M.; Hirooka, Y.; Kawato, Y.; Shimamoto, H.; Yamane, K.; Watanabe, Y. Close mixed-planting with paddy rice reduced the flooding stress for upland soybean. Plant Prod. Sci. 2022, 25, 211–221. [Google Scholar] [CrossRef]
- Hunegnaw, Y.; Alemayehu, G.; Ayalew, D.; Kassaye, M. Plant density of lupine (Lupinus albus L.) intercropping with tef (Eragrostis tef (zucc.) trotter) in additive design in the highlands of Northwest Ethiopia. Cogent Food Agric. 2022, 8, 2062890. [Google Scholar] [CrossRef]
- Branca, G.; Cacchiarelli, L.; Haug, R.; Sorrentino, A. Promoting sustainable change of smallholders’ agriculture in Africa: Policy and institutional implications from a socio-economic cross-country comparative analysis. J. Clean. Prod. 2022, 358, 131949. [Google Scholar] [CrossRef]
- Myeni, L.; Moeletsi, M.; Thavhana, M.; Randela, M.; Mokoena, L. Barriers affecting sustainable agricultural productivity of smallholder farmers in the Eastern Free State of South Africa. Sustainability 2019, 11, 3003. [Google Scholar] [CrossRef]
- Martadona, I.; Leovita, A. Analysis of Rice Farmers Household Food Security Based on Proportion of Food Expenditure in Padang. J. PANGAN 2021, 30, 167–174. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Sun, L.; Qi, X.; Song, F.; Zhu, X. Impact of maize–mushroom intercropping on the soil bacterial community composition in Northeast China. Agronomy 2020, 10, 1526. [Google Scholar] [CrossRef]
Province | District | Subdistrict | Village | FPDS | Coordinates |
---|---|---|---|---|---|
Rice–maize intercropping | |||||
Jambi | Merangin | Pamenang Selatan | Tambang Emas | Pasundan | −2°12′16″; 102°22′11″ |
Lampung | Tanggamus | Pugung | Banjar Agung | Karya Makmur | −5°20′46″; 104°48′39″ |
Central Kalimantan | Kotawaringin Timur | Mentaya Hulu | Santilik | Santilik Bersinar | −1°57′5″, 112°37′52″ |
Rice–soybean intercropping | |||||
Riau | Kampar | Perhentian Raja | Hang Tuah | Melati Indah | 0°18′50″; 101°23′45″ |
Lampung | Tanggamus | Bulok | Banjar Masin | Umbul Solo | −5°26′53″; 104°54′35″ |
Central Kalimantan | Kotawaringin Timur | Mentaya Hulu | Santilik | Mantep Tani | −1°57′22″; 112°37′53″ |
Maize–soybean intercropping | |||||
Lampung | Central Lampung | Pubian | Payung Rejo | Sri Rejeki II | −5°5′52″; 104°53′5″ |
Central Java | Pemalang | Ampel Gading | Tegalsari Barat | Rawa Bingung | −6°96′95″; 109°30′31″ |
Bali | Tabanan | Selemadeg Timur | Tanguntiti | Subak Aseman IV | −8°31′25″; 115°2′44″ |
Crops | IPs | MPs | ||||||
---|---|---|---|---|---|---|---|---|
Number of Rows | Distance between Rows | Distance in Rows | Mix Ratio | Plant Density | Average Growing Period | Planting Distance | Plant Density | |
(cm) | (cm) | (%) | ha−1 | (days) | (cm) | ha−1 | ||
Rice–maize intercropping | ||||||||
Rice | 9 | 20 | 15 | 60 | 199,800 | 113 | 25 × 20 | 200,000 |
Maize | 2 | 60 | 25 | 40 | 26,667 | 104 | 70 × 25 | 57,143 |
Rice–soybean intercropping | ||||||||
Rice | 9 | 20 | 15 | 55 | 183,333 | 114 | 25 × 20 | 200,000 |
Soybean | 5 | 30 | 15 | 45 | 100,010 | 84 | 30 × 25 | 133,333 |
Maize–soybean intercropping | ||||||||
Maize | 2 | 60 | 25 | 36 | 24,000 | 105 | 70 × 25 | 57,143 |
Soybean | 7 | 30 | 15 | 64 | 142,222 | 86 | 30 × 25 | 133,333 |
Intercropping | Mean IPs | Mean MPs | REY | MEY | Yield Increase | |||||
---|---|---|---|---|---|---|---|---|---|---|
Rice | Maize | Soybean | Rice | Maize | Soybean | |||||
(t ha−1) | (t ha−1) | (t ha−1) | (%) | |||||||
Rice–maize | 2.926 | 2.839 | – | 3.724 b * | 4.368 | – | 6.646 a | – | 2.922 | 78.2 |
±0.030 | ±0.045 | – | ±0.021 | ±0.020 | – | ±0.055 | – | ±0.040 | ±0.865 | |
0.449 ** | 0.668 | – | 0.318 | 0.299 | – | 0.828 | – | 0.595 | 12.764 | |
Rice–soybean | 3.155 | – | 1.648 | 4.035 b * | – | 2.181 | 6.381 a | – | 2.346 | 58.4 |
±0.011 | – | ±0.011 | 0.017 | – | ±0.059 | ±0.020 | – | ±0.010 | ±0.354 | |
0.159 ** | – | 0.167 | 0.259 | – | 0.230 | 0.298 | – | 0.157 | 5.317 | |
Maize–soybean | – | 3.407 | 1.709 | – | 4.353 b * | 2.025 | – | 7.327 a | 2.885 | 66.8 |
– | ±0.026 | ±0.008 | – | ±0.024 | ±0.005 | – | 0.036 | ±0.028 | ±0.807 | |
– | 0.395 ** | 0.113 | – | 0.362 | 0.071 | – | 0.536 | 0.426 | 12.102 |
Intercropping | LER | ATER | LUE | LEC | PYD |
---|---|---|---|---|---|
(%) | (%) | ||||
Rice–maize | 1.44 ± 0.009 | 1.32 ± 0.034 | 138.22 ± 0.883 | 0.50 ± 0.007 | 43.83 ± 0.907 |
0.136 * | 0.131 | 13.245 | 0.105 | 13.607 | |
Rice–soybean | 1.54 ± 0.006 | 1.30 ± 0.026 | 142.70 ± 0.482 | 0.60 ± 0.019 | 53.88 ± 0.612 |
0.096 * | 0.101 | 7.224 | 0.074 | 9.183 | |
Maize–soybean | 1.63 ± 0.007 | 1.30 ± 0.018 | 145.78 ± 0.451 | 0.63 ± 0.022 | 62.94 ± 0.711 |
0.107 * | 0.070 | 6.772 | 0.086 | 10.616 |
Intercropping | Aggressivity | Competitive Ratio | ||||
---|---|---|---|---|---|---|
AIrice | AImaize | AIsoybean | CRrice | CRmaize | CRsoybean | |
Rice–maize | 1.54 ± 0.014 | 0.30 ± 0.033 | – | 1.96 ± 0.040 | 0.56 ± 0.012 | – |
0.206 * | 0.496 | – | 0.604 | 0.186 | – | |
Rice–soybean | 0.18 | – | 0.26 | 0.98 ± 0.007 | – | 1.03 ± 0.007 |
0.205 * | – | 0.157 | 0.106 | – | 0.110 | |
Maize–soybean | – | 1.62 ± 0.013 | 0.86 ± 0.017 | – | 0.61 ± 0.010 | 1.76 ± 0.038 |
– | 0.201 * | 0.257 | – | 0.147 | 0.571 |
Intercropping | Income Equivalent Ratio | Intercropping Advantage | MAI | ||||||
---|---|---|---|---|---|---|---|---|---|
IERrice | IERmazie | IERsoybean | Total | IArice | IAmazie | IAsoybean | Total | USD h−1 | |
Rice–maize | 1.46 ± 0.01 | 1.36 ± 0.02 | – | 2.82 ± 0.02 | 99.3 ± 5.17 | 228.6 ± 6.02 | – | 327.9 ± 6.3 | 581 ± 13.4 |
0.18 * | 0.23 | – | 0.36 | 77.55 | 90.27 | – | 94.99 | 100.78 | |
Rice–soybean | 1.54 ± 0.03 | – | 1.78 ± 0.01 | 3.32 ± 0.03 | 197.6 ± 1.59 | – | 202.9 ± 4.10 | 400.4 ± 4.1 | 633 ± 6.2 |
0.43 * | – | 0.17 | 0.46 | 23.89 | – | 61.57 | 61.41 | 92.99 | |
Maize–soybean | – | 1.63 ± 0.02 | 1.79 ± 0.03 | 3.42 ± 0.04 | – | 435.4 ± 3.92 | 26.4 ± 6.21 | 461.7 ± 4.7 | 6926.9 |
– | 0.24 * | 0.45 | 0.55 | – | 55.77 | 93.22 | 70.65 | 103.10 |
Item | IPs | MPs | ||||||
---|---|---|---|---|---|---|---|---|
St D | Rice | St D | Maize | St D | Soybean | St D | ||
(USD ha−1) | (USD h−1) | |||||||
Rice–maize | ||||||||
Production field purchases | 234 ± 0.8 | 12.6 | 78 ± 0.2 | 9.2 | 214 ± 0.5 | 16.8 | – | – |
Paid workers | 264 ± 1.2 | 17.5 | 145 ± 0.7 | 10.2 | 224 ± 0.7 | 10.8 | – | – |
Total variable cost | 498 ± 1.5 | 22.2 | 224 ± 0.7 | 16.5 | 550 ± 1.5 | 21.8 | – | – |
Total production cost | 1376 ± 6.6 | 98.5 | 846 ± 3.1 | 46.1 | 988 ± 1.5 | 51.9 | – | – |
Total revenue | 1902 ± 88.1 | 271.2 | 1212 ± 61.2 | 167.8 | 1466 ± 50.1 | 75.7 | – | – |
Revenue cost ratio | 1.39 ± 0.1 | 0.25 | 1.43 ± 0.1 | 0.2 | 1.5 ± 0.0 | 0.1 | – | – |
Gross margin | 1404 ± 18.7 a * | 280.5 | 989 ± 10.7 c | 160.6 | 1027 ± 4.9 b | 73.7 | – | – |
Profit | 525 ± 20.3 a | 74.6 | 366 ± 9.8 c | 47.2 | 477 ± 4.6 b | 69.0 | – | – |
Cost of production t−1 ** | 211 ± 2.2 b | 34.9 | 229 ± 1.3 a | 89.6 | 227 ± 1.1 a | 36.7 | – | – |
Cost of paid workers t−1 | 40 ± 0.4 b | 6.2 | 39 ± 0.2 b | 5.0 | 52 ± 0.3 a | 8.3 | – | – |
Profit increase to sole rice | 160 ± 16.3 | 22.8 | – | – | – | – | – | – |
(47.1% ± 5.0) | ||||||||
Rice–soybean | ||||||||
Production field purchases | 194 ± 0.4 | 16.3 | 81 ± 0.2 | 12.2 | – | – | 116 ± 0.3 | 14.8 |
Paid workers | 264 ± 2.1 | 31.1 | 157 ± 0.8 | 11.4 | – | – | 104 ± 0.22 | 13.3 |
Total variable cost | 458 ± 2.4 | 35.3 | 237 ± 0.7 | 20.7 | – | – | 220 ± 0.37 | 15.6 |
Total production cost | 1194 ± 3.3 | 50.0 | 917 ± 1.2 | 47.5 | – | – | 634 ± 0.46 | 56.8 |
Total revenue | 1811 ± 9.6 | 144.5 | 1331 ± 10.4 | 156.1 | – | – | 1023 ± 7.87 | 118.0 |
Revenue cost ratio | 1.52 ± 0.1 | 0.14 | 1.45 ± 0.1 | 0.17 | – | – | 1.62 ± 0.01 | 0.19 |
Gross margin | 1353 ± 9.8 a * | 146.5 | 1093 ± 10.4 b | 155.6 | – | – | 803 ± 7.85 c | 117.8 |
Profit | 617 ± 10.2 a | 52.7 | 414 ± 10.3 b | 55.1 | – | – | 390 ± 7.98 c | 39.7 |
Cost of production t−1 ** | 188 ± 1.0 c | 26.1 | 228 ± 1.0 b | 15.0 | – | – | 293 ± 1.94 a | 29.1 |
Cost of paid workers t−1 | 42 ± 0.4 b | 5.9 | 39 ± 0.3 b | 4.4 | – | – | 48 ± 0.31 a | 4.7 |
Profit increase to sole rice | 203 ± 6.7 | 24.1 | – | – | – | – | – | – |
(57.3% ± 2.2) | ||||||||
Maize–soybean | ||||||||
Production field purchases | 222 ± 2.9 | 43.8 | – | – | 207 ± 0.3 | 5.2 | 116 ± 0.32 | 4.8 |
Paid workers | 256 ± 1.5 | 22.3 | – | – | 221 ± 0.9 | 13.0 | 104 ± 0.22 | 3.4 |
Total variable cost | 478 ± 2.9 | 44.2 | – | – | 428 ± 1.1 | 16.0 | 220 ± 0.37 | 5.6 |
Total production cost | 1371 ± 9.9 | 147.8 | – | – | 975 ± 5.3 | 79.3 | 634 ± 0.46 | 6.8 |
Total revenue | 1795 ± 7.1 | 106.8 | – | – | 1246 ± 7.2 | 108.6 | 976 ± 7.39 | 110.8 |
Revenue cost ratio | 1.32 ± 0.1 | 0.13 | – | – | 1.28 ± 0.0 | 0.12 | 1.54 ± 0.01 | 0.17 |
Gross margin | 1317 ± 7.4 a * | 111.7 | – | – | 819 ± 7.1 b | 106.4 | 756 ± 7.32 c | 109.9 |
Profit | 425 ± 10.2 a | 52.9 | – | – | 272 ± 7.2 c | 37.2 | 343 ± 7.26 b | 48.9 |
Cost of production t−1 ** | 190 ± 1.6 c | 21.7 | – | – | 225 ± 1.7 b | 25.2 | 313 ± 0.74 a | 11.1 |
Cost of paid workers t−1 | 36 ± 0.3 b | 6.8 | – | – | 51 ± 0.3 a | 4.8 | 51 ± 0.13 a | 1.9 |
Profit increase to sole maize | 153 ± 6.3 | 20.5 | – | – | – | – | – | – |
(62.5% ± 2.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erythrina, E.; Susilawati, S.; Slameto, S.; Resiani, N.M.D.; Arianti, F.D.; Jumakir, J.; Fahri, A.; Bhermana, A.; Jannah, A.; Sembiring, H. Yield Advantage and Economic Performance of Rice–Maize, Rice–Soybean, and Maize–Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate. Agronomy 2022, 12, 2326. https://doi.org/10.3390/agronomy12102326
Erythrina E, Susilawati S, Slameto S, Resiani NMD, Arianti FD, Jumakir J, Fahri A, Bhermana A, Jannah A, Sembiring H. Yield Advantage and Economic Performance of Rice–Maize, Rice–Soybean, and Maize–Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate. Agronomy. 2022; 12(10):2326. https://doi.org/10.3390/agronomy12102326
Chicago/Turabian StyleErythrina, Erythrina, Susilawati Susilawati, Slameto Slameto, Ni Made Delly Resiani, Forita Dyah Arianti, Jumakir Jumakir, Anis Fahri, Andy Bhermana, Asmanur Jannah, and Hasil Sembiring. 2022. "Yield Advantage and Economic Performance of Rice–Maize, Rice–Soybean, and Maize–Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate" Agronomy 12, no. 10: 2326. https://doi.org/10.3390/agronomy12102326
APA StyleErythrina, E., Susilawati, S., Slameto, S., Resiani, N. M. D., Arianti, F. D., Jumakir, J., Fahri, A., Bhermana, A., Jannah, A., & Sembiring, H. (2022). Yield Advantage and Economic Performance of Rice–Maize, Rice–Soybean, and Maize–Soybean Intercropping in Rainfed Areas of Western Indonesia with a Wet Climate. Agronomy, 12(10), 2326. https://doi.org/10.3390/agronomy12102326