Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Management History
2.2. Experimental Design and Treatment Application
2.3. Evaluations
2.4. Statistical Analysis
3. Results
3.1. Leaf Chlorophyll Index and Morphological Traits (Plant Height, Leaf Area and Dry Matter)
3.2. Macronutriens Concentration in the Leaves, Roots and Rhizomes
3.3. Coefficient of the Biological Utilization of the Nutrients
3.4. Nutrient Balance of the Macronutrients
3.5. Soil Chemical Attributes
4. Discussion
4.1. Leaf Chlorophyll Index and Productive Components
4.2. Macronutrient Concentrations of the Leaves, Roots and Rhizomes
4.3. Coefficient of the Biological Utilization of the Nutrients
4.4. Nutrient Balance of the Macronutrients
4.5. Soil Chemical Attributes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mota e Silva, J.R.; de Oliveira, L.F.C.; Fia, R. Application of effluent of sewage treatment station in soil cultivated with Emerald grass (Zoysia japonica). Eng. Na Agric. 2019, 27, 157–169. [Google Scholar]
- Dinalli, R.P.; Buzetti, S.; Gazola, R.N.; Castilho, R.M.M.; Celestrino, T.S.; Dupas, E.; Teixeira Filho, M.C.M.; Lima, R.C. Application of herbicides as growth regulators of emerald Zoysia grass fertilized with nitrogen. Semin. Ci. Agric. 2015, 36, 1875–1894. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.V.L.; dos Santos, P.L.F.; Costa, J.V.; Martins, J.T.; Bôas, R.L.V.; de Godoy, L.J.G. Durability and doses of organic colorant in the visual quality of bermudagrass Discovery TM. Ornam. Hortic. 2020, 26, 621–632. [Google Scholar] [CrossRef]
- Godoy, L.J.G.; Backes, C.; Villas Bôas, R.L.; Santos, A.J.M. Nutrição, Adubação e Calagem Para Produção de Gramas; FEPAF: Botucatu, Brazil, 2012; 146p. [Google Scholar]
- Gazola, R.P.; Buzetti, S.; Gazola, R.D.N.; de Castilho, R.M.; Teixeira Filho, M.C.M.; Celestrino, T.D.S. Nitrogen fertilization and glyphosate doses as growth regulators in Esmeralda grass. Rev. Bras. De Eng. Agrícola E Ambient. 2019, 23, 930–936. [Google Scholar] [CrossRef]
- Santos, P.L.F.D.; Silva, P.S.T.; Matos, A.M.S.; Alves, M.L.; Nascimento, M.V.L.D.; Castilho, R.M.M.D. Aesthetic and sensory quality of Emerald grass (Zoysia japonica) as a function of substrate cultivation and mineral fertilization. Ornam. Hortic. 2020, 26, 381–389. [Google Scholar] [CrossRef]
- Javed, T.; Indu, I.; Singhal, R.K.; Shabbir, R.; Shah, A.N.; Kumar, P.; Jinger, D.; Dharmappa, P.M.; Shad, M.A.; Saha, D.; et al. Recent advances in agronomic and physio-molecular approaches for improving nitrogen use efficiency in crop plants. Front. Plant Sci. 2022, 13, 877544. [Google Scholar] [CrossRef]
- Wang, J.; Hussain, S.; Sun, X.; Zhang, P.; Javed, T.; Dessoky, E.S.; Ren, X.; Chen, X. Effects of Nitrogen Application Rate Under Straw Incorporation on Photosynthesis, Productivity and Nitrogen Use Efficiency in Winter Wheat. Front. Plant Sci. 2022, 13, 862088. [Google Scholar] [CrossRef] [PubMed]
- Godoy, L.J.G.; Bôas, R.L.V.; Backes, C.; de Lima Soares, E.V.; Santos, A.J.M.; De Lima, C.P.; Fernandes, D.M. Sod production and nutrient extraction by emerald Zoysiagrass with split nitrogen applications. Sci. Agrar. 2017, 18, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, P.C.; Fang, Z.; Mason, S.W.; Setubal, J.C.; Dixon, R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genom. 2012, 13, 162. [Google Scholar] [CrossRef] [Green Version]
- Carrow, R.N.; Waddington, D.V.; Rieke, P.E. Turfgrass Soil Fertility & Chemical Problems: Assessment and Management; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Godoy, L.J.G.; Villas Bôas, R.L.; Backes, C.; Lima, C.P. Doses de nitrogênio e potássio na produção de grama esmeralda. Ciênc Agrotec. 2007, 31, 1326–1332. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Hussain, M.; Jalal, A.; Khan, M.S.; Shah, T.; Ilyas, M.; Uzair, M. Nitrogen and sulfur rates and timing effects on phenology, biomass yield and economics of wheat. Sarhad J. Agric. 2018, 34, 671–679. [Google Scholar] [CrossRef]
- Maciel, C.D.G.; Poletine, J.P.; Raimondi, M.A.; Rodrigues, M.; Ribeiro, R.B.; Costa, R.S.; Maio, R.M.D. Development of turfgrass submitted to application of growth regulators under different light conditions. Planta Daninha 2011, 29, 383–395. [Google Scholar] [CrossRef]
- Jalal, A.; de Oliveira Junior, J.C.; Ribeiro, J.S.; Fernandes, G.C.; Mariano, G.G.; Trindade, V.D.R.; Dos Reis, A.R. Hormesis in plants: Physiological and biochemical responses. Ecotoxicol. Environ. Saf. 2021, 207, 111225. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, J.E. Winning with turfgrass growth regulators. Am. Lawn. Appl. 1985, 6, 31–39. [Google Scholar]
- Su, Y.S.; Ozturk, L.; Cakmak, I.; Budak, H. Turfgrass species response exposed to increasing rates of glyphosate application. Eur. J. Agron. 2009, 31, 120–125. [Google Scholar]
- Vivancos, P.D.; Driscoll, S.P.; Bulman, C.A.; Ying, L.; Emami, K.; Treumann, A.; Mauve, C.; Noctor, G.; Foyer, C.H. Perturbations of amino acid metabolism associated with glyphosate-dependent inhibition of shikimic acid metabolism affect cellular redox homeostasis and alter the abundance of proteins involved in photosynthesis and photorespiration. Plant Physiol. 2011, 157, 256–268. [Google Scholar] [CrossRef] [Green Version]
- Gomes, M.P.; Smedbol, E.; Chalifour, A.; Hénault-Ethier, L.; Labrecque, M.; Lepage, L.; Lucotte, M.; Juneau, P. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. J. Exp. Bot. 2014, 65, 4691–4703. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, A.P.; Meschede, D.K.; Alves, G.A.C.; Freiria, G.H.; Furlan, F.F.; Alves, L.A.; Junco, M.C. Paspalum notatum growth and pigment content in response to the application of herbicides. R Bras. Herbic. 2017, 16, 142–151. [Google Scholar]
- Fry, J.D. Centipedegrass response to plant growth regulators. HortScience 1991, 26, 40–42. [Google Scholar] [CrossRef] [Green Version]
- Eker, S.; Ozturk, L.; Yazici, A.; Erenoglu, B.; Romheld, V.; Cakmak, I. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J. Agric. Food Chem. 2006, 54, 10019–10025. [Google Scholar] [CrossRef] [Green Version]
- Mertens, M.; Höss, S.; Neumann, G.; Afzal, J.; Reichenbecher, W. Glyphosate, a chelating agent—relevant for ecological risk assessment? Env. Sci. Pollut. Res. 2018, 25, 5298–5317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damin, V.; Trivelin, P.C.O. Herbicides effect on nitrogen cycling in agroecosystems. Herbic. Environ. 2011, 107–124. [Google Scholar]
- Brasil. Ministério da Agricultura. Pecuária e Abastecimento; AGROFIT: Brasília, Brazil, 2015. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 23 March 2018).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA; Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Silva, D.F. Análises Quantitativa e Qualitativa do Crescimento e Desenvolvimento da Grama-Batatais e Grama-Esmeralda em Diferentes Lâminas de Irrigação; UFV: Viçosa, Brazil, 2004; 62p, Dissertação Mestrado. [Google Scholar]
- Raij, B.; van Andrade, J.C.; Cantarella, H.; Quaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; IAC: Campinas, Brazil, 2001; 285p. [Google Scholar]
- Raij, B.; van Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo; IAC: Campinas, Brazil, 1997; 285p. [Google Scholar]
- Gazola, R.P.D.; Buzetti, S.; Gazola, R.N.; Castilho, R.M.M.; Teixeira Filho, M.C.M.; Celestrino, T.S.; Dupas, E. Nitrogen dose and type of herbicide used for growth regulation on the green coloration intensity of Emerald grass. Ciênc Rural. 2016, 46, 984–990. [Google Scholar] [CrossRef]
- ImageJ. Image Processing and Analysis in Java; Versão 1.45; National Institutes of Health: Bethesda, MD, USA, 2011.
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações; POTAFÓS: Piracicaba, Brazil, 1997; 317p. [Google Scholar]
- Siddiqui, M.Y.; Glass, A.D.M. Utilization index: A modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J. Plant Nutr. 1981, 4, 289–302. [Google Scholar] [CrossRef]
- Erickson, J.E.; Kenworthy, K.E. Nitrogen and light affect water use and water use efficiency of zoysiagrass genotypes differing in canopy structure. HortScience 2011, 46, 643–647. [Google Scholar] [CrossRef]
- Paciullo, D.S.C.; Gomide, J.A.; Ribeiro, K.G. Adubação nitrogenada do capim-elefante cv. Mott. 1. Rendimento forrageiro e características morfofisiológicas ao atingir 80 e 120 cm de altura. R Bras. Zootec. 1998, 27, 1069–1075. [Google Scholar]
- Backes, C.; Lima, C.P.; Godoy, L.J.G.; Santos, A.J.M.; Villas Bôas, R.L.; Büll, L.T. Produção, acúmulo e exportação de nutrientes em grama esmeralda adubada com lodo de esgoto. Bragantia 2010, 69, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Stiglbauer, J.B.; Liu, H.; McCarty, L.B.; Park, D.M.; Toler, J.E.; Kirk, K. ‘Diamond’ zoysiagrass putting green establishment affected by sprigging rates, nitrogen sources, and rates in the southern transition zone. HortScience 2009, 44, 1757–1761. [Google Scholar] [CrossRef] [Green Version]
- Kruse, N.D.; Michelangelo, M.T.; Vidal, A.V. Herbicidas inibidores da EPSPs: Revisão de literatura. R Bras. Herbic. 2000, 1, 139–146. [Google Scholar] [CrossRef]
- Boudet, A.M.; Graziana, A.; Ranjeva, R. Recent advances in the regulation of the prearomatic pathway. In Annual Proceedings of the Phytochemical Society of Europe; Van Sumere, C.F., Lea, P.J., Eds.; Clarendon: Oxford, UK, 1985; pp. 135–159. [Google Scholar]
- Velini, E.D.; Duke, S.O.; Trindade, M.L.B.; Meschede, D.K. Carbonari CAModo de ação do glyphosate In Glyphosate; Velini, E.D., Meschede, D.K., Carbonari, C.A., Trindade, M.L.B., Eds.; FEPAF: Botucatu, Brazil, 2009; pp. 113–133. [Google Scholar]
- Yamada, T.; Castro, P.R.C. Efeito do Glifosato nas Plantas: Implicações Fisiológicas e Agronômicas; IPNI: Peachtree Corners, GA, USA, 2007; 32p. [Google Scholar]
- Meschede, D.K.; Velini, E.D.; Carbonari, C.A. Efeitos do glyphosate e sulfometuron methyl no crescimento e na qualidade tecnológica da cana-de-açúcar. Planta Daninha 2010, 28, 1135–1141. [Google Scholar] [CrossRef]
- Shieh, W.J.; Geiger, D.R.; Serviates, J.C. Effect of N-(Phosphonomethyl) glycine on carbon assimilation and metabolism during a simulated natural day. Plant Physiol. 1991, 97, 1109–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taiz, L.; Zeiger, E. Fisiologia Vegetal; Artmed: Porto Alegre, Brazil, 2013; 918p. [Google Scholar]
- Fuchs, M.A.; Geiger, D.R.; Reynolds, T.L.; Bourque, J.E. Mechanisms of glyphosate toxicity in velvetleaf (Abutilon theophrasti Medikus). Pesticide Biochem. Physiol. 2002, 74, 27–39. [Google Scholar] [CrossRef]
- Campbell, W.F.; Evans, J.O.; Reed, F.C. Effect of glyphosate on chloroplast ultrastructure of quack grass mesophyll cell. Weed Sci. 1976, 24, 22–25. [Google Scholar] [CrossRef]
- Cole, D.J.; Caseley, J.C.; Dodge, A.D. Influence of glyphosate on selected plant process. Weed Res. 1983, 23, 173–183. [Google Scholar] [CrossRef]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Faquin, V. Nutrição Mineral de Plantas; Universidade Federal de Lavras: Lavras, Brazil, 2005; 183p. [Google Scholar]
- Duble, R.L. Turfgrass rootzones. Aggie Hortic. 1990, 43, 20–26. [Google Scholar]
- Jayasumama, C.; Gunatilake, S.; Senanayake, P. Glyphosate, hard water and nephrotoxic metals: Are they the culprits behind the epidemic of chronic kidney disease of unknown etiology in Sri Lanka? Int. J. Environ. Res. Public Health 2014, 11, 2125–2147. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.D.T.; Siqueira, C.H.; Barros, N.F.; Ferreira, F.A.; Ferreira, L.R.; Ferreira, A.F.L. Crescimento e concentração de nutrientes na parte aérea de eucalipto sob efeito da deriva do glyphosate. Cerne 2007, 13, 347–352. [Google Scholar]
- Silva, S.R.; Barros, N.F.; Novais, R.F.; Pereira, P.R.G. Eficiência nutricional de potássio e crescimento de eucalipto influenciados pela compactação do solo. R Bras. Ciênc Solo 2002, 26, 1001–1010. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: New York, NY, USA, 2012; 651p. [Google Scholar]
- Malavolta, E. Manual de Nutrição Mineral de Plantas; Agronômica Ceres: São Paulo, Brazil, 2006; 638p. [Google Scholar]
- Bowman, D.C.; Cherney, C.T.; Rufty Junior, T.W. Fate and transport of nitrogen applied to six warmseason turfgrasses. Crop Sci. 2002, 42, 833–841. [Google Scholar]
- Van Raij, B. Fertilidade do Solo e Manejo de Nutrientes; IPNI: Piracicaba, Brazil, 2011; 420p. [Google Scholar]
N Rates (g m−2) | LCI | H | LA | SDM | DMR | T |
---|---|---|---|---|---|---|
cm | mm2 | g m−2 | ||||
0 | 17.1 b | 3.7 b | 163.5 b | 88.5 c | 158.9 b | 247.3 b |
15 | 21.0 a | 4.7 a | 210.4 a | 102.1 b | 206.4 a | 308.5 a |
30 | 20.6 a | 4.9 a | 213.9 a | 111.6 a | 206.4 a | 318.0 a |
L.S.D. (5%) | 1.0 | 0.2 | 14.1 | 7.8 | 10.2 | 14.6 |
C.V. (%) | 4.92 | 5.45 | 7.00 | 7.56 | 5.21 | 4.87 |
F-value (nitrogen x glyphosate) | 1.45 ns | 0.61 ns | 1.81 ns | 1.78 ns | 1.21 ns | 1.07 ns |
N Rates (g m−2) | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
g kg−1 | ||||||
Leaves | ||||||
0 | 13.1 c | 4.6 a | 10.4 a | 3.4 b | 1.6 b | 3.1 b |
15 | 17.9 b | 4.2 a | 11.9 a | 3.7 ab | 1.8 a | 3.7 a |
30 | 20.4 a | 4.6 a | 12.1 a | 3.8 a | 2.0 a | 3.8 a |
L.S.D. (5%) | 1.9 | 0.9 | 1.9 | 0.3 | 0.2 | 0.4 |
C.V. (%) | 10.77 | 19.82 | 16.00 | 8.70 | 9.40 | 11.20 |
1.19 ns | 1.45 ns | 0.40 ns | 1.72 ns | 1.49 ns | 1.23 ns | |
Roots and rhizomes | ||||||
0 | 5.1 c | 1.0 a | 2.8 a | 2.9 a | 0.6 a | 2.6 a |
15 | 7.5 b | 1.0 a | 2.8 a | 2.8 a | 0.6 a | 2.4 a |
30 | 9.8 a | 1.0 a | 2.7 a | 2.6 a | 0.5 a | 2.4 a |
L.S.D. (5%) | 1.0 | 0.1 | 0.3 | 0.5 | 0.2 | 0.7 |
C.V. (%) | 13.16 | 13.02 | 11.27 | 16.50 | 27.82 | 27.72 |
F-value (nitrogen x glyphosate) | 0.89 ns | 1.05 ns | 2.01 ns | 1.84 ns | 0.49 ns | 1.76 ns |
N Rates (g m−2) | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
g2 mg−1 | ||||||
0 | 31.7 a | 107.0 b | 44.9 b | 80.5 b | 259.1 b | 90.4 b |
15 | 28.4 a | 154.8 a | 54.3 a | 101.7 a | 316.8 a | 113.0 a |
30 | 23.8 b | 142.9 a | 54.0 a | 107.2 a | 314.7 a | 112.4 a |
L.S.D. (5%) | 3.4 | 22.2 | 7.1 | 13.9 | 51.0 | 16.5 |
C.V. (%) | 11.68 | 16.04 | 13.62 | 14.01 | 16.76 | 15.28 |
F-value (nitrogen x glyphosate) | 1.73 ns | 1.57 ns | 1.34 ns | 1.47 ns | 0.86 ns | 0.72 ns |
N Rates # | N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|
g m−2 | g m−2 | |||||
0 | −7.4 | −3.0 a | −5.2 | 7.8 a | −0.8 a | 6.2 a |
15 | 4.0 | −3.6 b | −6.7 | 7.5 b | −1.0 b | 5.9 b |
30 | 15.7 | −4.2 c | −7.8 | 7.3 c | −1.2 c | 5.6 c |
L.S.D. (5%) | 1.1 | 0.5 | 0.5 | 0.1 | 0.1 | 0.1 |
Glyphosate doses (g ha−1) | ||||||
0 | 2.6 | −4.1 (1) | −7.4 | 7.5 ns | −1.0 ns | 5.7 (2) |
200 | 4.3 | −3.7 | −6.6 | 7.5 | −1.0 | 5.9 |
400 | 4.0 | −3.5 | −6.7 | 7.5 | −1.0 | 5.9 |
600 | 5.5 | −3.1 | −5.8 | 7.6 | −0.9 | 6.0 |
C.V. (%) | 26.21 | 12.91 | 7.87 | 2.01 | 9.87 | 2.48 |
F-value (nitrogen x glyphosate) | 3.41 * | 0.39 ns | 3.31 * | 0.83 ns | 1.35 ns | 1.16 ns |
Equations | R2 | |||||
(1) Ŷ = −4.08 + 0.0016 ** X | 0.98 | |||||
(2) Ŷ = 5.74 + 0.0005 ** X | 0.85 |
N Rates (g m−2) | Presin | S-SO42− | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|
mg dm−3 | mmolc dm−3 | ||||
0 | 31.9 a | 4.5 a | 1.3 a | 39.4 a | 18.7 a |
15 | 32.2 a | 3.5 a | 1.3 a | 35.5 a | 20.2 a |
30 | 29.5 a | 3.8 a | 1.2 a | 33.6 a | 17.4 a |
L.S.D. (5%) | 5.4 | 1.0 | 0.2 | 7.0 | 5.6 |
Glyphosate doses (g ha−1) | |||||
0 | 34.3 ns | 3.8 ns | 1.2 (1) | 31.6 ns | 16.8 ns |
200 | 31.0 | 4.2 | 1.2 | 37.8 | 21.4 |
400 | 26.8 | 3.9 | 1.3 | 36.7 | 18.7 |
600 | 32.8 | 3.9 | 1.4 | 38.7 | 18.2 |
C.V. (%) | 17.00 | 22.25 | 15.88 | 18.94 | 29.16 |
F-value (nitrogen x glyphosate) | 0.38 ns | 1.83 ns | 0.98 ns | 1.09 ns | 0.36 ns |
Equation | R2 | ||||
(1) Ŷ = 1.17 + 0.0004 * X | 0.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinalli, R.P.; Buzetti, S.; Gazola, R.d.N.; de Castilho, R.M.M.; Jalal, A.; Galindo, F.S.; Teixeira Filho, M.C.M. Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass. Agronomy 2022, 12, 2473. https://doi.org/10.3390/agronomy12102473
Dinalli RP, Buzetti S, Gazola RdN, de Castilho RMM, Jalal A, Galindo FS, Teixeira Filho MCM. Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass. Agronomy. 2022; 12(10):2473. https://doi.org/10.3390/agronomy12102473
Chicago/Turabian StyleDinalli, Raíssa Pereira, Salatiér Buzetti, Rodolfo de Niro Gazola, Regina Maria Monteiro de Castilho, Arshad Jalal, Fernando Shintate Galindo, and Marcelo Carvalho Minhoto Teixeira Filho. 2022. "Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass" Agronomy 12, no. 10: 2473. https://doi.org/10.3390/agronomy12102473
APA StyleDinalli, R. P., Buzetti, S., Gazola, R. d. N., de Castilho, R. M. M., Jalal, A., Galindo, F. S., & Teixeira Filho, M. C. M. (2022). Nitrogen Fertilization and Glyphosate as a Growth Regulator: Effects on the Nutritional Efficiency and Nutrient Balance in Emerald Grass. Agronomy, 12(10), 2473. https://doi.org/10.3390/agronomy12102473