Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Initial Resistance Screening
2.3. Whole-Plant Dose-Response Experiment
2.4. ACCase and ALS Sequencing
2.5. ACCase and ALS Expression Analysis
2.6. Cross- and Multiple-Resistance Patterns of Specific Populations to Other Herbicides
2.7. Data Analysis
3. Results
3.1. Susceptibility of L. multiflorum to Clodinafop-Propargyl and Mesosulfuron-Methyl
3.2. Whole-Plant Dose-Response Experiment
3.3. ACCase and ALS Resistance Mutations in L. multiflorum
3.4. ACCase or ALS Expression Analysis
3.5. Cross- and Multiple-Resistance Patterns of L. multiflorum to Other Herbicides
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Li, Y.; Gou, W.; Zhang, R. Research development of Italian ryegrass. Pratacultural Sci. 2009, 26, 55–60. [Google Scholar]
- Brunharo, C.A.; Hanson, B.D. Multiple herbicide-Resistant Italian ryegrass [Lolium perenne L. spp. multiflorum (Lam.) Husnot] in California perennial crops: Characterization, mechanism of resistance, and chemical management. Weed Sci. 2018, 66, 696–701. [Google Scholar] [CrossRef]
- Bobadilla, L.K.; Hulting, A.G.; Berry, P.A.; Moretti, M.L.; Mallory-Smith, C. Frequency, distribution, and ploidy diversity of herbicide-resistant Italian ryegrass (Lolium perenne spp. multiflorum) populations of western Oregon. Weed Sci. 2021, 69, 177–185. [Google Scholar] [CrossRef]
- Stanger, C.E.; Appleby, A.P. Italian ryegrass (Lolium multiflorum) accessions tolerant to diclofop. Weed Sci. 1989, 37, 350–352. [Google Scholar] [CrossRef]
- Wang, H.; Song, Y.; Li, J.; Yang, G.; He, W.; Lou, Z. Precaution against malaria weed ryegrass in wheat field. Plant Prot. 2008, 34, 149–151. [Google Scholar]
- Hao, P.; Zhang, L. Highly alert to the spread of harmful ryegrass in weeds. Shanxi J. Agric. Sci. 2015, 61, 50–51. [Google Scholar]
- Liu, W.; Harrison, D.K.; Chalupska, D.; Gornicki, P.; O’donnell, C.C.; Adkins, S.W.; Williams, R.R. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. USA 2007, 104, 3627–3632. [Google Scholar] [CrossRef] [Green Version]
- Tate, T.M. Characterization of Acetyl Coenzyme an Inhibitor Resistance in Turfgrass and Grassy Weeds. Ph.D. Thesis, University of Georgia, Athens, GA, USA, 2012. [Google Scholar]
- Harwood, J.L. Fatty-acid metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 101–138. [Google Scholar] [CrossRef]
- Takano, H.K.; Ovejero, R.F.L.; Belchior, G.G.; Maymone, G.P.L.; Dayan, F.E. ACCase-inhibiting herbicides: Mechanism of action, resistance evolution and stewardship. Sci. Agric. 2020, 78, e20190102. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Z.; Shen, Y.; Tong, L. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase. Science 2003, 299, 2064–2067. [Google Scholar] [CrossRef] [Green Version]
- Egli, M.A.; Gengenbach, B.G.; Gronwald, J.W.; Somers, D.A.; Wyse, D.L. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol. 1993, 101, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaundun, S.S. Resistance to acetyl-CoA carboxylase-inhibiting herbicides. Pest Manag. Science 2014, 70, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Ahmad-Hamdani, M.S.; Han, H.; Christoffers, M.J.; Powles, S.B. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): Insights into resistance evolution in a hexaploid species. Heredity 2013, 110, 220–231. [Google Scholar] [CrossRef]
- Alwarnaidu Vijayarajan, V.B.; Forristal, P.D.; Cook, S.K.; Staples, J.; Schilder, D.; Hennessy, M.; Barth, S. First report on assessing the severity of herbicide resistance to ACCase inhibitors pinoxaden, propaquizafop and cycloxydim in six Avena fatua populations in Ireland. Agronomy 2020, 10, 1362. [Google Scholar] [CrossRef]
- Yu, Q.; Cairns, A.; Powles, S. Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta 2007, 225, 499–513. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Abdallah, I.; Han, H.; Owen, M.; Powles, S. Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 2009, 230, 713–723. [Google Scholar] [CrossRef]
- Délye, C.; Matéjicek, A.; Michel, S. Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds. (black-grass), re-examined at the recommended herbicide field rate. Pest Manag. Science 2008, 64, 1179–1186. [Google Scholar] [CrossRef]
- Bailly, G.C.; Dale, R.P.; Archer, S.A.; Wright, D.J.; Kaundun, S.S. Role of residual herbicides for the management of multiple herbicide resistance to ACCase and ALS inhibitors in a black-grass population. Crop Prot. 2012, 34, 96–103. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, J.; Jiang, M.; Liao, M.; Cao, H. Identification of essential genes involved in metabolism-based resistance mechanism to fenoxaprop-P-ethyl in Polypogon fugax. Pest Manag. Sci. 2022, 78, 1164–1175. [Google Scholar] [CrossRef]
- Zhao, N.; Jiang, M.; Li, Q.; Gao, Q.; Zhang, J.; Liao, M.; Cao, H. Cyhalofop-butyl resistance conferred by a novel Trp-2027-Leu mutation of acetyl-CoA carboxylase and enhanced metabolism in Leptochloa chinensis. Pest Manag. Sci. 2022, 78, 1176–1186. [Google Scholar] [CrossRef]
- Heap, I. International Herbicide Resistance Weed Database. Available online: www.weedscience.org (accessed on 24 June 2022).
- Garcia, M.D.; Nouwens, A.; Lonhienne, T.G.; Guddat, L.W. Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proc. Natl. Acad. Sci. USA 2017, 114, E1091–E1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Han, H.; Li, M.; Purba, E.; Walsh, M.J.; Powles, S.B. Resistance evaluation for herbicide resistance–Endowing acetolactate synthase (ALS) gene mutations using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Res. 2012, 52, 178–186. [Google Scholar] [CrossRef]
- Shaner, D.L. Herbicide safety relative to common targets in plants and mammals. Pest Manag. Sci. 2004, 60, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.A.; Duke, S.O.; Morran, S.; Rigon, C.A.; Tranel, P.J.; Küpper, A.; Dayan, F.E. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 2020, 295, 10307–10330. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Powles, S.B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 2014, 70, 1340–1350. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.; Xu, H.; Gao, Y.; Zhang, W.; Dong, L. Mechanism of fenoxaprop-P-ethyl resistance in Italian ryegrass (Lolium perenne ssp. multiflorum) from China. Weed Sci. 2017, 65, 710–717. [Google Scholar] [CrossRef]
- Moss, S.R.; Perryman, S.A.; Tatnell, L.V. Managing herbicide-resistant blackgrass (Alopecurus myosuroides): Theory and practice. Weed Technol. 2007, 21, 300–309. [Google Scholar] [CrossRef]
- Porebski, S.; Bailey, L.G.; Baum, B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Report. 1997, 15, 8–15. [Google Scholar] [CrossRef]
- Yu, Q.; Han, H.; Powles, S.B. Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag. Sci. 2008, 64, 1229–1236. [Google Scholar] [CrossRef]
- Zhang, P. Fenoxaprop-P-ethyl Resistance and the Control of Lolium multiflorum in Wheat Fields. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2018. [Google Scholar]
- Duhoux, A.; Delye, C. Reference genes to study herbicide stress response in Lolium sp.: Up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS ONE 2013, 8, e63576. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, Y.; Chen, X.; Dong, L. Cross resistance patterns to acetyl-CoA carboxylase inhibiting herbicides associated with different mutations in Italian ryegrass from China. Crop Prot. 2021, 143, 105479. [Google Scholar] [CrossRef]
- Wu, C.; Song, M.; Zhang, T.; Zhou, C.; Liu, W.; Jin, T.; Zhao, N. Target-site mutation and cytochrome P450s confer resistance to multiple herbicides in Italian ryegrass (Lolium multiflorum Lam.) from China. Crop Prot. 2022, 161, 106068. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, Y.; Du, L.; Zhang, X.; Liu, W.; Wang, J. Unravelling the effect of two herbicide resistance mutations on acetolactate synthase kinetics and growth traits. J. Exp. Bot. 2020, 71, 3535–3542. [Google Scholar] [CrossRef]
- Guo, W.; Chi, Y.; Feng, L.; Tian, X.; Liu, W.; Wang, J. Fenoxaprop-P-ethyl and mesosulfuron-methyl resistance status of shortawn foxtail (Alopecurus aequalis Sobol.) in eastern China. Pestic. Biochem. Physiol. 2018, 148, 126–132. [Google Scholar] [CrossRef]
- Tan, M.K.; Preston, C.; Wang, G.X. Molecular basis of multiple resistance to ACCase-inhibiting and ALS-inhibiting herbicides in Lolium rigidum. Weed Res. 2007, 47, 534–541. [Google Scholar] [CrossRef]
- Marshall, R.; Moss, S.R. Characterisation and molecular basis of ALS inhibitor resistance in the grass weed Alopecurus myosuroides. Weed Res. 2008, 48, 439–447. [Google Scholar] [CrossRef]
- Yu, Q.; Han, H.; Vila-Aiub, M.M.; Powles, S.B. AHAS herbicide resistance endowing mutations: Effect on AHAS functionality and plant growth. J. Exp. Bot. 2010, 61, 3925–3934. [Google Scholar] [CrossRef] [Green Version]
- Laforest, M.; Soufiane, B.; Simard, M.J.; Obeid, K.; Page, E.; Nurse, R.E. Acetyl-CoA carboxylase overexpression in herbicide-resistant large crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 2017, 73, 2227–2235. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, Y.; Wang, H.; Bai, S.; Wang, Q.; Liu, W.; Wang, J. Acetolactate synthase overexpression in mesosulfuron-methyl-resistant shortawn foxtail (Alopecurus aequalis Sobol.): Reference gene selection and herbicide target gene expression analysis. J. Agric. Food Chem. 2018, 66, 9624–9634. [Google Scholar] [CrossRef] [PubMed]
- Powles, S.B.; Preston, C. Herbicide cross resistance and multiple resistance in plants. Herbic. Resist. Action Comm. Monogr. 1995, 2, 1–19. [Google Scholar]
- Basak, S.; McElroy, J.S.; Brown, A.M.; Gonçalves, C.G.; Patel, J.D.; McCullough, P.E. Plastidic ACCase Ile-1781-Leu is present in pinoxaden-resistant southern crabgrass (Digitaria ciliaris). Weed Sci. 2020, 68, 41–50. [Google Scholar] [CrossRef]
- Cruz-Hipolito, H.; Fernandez, P.; Alcantara, R.; Gherekhloo, J.; Osuna, M.D.; De Prado, R. Ile-1781-Leu and Asp-2078-Gly mutations in ACCase gene, endow cross-resistance to APP, CHD, and PPZ in Phalaris minor from Mexico. Int. J. Mol. Sci. 2015, 16, 21363–21377. [Google Scholar] [CrossRef]
- Yanniccari, M.; Gigón, R. Cross-resistance to acetyl-CoA carboxylase–inhibiting herbicides conferred by a target-site mutation in perennial ryegrass (Lolium perenne) from Argentina. Weed Sci. 2020, 68, 116–124. [Google Scholar] [CrossRef]
- Zhao, N.; Yan, Y.; Ge, L.A.; Zhu, B.; Liu, W.; Wang, J. Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis. Pest Manag. Sci. 2019, 75, 204–214. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Hipolito, H.; Osuna, M.D.; Dominguez-Valenzuela, J.A.; Espinoza, N.; De Prado, R. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J. Agric. Food Chem. 2011, 59, 7261–7267. [Google Scholar] [CrossRef]
- Norsworthy, J.K.; Ward, S.M.; Shaw, D.R.; Llewellyn, R.S.; Nichols, R.L.; Webster, T.M.; Barrett, M. Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Sci. 2012, 60 (Suppl. 1), 31–62. [Google Scholar] [CrossRef]
Population | Location | Date (Year) | Clodinafop-Propargyl | Mesosulfuron-Methyl | |||
---|---|---|---|---|---|---|---|
Longitude °E | Latitude °N | Fresh Weight Inhibition (%) | Susceptibility | Fresh Weight Inhibition (%) | Susceptibility | ||
AH-01 | 116.19 | 32.58 | 2021 | 5.21 (4.67) | RRR | 87.08 (2.82) | R? |
AH-02 | 117.65 | 32.87 | 2021 | 91.77 (3.58) | S | 94.41 (2.52) | S |
AH-03 | 117.58 | 33.15 | 2021 | 91.95 (0.95) | S | 91.81 (1.61) | S |
AH-04 | 116.86 | 34.26 | 2021 | 88.25 (6.28) | S | 92.39 (2.13) | S |
AH-05 | 118.42 | 32.36 | 2021 | 11.04 (1.37) | RRR | 66.05 (6.55) | RR |
AH-06 | 116.65 | 33.79 | 2021 | 92.18 (0.80) | S | 89.03 (3.60) | S |
AH-07 | 116.86 | 34.20 | 2021 | 96.44 (0.49) | S | 98.28 (0.54) | S |
AH-08 | 117.70 | 33.02 | 2021 | 85.84 (1.24) | R? | 90.11 (3.34) | S |
AH-09 | 116.87 | 34.27 | 2021 | 88.14 (2.71) | S | 90.77 (1.76) | S |
AH-10 | 115.71 | 32.91 | 2021 | 37.32 (0.59) | RRR | 87.36 (0.45) | R? |
AH-11 | 117.13 | 33.00 | 2021 | 57.12 (3.43) | RR | 69.02 (4.79) | RR |
AH-12 | 115.40 | 32.99 | 2021 | 85.08 (2.87) | R? | 89.97 (1.05) | S |
HN-01 | 113.98 | 32.95 | 2013 | 93.32 (1.93) | S | 90.66 (3.42) | S |
HN-02 | 114.13 | 32.90 | 2014 | 94.71 (0.35) | S | 90.84 (2.81) | S |
HN-03 | 113.58 | 32.95 | 2014 | 33.02 (2.14) | RRR | 86.52 (4.19) | R? |
HN-04 | 113.90 | 35.05 | 2014 | 89.86 (2.02) | S | 91.34 (2.24) | S |
HN-05 | 114.56 | 32.56 | 2014 | 93.60 (5.55) | S | 91.58 (0.86) | S |
HN-06 | 114.52 | 32.48 | 2014 | 91.32 (0.35) | S | 89.37 (0.85) | S |
HN-07 | 114.02 | 32.93 | 2015 | 10.76 (1.30) | RRR | 88.87 (3.77) | S |
HN-08 | 113.94 | 32.96 | 2015 | 21.16 (2.72) | RRR | 74.58 (1.67) | RR |
HN-09 | 114.16 | 32.95 | 2015 | 63.21 (1.09) | RR | 91.87 (3.91) | S |
HN-10 | 114.42 | 33.04 | 2015 | 90.69 (2.68) | S | 92.58 (1.84) | S |
HN-11 | 113.89 | 35.10 | 2016 | 92.71 (2.65) | S | 92.36 (1.88) | S |
HN-12 | 114.43 | 33.02 | 2016 | 93.97 (2.15) | S | 95.19 (0.91) | S |
HN-13 | 113.94 | 33.01 | 2015 | 24.62 (2.10) | RRR | 85.38 (1.13) | R? |
HN-14 | 114.13 | 35.03 | 2015 | 85.97 (0.38) | R? | 91.35 (4.85) | S |
HB-01 | 112.42 | 30.06 | 2013 | 92.70 (10.11) | S | 90.73 (5.77) | S |
JS-01 | 118.98 | 33.59 | 2014 | 91.39 (3.52) | S | 90.94 (1.49) | S |
JS-02 | 118.91 | 33.79 | 2014 | 96.00 (0.55) | S | 97.21 (1.42) | S |
JS-03 | 118.11 | 33.84 | 2014 | 88.56 (0.31) | S | 91.38 (0.25) | S |
JS-04 | 118.20 | 33.97 | 2015 | 93.88 (1.01) | S | 94.00 (1.46) | S |
JS-05 | 118.23 | 33.98 | 2015 | 94.71 (0.94) | S | 96.04 (1.46) | S |
JS-06 | 117.90 | 33.92 | 2016 | 87.58 (1.04) | S | 89.10 (0.95) | S |
JS-07 | 118.12 | 33.85 | 2021 | 5.19 (2.41) | RRR | 88.57 (4.33) | S |
SHX-01 | 108.80 | 34.54 | 2016 | 95.98 (1.26) | S | 90.46 (2.44) | S |
SHX-02 | 109.80 | 34.53 | 2016 | 93.71 (3.28) | S | 96.07 (2.16) | S |
SHX-03 | 109.78 | 34.51 | 2016 | 89.55 (4.45) | S | 84.35 (0.20) | R? |
Group a | Herbicide | Formulation | Manufacturer | Populations | Test Doses (g a.i. ha−1) b |
---|---|---|---|---|---|
APP | Clodinafop-propargyl | 24% EC | Lantian, Anhui | AH-07 | 0, 0.08, 0.23, 0.69, 2.07, 6.22, 18.67 |
AH-08, AH-12, HN-14 | 0, 2.07, 6.22, 18.67, 56, 168, 504 | ||||
HN-09 | 0, 6.22, 18.67, 56, 168, 504, 1512, | ||||
AH-01, AH-05, AH-10, AH-11, HN-03, HN-07, HN-08, HN-13, JS-07 | 0, 18.67, 56, 168, 504, 1512, 4536 | ||||
SU | Mesosulfuron-methyl | 30 g L−1 OD | Bayer, Beijing | AH-07 | 0, 0.05, 0.14, 0.42, 1.25, 3.75, 11.25 |
AH-01, AH-10, HN-03, HN-13, SHX-03 | 0, 0.42, 1.25, 3.75, 11.25, 33.75, 101.25 | ||||
AH-05, AH-11, HN-08 | 0, 1.25, 3.75, 11.25, 33.75, 101.25 303.75 |
Primer | Gene | Sequence (5′-3′) | Tm (°C) | Product Size (bp) | Targeted Mutation Site |
---|---|---|---|---|---|
ACCase-F | ACCase | AATGGGTCGTGGGGCACTCCTATAATTCC | 61 | 1600 | I1781, W1999, W2027, I2041, D2078, C2088, G2096 |
ACCase-R | CTCCCTGGAGTTGTGCTTTC | ||||
ALS-F122 | ALS | GGGCGCCGACATCCTCGTCG | 57 | 491 | A122, P197, A205 |
ALS-R197 | ATCTGCTGCTGGATGTCCTT | ||||
ALS-F376 | ATTCTCTATGTTGGCGGTGG | 55 | 440 | E376, R377 | |
ALS-R376 | CTTTTCTGCTGCTCCAACTC | ||||
ALS-F574 | TGGGCGGCTCAGTATTACAC | 55 | 532 | W574, S653, G654 | |
ALS-R653 | TCCTGCCATCACCTTCCATG |
Group a | Herbicide | Formulation | Manufacturer | Populations | Test Doses (g a.i. ha−1) b |
---|---|---|---|---|---|
APP | Fenoxaprop-P-ethyl | 69 g L−1 EW | Bayer, Hangzhou | AH-07-S | 0, 2.29, 6.87, 20.67, 62, 186, 558 |
AH-01-R | 0, 20.67, 62, 186, 558, 1674, 5022 | ||||
AH-05-R | |||||
HN-07-R | 0, 6.87, 20.67, 62, 186, 558, 1674 | ||||
Haloxyfop-R-methyl | 108 g L−1 EC | Zhongqi, Jiangsu | AH-07-S | 0, 0.21, 0.62, 1.85, 5.56, 16.67, 50 | |
AH-01-R | 0, 16.67, 50, 150, 450, 1350, 4050 | ||||
AH-05-R | 0, 5.56, 16.67, 50, 150, 450, 1350 | ||||
HN-07-R | 0, 1.85, 5.56, 16.67, 50, 150, 450 | ||||
Quizalofop-P-ethyl | 15% EC | Fengshan, Yancheng | AH-07-S | 0, 0.06, 0.19, 0.56, 1.67, 5, 15 | |
AH-01-R | 0, 5, 15, 45, 135, 405, 1215 | ||||
AH-05-R | |||||
HN-07-R | |||||
Cyhalofop-butyl | 30% EC | Dow AgroSciences, Beijing | AH-07-S | 0, 0.31, 0.93, 2.78, 8.33, 25, 75 | |
AH-01-R | 0, 25, 75, 225, 675, 2025, 4050 | ||||
AH-05-R | 0, 8.33, 25, 75, 225, 675, 2025 | ||||
HN-07-R | |||||
Metamifop | 10% EC | FMC, Suzhou | AH-07-S | 0, 1.11, 3.33, 10, 30, 90, 270 | |
AH-01-R | 0, 30, 90, 270, 810, 2430, 7290 | ||||
AH-05-R | 0, 10, 30, 90, 270, 810, 2430 | ||||
HN-07-R | |||||
CHD | Clethodim | 240 g L−1 EC | Aokun, Shandong | AH-07-S | 0, 0.40, 1.20, 3.59, 10.78, 32.33, 97 |
AH-01-R | 0, 1.20, 3.59, 10.78, 32.33, 97, 291 | ||||
AH-05-R | |||||
HN-07-R | 0, 0.40, 1.20, 3.59, 10.78, 32.33, 97 | ||||
Sethoxydim | 12.5% EC | Sinochem Lihua, Tianjin | AH-07-S | 0.21, 0.62, 1.85, 5.56, 16.67, 50 | |
AH-01-R | 0, 1.85, 5.56, 16.67, 50, 150, 450 | ||||
AH-05-R | 0, 16.67, 50, 150, 450, 1350, 4050 | ||||
HN-07-R | 0, 5.56, 16.67, 50, 150, 450, 1350 | ||||
PPZ | Pinoxaden | 10% OD | Shanghewoda, Anhui | AH-07-S | 0, 0.19, 0.56, 1.67, 5, 15, 45 |
AH-01-R | 0, 5, 15, 45, 135, 405, 1215 | ||||
AH-05-R | 0, 1.67, 5, 15, 45, 135, 405 | ||||
HN-07-R | 0, 0.56, 1.67, 5, 15, 45, 135 | ||||
TP | Pyroxsulam | 7.5% WG | Corteva, Beijing | AH-07-S | 0, 0.06, 0.17, 0.52, 1.56, 4.67, 14 |
AH-01-R | 0, 0.17, 0.52, 1.56, 4.67, 14, 42 | ||||
AH-05-R | |||||
HN-07-R | |||||
IMI | Imazamox | 4% AS | Agricultural Hormone, Jiangsu | AH-07-S | 0, 0.19, 0.56, 1.67, 5, 15, 45 |
AH-01-R | 0, 0.56, 1.67, 5, 15, 45, 135 | ||||
AH-05-R | |||||
HN-07-R | |||||
Imazethapyr | 5% AS | Jinling, Nantong | AH-07-S | 0, 0.31, 0.93, 2.78, 8.33, 25, 75 | |
AH-01-R | 0, 0.93, 2.78, 8.33, 25, 75, 225 | ||||
AH-05-R | |||||
HN-07-R | |||||
SCT | Flucarbazone-Na | 5% OD | Luye, Anhui | AH-07-S | 0, 0.12, 0.37, 1.11, 3.33, 10, 30 |
AH-01-R | |||||
AH-05-R | 0, 1.11, 3.33, 10, 30, 90, 270 | ||||
HN-07-R | |||||
PTB | Bispyribac-sodium | 10% SC | Sida, Anhui | AH-07-S | 0, 0.10, 0.30, 0.89, 2.67, 8, 24 |
AH-01-R | 0, 0.30, 0.89, 2.67, 8, 24, 72 | ||||
AH-05-R | 0, 2.67, 8, 24, 72, 216, 648 | ||||
HN-07-R | 0, 0.30, 0.89, 2.67, 8, 24, 72 | ||||
Urea | Isoproturon | 50% WP | Guangxin, Anhui | AH-07-S | 0, 12.35, 37.04, 111.11, 333.33, 1000, 3000 |
AH-01-R | |||||
AH-05-R | |||||
HN-07-R | |||||
OP | Glyphosate | 30% AS | Bayer, Beijing | AH-07-S | 0, 4.94, 14.81, 44.44, 133.33, 400, 1200 |
AH-01-R | |||||
AH-05-R | |||||
HN-07-R |
Population | Clodinafop-Propargyl | Mesosulfuron-Methyl | ||
---|---|---|---|---|
GR50 (g a.i. ha−1) | RI | GR50 (g a.i. ha−1) | RI | |
AH-01 | 1189.26 (113.26) | 738.67 | 2.24 (0.53) | 4.23 |
AH-05 | 862.34 (14.78) | 535.61 | 8.84 (3.55) | 16.68 |
AH-07 | 1.61 (0.18) | 1.00 | 0.53 (0.16) | 1.00 |
AH-08 | 4.26 (0.41) | 2.65 | - | - |
AH-10 | 260.79 (62.16) | 162.99 | 2.06 (0.30) | 3.89 |
AH-11 | 125.98 (30.42) | 78.25 | 8.07 (2.24) | 15.23 |
AH-12 | 5.62 (0.34) | 3.49 | - | - |
HN-03 | 292.87 (15) | 181.91 | 2.38 (0.37) | 4.49 |
HN-07 | 863.97 (43.07) | 536.63 | - | - |
HN-08 | 430.23 (164.50) | 267.22 | 6.43 (1.69) | 12.13 |
HN-09 | 78.2 (42.74) | 67.41 | - | - |
HN-13 | 384.45 (98.93) | 238.79 | 2.78 (0.62) | 5.25 |
HN-14 | 4.22 (0.44) | 2.62 | - | - |
JS-07 | 1336.38 (5.49) | 830.05 | - | - |
SHX-03 | - | - | 4.17 (0.32) | 7.87 |
Population | ACCase Gene | ALS Gene | ||
---|---|---|---|---|
Mutation | Frequency of Mutations (%) | Mutation | Frequency of Mutations (%) | |
AH-01 | I2041N | 90 | Wild type | - |
AH-05 | I1781L | 90 | P197T | 40 |
AH-08 | Wild type | - | - | |
AH-10 | I1781L | 90 | Wild type | - |
AH-11 | I1781L | 30 | W574L | 10 |
AH-12 | Wild type | - | - | - |
HN-03 | I2041N | 60 | Wild type | - |
HN-07 | D2078G | 60 | - | - |
HN-08 | I2041N | 60 | P197S/A/T | 30 |
HN-09 | I2041N | 70 | - | - |
HN-13 | I1781L | 90 | Wild type | - |
HN-14 | Wild type | - | - | - |
JS-07 | I2041N | 100 | - | - |
SHX-03 | - | - | Wild type | - |
Herbicide | Populations | GR50 (g a.i. ha−1) | RIs |
---|---|---|---|
Fenoxaprop-P-ethyl | AH-01 (R) | 84.88 (49.99) | 9.48 |
AH-05 (R) | 689.21 (72.08) | 77.01 | |
HN-07 (R) | 306.48 (2.52) | 34.24 | |
AH-07 (S) | 8.95 (1.70) | 1.00 | |
Haloxyfop-R-methyl | AH-01 (R) | 302.66 (22.60) | 211.65 |
AH-05 (R) | 185.88 (34.65) | 129.99 | |
HN-07 (R) | 10.01 (1.58) | 7.00 | |
AH-07 (S) | 1.43 (0.20) | 1.00 | |
Quizalofop-P-ethyl | AH-01 (R) | 21.59 (1.30) | 69.65 |
AH-05 (R) | 100.28 (18.22) | 323.48 | |
HN-07 (R) | 39.12 (10.11) | 126.19 | |
AH-07 (S) | 0.31 (0) | 1.00 | |
Cyhalofop-butyl | AH-01 (R) | 273.44 (16.13) | 31.50 |
AH-05 (R) | 323.38 (1.12) | 37.26 | |
HN-07 (R) | 327.41 (1.60) | 37.72 | |
AH-07 (S) | 8.68 (0.80) | 1.00 | |
Metamifop | AH-01 (R) | 651.00 (116.47) | 9.78 |
AH-05 (R) | 728.21 (215.19) | 10.94 | |
HN-07 (R) | 579.42 (5.94) | 8.71 | |
AH-07 (S) | 66.55 (6.14) | 1.00 | |
Clethodim | AH-01 (R) | 9.88 (5.89) | 4.10 |
AH-05 (R) | 12.56 (4.96) | 5.21 | |
HN-07 (R) | 5.08 (0.23) | 2.11 | |
AH-07 (S) | 2.41 (0.15) | 1.00 | |
Sethoxydim | AH-01 (R) | 11.23 (0.44) | 4.49 |
AH-05 (R) | 360.17 (69.31) | 144.07 | |
HN-07 (R) | 68.61 (29.50) | 27.44 | |
AH-07 (S) | 2.5 (0.41) | 1.00 | |
Pinoxaden | AH-01 (R) | 6.03 (1.16) | 4.82 |
AH-05 (R) | 18.04 (2.41) | 14.43 | |
HN-07 (R) | 14.64 (2.79) | 11.71 | |
AH-07 (S) | 1.25 (0.20) | 1.00 | |
Pyroxsulam | AH-01 (R) | 0.97 (0.32) | 0.80 |
AH-05 (R) | 4.07 (3.73) | 3.63 | |
HN-07 (R) | 6.66 (0.35) | 5.50 | |
AH-07 (S) | 1.21 (0.17) | 1.00 | |
Imazamox | AH-01 (R) | 4.04 (4.15) | 1.50 |
AH-05 (R) | 10.73 (0.57) | 3.99 | |
HN-07 (R) | 7.07 (1.71) | 2.63 | |
AH-07 (S) | 2.69 (0.27) | 1.00 | |
Imazethapyr | AH-01 (R) | 5.13 (0.65) | 1.22 |
AH-05 (R) | 34.50 (0.98) | 8.18 | |
HN-07 (R) | 18.25 (2.72) | 4.32 | |
AH-07 (S) | 4.22 (0.48) | 1.00 | |
Flucarbazone-Na | AH-01 (R) | 1.99 (0.24) | 0.29 |
AH-05 (R) | 23.05 (0.64) | 3.33 | |
HN-07 (R) | 8.04 (1.68) | 1.16 | |
AH-07 (S) | 6.92 (0.91) | 1.00 | |
Bispyribac-sodium | AH-01 (R) | 7.12 (1.07) | 4.88 |
AH-05 (R) | 133.28 (13.81) | 91.29 | |
HN-07 (R) | 10.38 (1.73) | 7.11 | |
AH-07 (S) | 1.46 (1.07) | 1.00 | |
Isoproturon | AH-01 (R) | 398.68 (12.24) | 0.62 |
AH-05 (R) | 93.45 (4.99) | 0.15 | |
HN-07 (R) | 275.21 (26.80) | 0.43 | |
AH-07 (S) | 642.39 (71.96) | 1.00 | |
Glyphosate | AH-01 (R) | 90.40 (14.22) | 0.87 |
AH-05 (R) | 61.79 (14.16) | 0.60 | |
HN-07 (R) | 42.38 (19.30) | 0.41 | |
AH-07 (S) | 103.35 (11.35) | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, C.; Wang, M.; Jiang, M.; Zhang, J.; Liao, M.; Cao, H.; Zhao, N. Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China. Agronomy 2022, 12, 2394. https://doi.org/10.3390/agronomy12102394
Li W, Wu C, Wang M, Jiang M, Zhang J, Liao M, Cao H, Zhao N. Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China. Agronomy. 2022; 12(10):2394. https://doi.org/10.3390/agronomy12102394
Chicago/Turabian StyleLi, Wei, Cuixia Wu, Mali Wang, Minghao Jiang, Jingxu Zhang, Min Liao, Haiqun Cao, and Ning Zhao. 2022. "Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China" Agronomy 12, no. 10: 2394. https://doi.org/10.3390/agronomy12102394
APA StyleLi, W., Wu, C., Wang, M., Jiang, M., Zhang, J., Liao, M., Cao, H., & Zhao, N. (2022). Herbicide Resistance Status of Italian Ryegrass (Lolium multiflorum Lam.) and Alternative Herbicide Options for Its Effective Control in the Huang-Huai-Hai Plain of China. Agronomy, 12(10), 2394. https://doi.org/10.3390/agronomy12102394