Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definitions, Notions and Calculations
2.2. Data Acquisitions and Analysis
3. Results
3.1. Cereals and Grain Legumes: Status and Crop Improvements in Ethiopia
3.2. Yield Potential and Yield Gap in Ethiopian Cropping System
3.3. Cropping Practices in Ethiopia
3.4. Adoption of Improved Technologies and Farmers’ Cultivar Choice
3.5. Seed System
3.6. Crop Rotation and Intercropping
3.7. Fertilization
3.8. Inoculants
3.9. Pollination
3.10. Biotic Stress
3.11. Abiotic Stresses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- KIT. Ethiopia Outcome Monitoring Report 2019, AGRA-PIATA Programme. Alliance for a Green Revolution in Africa, Nairobi; KIT Royal Tropical Institute, Amsterdam. 30 April 2020. Available online: https://agra.org/wp-content/uploads/2020/12/AGRA-OM-Ethiopia-Report_FINAL.pdf (accessed on 22 March 2022).
- Ministry of Agriculture [MOA]. Transforming the Ethiopian Seed Sector: Issues and Strategies; Ministry of Agriculture: Addis Ababa, Ethiopia, 2019.
- Ethiopian Agriculture Authority (EAA). Plant Variety Release Protection and Seed Quality Control Directorate, Crop Variety Register; Issue No. 24; Ethiopian Agriculture Authority: Addis Ababa, Ethiopia, June 2021.
- Alemu, D.; Rashid, S.; Tripp, R. Seed System Potential in Ethiopia: Constraints and Opportunities for Enhancing the Seed Sector. International Food Policy Research Institute (IFPRI), 2010. Available online: https://gatesopenresearch.org/documents/3-948. (accessed on 23 February 2021).
- De Boef, W.S.; Bishaw, Z. A system perspective for linking farmers and professionals supporting farmers practices in seed supply. In Farmers, Seeds and Varieties: Supporting Informal Seed Supply in Ethiopia; Thijssen, H.M., Bishaw, Z., Beshir, A., de Boef, W.S., Eds.; Wageningen International: Wageningen, The Netherlands, 2008; p. 348. [Google Scholar]
- Meselu, Y.K. A review on the seed sector of Ethiopia: Prospects and challenges of faba bean seed supply. South Asian J. Dev. Res. 2019, 1, 44–54. [Google Scholar]
- Jovanovic, N.; Musvoto, C.; Clercq, W.D.; Pienaar, C.; Petja, B.; Zairi, A.; Hanafi, S.; Ajmi, T.; Mailhol, J.C.; Cheviron, C.; et al. A comparative analysis of yield gaps and water productivity on smallholder farms in Ethiopia, South Africa and Tunisia. Irrig. Drain. 2020, 69, 70–78. [Google Scholar] [CrossRef]
- Global Yield Gap Atlas [GYGA]. Ethiopia. 2022. Available online: https://www.yieldgap.org/Ethiopia (accessed on 24 January 2022).
- Keneni, G.; Fikre, A.; Eshete, M. Reflections on highland pulses improvement research in Ethiopia. Ethiop. J. Agric. Sci. Spec. 2016, 17–50. [Google Scholar]
- Abate, T.; Shiferaw, B.; Menkir, A.; Wegary, D.; Kebede, Y.; Tesfaye, K.; Kassie, M.; Bogale, G.; Tadesse, B.; Keno, T. Factors that transformed maize productivity in Ethiopia. Food Sec. 2015, 7, 965–981. [Google Scholar] [CrossRef] [Green Version]
- Bechere, E. Agricultural Research and Development in Ethiopia. Int. Conf. Afr. Dev. Archives. 2007, 127, 1–26. Available online: https://scholarworks.wmich.edu/africancenter_icad_archive/127 (accessed on 10 February 2021).
- Degago, Y. Faba Bean (Vicia faba) in Ethiopia; Institute of Biodiversity Conservation and Research: Addis Ababa, Ethiopia, 2000. Available online: https://agris.fao.org/agris-search/search.do?recordID=ET2002000048 (accessed on 23 May 2021).
- Fikre, A. Unraveling valuable traits in Ethiopian grain legumes research hastens crop intensification and economic gains: A review. Univers. J. Agric. Res. 2016, 4, 175–182. [Google Scholar] [CrossRef]
- Mosisa, W.; Legesse Berhanu, T.; Girma, D.; Girum, A.; Wende, A.; Tolera, K.; Gezahegn, B.; Dagne, W.; Solomon, A.; Habtamu, Z.; et al. Staus and future direction of maize research and production in Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Ministry of Agriculture [MOA]. Plant Variety Release, Protection and Seed Quality Control Directorate, Crop Variety Register Issue No. 8; Ministry of Agriculture: Addis Ababa, Ethiopia, 2005.
- Ministry of Agriculture [MOA]. Plant Variety Release, Protection and Seed Quality Control Directorate, Crop Variety Register Issue No. 16; Ministry of Agriculture: Addis Ababa, Ethiopia, 2013.
- Ministry of Agriculture [MOA]. Plant Variety Release, Protection and Seed Quality Control Directorate, Crop Variety Register Issue No. 17; Ministry of Agriculture: Addis Ababa, Ethiopia, 2014.
- Ministry of Agriculture [MOA]. Plant Variety Release, Protection and Seed Quality Control Directorate, Crop Variety Register Issue No. 17 & 18; Ministry of Agriculture: Addis Ababa, Ethiopia, 2016.
- Ministry of Agriculture [MOA]. Plant Variety Release, Protection and Seed Quality Control Directorate, Crop Variety Register Issue No 21; Ministry of Agriculture: Addis Ababa, Ethiopia, 2018.
- Dargo, F.; Mekbib, F.; Assefa, K. Genetic gain in grain yield potential and associated traits of Tef [Eragrostis tef (Zucc.) Trotter] in Ethiopia. Glob. J. Sci. Front. Res. D Agric. Vet. 2016, 16, 1–16. [Google Scholar]
- Kebede, E. Grain legumes production and productivity in Ethiopian smallholder agricultural system, contribution to livelihoods and the way forward. Cogent Food Agric. 2020, 6, 1722353. [Google Scholar] [CrossRef]
- Tarekegne, A.; Tanner, D.G.; Gebeyehu, G. Improvement in yield of bread wheat cultivars released in Ethiopia from 1949 to 1987. Afri. Crop Sci. J. 1995, 3, 41–49. [Google Scholar] [CrossRef]
- Keneni, G.; Jarso, M.; Wolabu, T. Faba bean (Vicia faba L.) genetics and breeding research in Ethiopia: A review. In Food and Forage Legumes of Ethiopia: Progress and Prospects, Proceedings of the Workshop on Food and Forage Legume, Addis Ababa, Ethiopia, 22–26 September 2003; Ali, K., Keneni, G., Ahmed, S., Malhotra, R., Beniwal, S., Makkouk, K., Halila, M.H., Eds.; EIAR and ICARDA; International Centre for Agricultural Research in the Dry Areas (ICARDA): Aleppo, Syria, 2003; p. 351. [Google Scholar]
- Tolessa, T.T.; Keneni, G.; Mohammad, H. Genetic progresses from over three decades of faba bean (Vicia faba L.) breeding in Ethiopia. Aust. J. Crop Sci. 2015, 9, 41–48. [Google Scholar]
- Bezaweletaw, K.; Belete, K.; Scripichitt, P. Genetic gain in grain yield potential and associated agronomic traits in haricot bean (Phaseolus vulgaris L.). Agric. Nat. Resour. 2006, 40, 835–847. [Google Scholar]
- Van Dijk, M.; Morley, T.; van Loon, M.; Reidsma, P.; Tesfaye, K.; van Ittersum, M.K. Reducing the maize yield gap in Ethiopia: Decomposition and policy simulation. Agric. Syst. 2020, 183, 102828. [Google Scholar] [CrossRef]
- Silva, J.V.; Reidsma, P.; Baudron, F.; Jaleta, M.; Tesfaye, K.; van Ittersum, M.K. Wheat yield gaps across smallholder farming systems in Ethiopia. Agron. Sustain. Dev. 2021, 41, 12. [Google Scholar] [CrossRef]
- Central Statistical Agency [CSA]. The Federal Democratic Republic of Ethiopia Central Statistical Agency Agricultural Sample Survey 2010/2011-2019/2020; Report on Area and Production of Major Crops. Private peasant landholdings; Meher Season Statistical Bulletin: Addis Ababa, Ethiopia, 2011–2020.
- Berhanu, T.; Habtamu, Z.; Twumasi-Afrieye, S.; Blummel, M.; Friesen, D.; Mosisa, W.; Dagne, W.; Legesse, W.; Girum, A.; Tolera, K.; et al. Breeding maize for food-feed traits in Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Tadesse, K.; Ayalew, A.; Badebo, A. Effect of fungicide on the development of wheat stem rust and yield of wheat varieties in highlands of Ethiopia. Afri. Crop Sci. J. 2010, 18, 23–33. [Google Scholar] [CrossRef]
- Aserse, A.A.; Markos, D.; Getachew, G.; Yli-Halla, M.; Lindstrom, K. Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch. Agron. Soil Sci. 2020, 66, 488–501. [Google Scholar] [CrossRef]
- Assefa, B.T.; Chamberlin, J.; Reidsma, P.; Silva, J.V.; van Ittersum, M.K. Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia. Food Sec. 2020, 12, 83–103. [Google Scholar] [CrossRef]
- Debas, M.G. Crop Intensification Options and Trade-Offs with the Water Balance in the Central Rift Valley of Ethiopia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2016. [Google Scholar]
- Mann, M.L.; Warner, J.M. Ethiopian wheat yield and yield gap estimation: A spatially explicit small area integrated data approach. Field Crops Res. 2017, 201, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Vandercasteelen, J.; Dereje, M.; Minten, B.; Taffese, A.S. Scaling-up adoption of improved technologies: The impact of the promotion of row planting on farmers’ teff yields in Ethiopia. LICOS Discuss. Pap. Ser. 2013, 344, 1–25. [Google Scholar]
- Bayable, M.; Tsunekawa, A.; Haregeweyn, N.; Alemayehu, G.; Tsuji, W.; Tsubo, M.; Adgo, E.; Tassew, A.; Ishii, T.; Asaregew, F.; et al. Yield Potential and Variability of Teff (Eragrostis tef (Zucc.) Trotter) Germplasms under Intensive and Conventional Management Conditions. Agronomy 2021, 11, 220. [Google Scholar] [CrossRef]
- Assefa, K.; Chanyalew, S. Agronomics of teff. In The Economics of Teff: Exploring Ethiopia’s Biggest Cash Crop; Minten, B., Taffesse, A.S., Brown, P., Eds.; International Food Policy Research Institute: Wahsington, DC, USA, 2018; pp. 39–70. [Google Scholar]
- Hailu, G.; Weersink, A.; Minten, B. Determinants of the productivity of teff in Ethiopia. Eur. J. Dev. Res. 2017, 29, 866–892. [Google Scholar] [CrossRef]
- Assefa, K.; Yu, J.-K.; Zeid, M.; Belay, M.; Tefera, H.; Sorrells, M.E. Breeding tef [Eragrostis tef (Zucc.) trotter]: Conventional and molecular approaches. Plant Breed 2011, 130, 1–9. [Google Scholar] [CrossRef]
- Mohammed, Z.O. Comparative Technical efficiency of teff production in row planting and broadcasting methods, Ethiopia. J. Appl. Agric. Econ. Policy. Anal. 2018, 1, 8–14. [Google Scholar]
- Spielman, D.J.; Mekonnen, D.K. Seed demand and supply responses. In The Economics of Teff: Exploring Ethiopia’s Biggest Cash Crop; Minten, B., Taffesse, A.S., Brown, P., Eds.; International Food Policy Research Institute: Wahsington, DC, USA, 2018. [Google Scholar]
- Legesse, W.; Mosisa, W.; Berhanu, T.; Girum, A.; Wende, A.; Solomon, A.; Tolera, K.; Dagne, W.; Girma, D.; Temesgen, C.; et al. Genetic improvement of maize for mid-altitude and lowland sub-humid agro-ecologies of Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Getnet, Z.; Husen, A.; Fetene, M.; Yemata, G. Growth, water status, physiological, biochemical and yield response of stay green sorghum (Sorghum bicolor (L.) Moench) varieties-A field trial under drought-prone area in Amhara Regional State, Ethiopia. J. Agron. 2015, 14, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Birhan, T.; Bantte, K.; Paterson, A.; Getenet, M.; Gabizew, A. Evaluation and genetic analysis of a segregating sorghum population under moisture stress conditions. J. Crop Sci. Biotech. 2020, 23, 29–38. [Google Scholar] [CrossRef]
- Bogale, G.; Wegary, D.; Tilahun, L.; Gebre, D. Maize improvement for low-moisture stress areas of Ethiopia: Achievements and progress in the last decade. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Bogale, T.; Abera, T.; Mesfin, T.; Hailu, G.; Desalegn, T.; Workayew, T.; Mazengia, W.; Harun, H. Review on crop management research for improved maize productivity in Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Nepir, G.; Twumasi-Afriyie; Demisew, A.K.; Bayisa, A.; Demoz, N.; Kassa, Y.; Habtamu, Z.; Leta, T.; Habte, J.; Wondimu, F.; et al. Development of improved maize germplasm for highland agro-ecologies of Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Mulugeta, W.; Tesfaye, K.; Getnet, M.; Ahmed, S.; Nebiyu, A.; Mekuanint, F. Quantifying yield potential and yield gaps of faba bean in Ethiopia. Ethiop. J. Agric. Sci. 2019, 29, 105–120. [Google Scholar]
- Mulugeta, B.; Tesfaye, K.; Keneni, G.; Ahmed, S. Genetic diversity in spring faba bean (Vicia faba L.) genotypes as revealed by high-throughput KASP SNP markers. Genet. Resour. Crop Evol. 2021, 68, 1971–1986. [Google Scholar] [CrossRef]
- Keneni, G.; Jarso, M.; Wolabu, T.; Dino, G. Extent and pattern of genetic diversity for morpho-agronomic traits in Ethiopin highland pulse landraces II. Faba bean (Vicia faba L.). Genet. Resour. Crop Evol. 2005, 52, 551–561. [Google Scholar] [CrossRef]
- Gebremariam, M.; Worku, W.; Sinebo, W. Effect of integrated crop management packages on yield and yield components of faba bean (Vicai faba L.) cultivars in Southern Ethiopia. Int. J. Plant Res. Vegetos 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Miruts, F.; Gadissa, G.; Roba, B. Evaluation of newly released common bean varieties through on-farm demonstrations in ATJK and Shalla districts of Oromia Regional State, Ethiopia. Int. J. Res. Stud. Agric. Sci. 2020, 6, 43–48. [Google Scholar]
- Mekbib, F. Simultaneous selection for high yield and stability in common bean (Phaseolus vulgaris) genotypes. J. Agric. Sci. 2002, 138, 249–253. [Google Scholar] [CrossRef]
- Ashango, Z.; Alamerew, S. Seed Yield Stability and Genotype × Environment Interaction in Common Bean (Phaseolus vulgaris L.) Varieties in Dawro Zone, South-western Ethiopia. Greener J. Plant Breed. Crop Sci. 2017, 5, 1–12. Available online: https://zenodo.org/record/3387532#.YtATwnZBw2w (accessed on 8 June 2021). [CrossRef]
- Bareke, T.; Asfaw, Z.; Woldu, Z.; Medvecky, B.; Amssalu, B. Diversity of common bean (Phaseolus vulgaris L., Fabaceae) landraces in parts of southern and eastern Ethiopia. Adv. Plants Agric. Res. 2018, 8, 449–458. [Google Scholar] [CrossRef]
- Tadesse, D.; Alem, T.; Wossen, T.; Sintayehu, A. Evaluation of improved varieties of haricot bean in West Belessa, Northwest Ethiopia. Int. J. Sci. Res. 2014, 3, 2756–2759. [Google Scholar]
- Tigist, S.G.; Melis, R.; Sibiya, J.; Amelework, B.; Keneni, G. Participatory variety selection of common bean (Phaseolus vulgaris L.) genotypes in the major bean producing areas of Ethiopia. Aust. J. Crop Sci. 2020, 14, 1055–1063. [Google Scholar] [CrossRef]
- Gereziher, T.; Seid, E.; Bisrat, G. Performance evaluation of common bean (Phaseolus vulgaris L.) varieties in Raya Valley, Northern Ethiopia. Afr. J. Plant Sci. 2017, 11, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Gurmu, S.; Biya, M.; Yadete, E. Validation of soybean (Glycine max. L.) to NP fertilizer rates and plant population densities at Jimma, south-western Ethiopia. Int. J. Res. Stu. Sci. Eng. Technol. 2020, 7, 16–21. [Google Scholar]
- Yoseph, T.; Worku, W. Evaluation of different np fertilizer rates and bradyrhizobium inoculation on yield and yield components of soybean [Glycine Max (L.) Merrill], at Jinka, Southern Ethiopia. Int. J. Res. Agric. Sci. 2014, 1, 2348–3997. [Google Scholar]
- Abebe, Y.; Bekele, A. Analysis of adoption spell of improved common bean varieties in the central rift valley of Ethiopia: A duration model approach. J. Agric. Eco. Dev. 2015, 4, 37–43. [Google Scholar]
- Bishaw, Z.; Alemu, D. Faba Bean Seed System Landscape in the Highlands of Ethiopia: Smallholders’ Varietal Adoption, Preference, and Seed Commercial Behaviour; International Centre for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2019; Working Paper 2019-3. [Google Scholar]
- ICARDA. ICARDA Annual Report 2006; International Center for Agricultural Research in the Dry Areas: Aleppo, Syria, 2007; p. 153. Available online: https://mel.cgiar.org/reporting/download/hash/6ylvPuFJ (accessed on 22 February 2021).
- Tesfaye, S.; Bedada, B.; Mesay, Y. Impact of improved wheat technology adoption on productivity and income in Ethiopia. Afr. Crop Sci. J. 2016, 24, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Ojiewo, C.; Rubyogo, J.C.; Wesonga, J.; Bishaw, Z.; Abang, M.M.; Gelalcha, S. Mainstreaming Efficient Legume Seed Systems in Eastern Africa: Challenges, Opportunities and Contributions Towards Improved Livelihoods; Food and Agriculture Organization of the United Nations: Addis Ababa, Ethiopia, 2018; p. 76. [Google Scholar]
- Yirga, C.; Alemu, D. Adoption of crop technologies among smallholder farmers in Ethiopia: Implications for research and developement. Ethiop. J. Agric. Sci. 2016, 1–16. [Google Scholar]
- Shiferaw, B.; Kassie, M.; Jaleta, M.; Yirga, C. Adoption of improved wheat varieties and impacts on household food security in Ethiopia. Food Policy 2014, 44, 272–284. [Google Scholar] [CrossRef]
- Tesfaye, Y.; Teshome, G.; Asefa, K. Effects of nitrogen and phosphorus fertilizers rate on yield and yield components of tef at Adola District, Guji Zone, in Southern Ethiopia. Am. J. Agric. Res. 2019, 4, 1–15. [Google Scholar]
- Wato, T. Effects of nitrogen fertilizer rate and inter-row spacing on yield and yield components of teff [Eragrostis teff (Zucc.) Trotter] in Limo district, Southern Ethiopia. Int. J. Plant Soil Sci. 2019, 31, 1–12. [Google Scholar] [CrossRef]
- Fentie, M.; Demelash, N.; Jemberu, T. Participatory on farm performance evaluation of improved Tef (Eragrostis tef L) varieties in East Belessa, northwestern Ethiopia. Int. Res. J. Plant Sci. 2012, 3, 137–140. [Google Scholar]
- Ayalew, A.; Kena, K.; Dejen, T. Application of NP fertilizers for better production of teff (Eragrostis tef (zucc.) trotter) on different types of soils in southern Ethiopia. J. Nat. Sci. Res. 2011, 1, 6–15. [Google Scholar]
- Kebede, M.; Bedada, G.; Anbasa, F. Integration of glyphosates and hand weeding for weeds management in maize (Zea mays L.). Agric. Res. Technol. 2018, 18, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Temteme, S.; Argaw, A.; Balemi, T. The response of hybrid maize (Zea mays) to N and P fertilizers on nitisols of Yeki District, Sheka Zone. Ethiop. J. Agric. Sci. 2018, 28, 37–52. [Google Scholar]
- Woldesenbet, M.; Haileyesus, A. Effect of nitrogen fertilizer on growth, yield and yield components of maize (Zea mays L.) in Decha district, Southwstern Ethiopia. Int. J. Res. 2016, 4, 95–100. [Google Scholar]
- Zeng, D.; Alwang, J.; Norton, G.W.; Shiferaw, B.; Jaleta, M.; Yirga, C. Ex post impacts of improved maize varieties on poverty in rural Ethiopia. Agric. Econ. 2015, 46, 515–526. [Google Scholar] [CrossRef]
- Negassa, W.; Abera, T.; Liben, M.; Debele, T.; Workayehu, T.; Menna, A.; Abebe, Z. Soil fertility management technologies for sustainable maize production in Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Worku, M.; Zelleke, H. Advances in improving harvest index and grain yield of maize in Ethiopia. East Afr. J. Sci. 2007, 1, 112–119. [Google Scholar] [CrossRef]
- Melaku, N.D.; Bayu, W.; Ziadat, F.; Strohmeier, S.; Zucca, C.; Tefera, M.L.; Ayalew, B.; Klik, A. Effect of nitrogen fertilizer rate and timing on sorghum productivity in Ethiopian highland vertisols. Arch. Agron. Soil Sci. 2018, 64, 480–491. [Google Scholar] [CrossRef]
- Masebo, N.; Menamo, M. The effect of application of different rate of n-p fertilizers rate on yield and yield components of sorghum (Sorghum bicolor): Case of Derashe Woreda, SNNPR, Ethiopia. J. Nat. Sci. Res. 2016, 6, 5. [Google Scholar]
- Tadesse, T.; Tesso, T.; Degu, E. Registration of two sorghum hybrids, ESH-1 and ESH-2. Ethiop. J. Agric. Sci. 2010, 20, 179–194. [Google Scholar]
- Liben, M.; Assefa, A.; Tadesse, T.; Mariye, A. Response of Bread Wheat to Nitrogen and Phosphorous Fertilizers at Different Agro-ecologies of Northwestern Ethiopia. In Proceedings of the 12th Regional Wheat Workshop for Eastern, Central and Southern Africa, Nakuru, Kenya, 22–26 November 2004; p. 41. [Google Scholar]
- Tsige, B.A.; Dechassa, N.; Tana, T.; Laekemariam, F.; Alemayehu, Y. Effect of mineral nitrogen, phosphorus, and potassium fertilizers on the productivity of faba bean (Vicia faba L.) in acidic soils of Wolaita Zone, Southern Ethiopia. Int. J. Agron. 2022, 2022, 2232961. [Google Scholar] [CrossRef]
- Mitiku, G.; Mnalku, A. Faba Bean (Vicia faba L.) Yield and yield components as influenced by inoculation with indigenous rhizobial isolates under acidic soil condition of the central highlands of Ethiopia. Ethiop. J. Agric. Sci. 2019, 29, 49–61. [Google Scholar]
- Negasa, G.; Bedadi, B.; Abera, T. Influence of phosphorus fertilizer rates on yield and yield components of faba bean (Vicia faba L.) varieties in Lemu Bilbilo District of Arsi Zone, Southeastern Ethiopia. Int. J. Plant Soil Sci. 2019, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ghizaw, A.; Mamo, T.; Yilma, Z.; Molla, A.; Ashagre, Y. Nitrogen and phosphorus effects on faba bean yield and some yield components. J. Agron. Crop Sci. 1999, 182, 167–174. [Google Scholar] [CrossRef]
- Ketema, W. Yield Performance Evaluation of Common Bean (Phaseolus vulgaris L.) Varieties Under Rain Fed in Western Ethiopia. Am. J. Plant Biol. 2022, 7, 60–64. [Google Scholar] [CrossRef]
- Ejigu, G.; Tulu, S. Effect of NPS fertilizer rate and intra row spacing on growth and yield of common bean (Phaseolus vulgaris L.) at Metu, South western Ethiopia. Int. J. Agric. Innov. Res. 2021, 10, 47–70. [Google Scholar]
- Habete, A.; Buraka, T. Effect of rhizobium inoculation and nitrogen fertilization on nodulation and yield response of common bean (Phaseolus vulgaries L.) at Boloso Sore, Southern Ethiopia. J. Biol. Agric. Healthc. 2016, 6, 72–75. [Google Scholar]
- Tesfaye, T.; Balcha, A. Effect of phosphorus application and varieties on grain yield and yield components of common bean (Phaseolus vulgaris L.). Am. J. Plant Nutr. Fertil. Technol. 2015, 5, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Mesfin, S.; Gebresamuel, G.; Haile, M.; Zenebe, A.; Desta, G. Mineral fertilizer demand for optimum biological nitrogen fixation and yield potentials of legumes in Northern Ethiopia. Sustainability 2020, 12, 6449. [Google Scholar] [CrossRef]
- Getnet, B.F. Soybean (Glycine max L. Merill) genetic improvement in Ethiopia: A review. Int. J. Res. Granthaalayah 2019, 7, 189–199. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of United Nations [FAO]. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 February 2021).
- Mulatu, E.; Zelleke, H. Farmers’ highland maize (Zea mays L.) selection criteria: Implication of maize breeding for the Hararghe highlands of eastern Ethiopia. Euphytica 2002, 127, 11–30. [Google Scholar] [CrossRef]
- McGuire, S. Farmers’ views and management of sorghum diversity in western Harerghe, Ethiopia: Implications for collaboration with formal breeding. In Farmers, Scientists and Plant Breeding: Integrating Knowledge and Practice; Cleveland, D.A., Soleri, D., Eds.; CABI. Forthcoming: Wallingford, Oxon, 2002; pp. 107–135. [Google Scholar]
- Mekbib, F. Farmer and formal breeding of sorghum (Sorghum bicolor (L.) Moench) and the implication for integrated plant breeding. Euphytica 2006, 152, 163–176. [Google Scholar] [CrossRef]
- Tadele, M. Breeding achievements of faba bean (Vicia faba L.) and its impact in the livelihood of Ethiopian farmers. Int. J. Agric. Biosci. 2019, 8, 263–269. [Google Scholar]
- Abera, B.; Berhane, M.; Nebiyu, A.; Ruelle, M.L.; McAlvay, A.; Asfaw, Z.; Tesfaye, A.; Woldu, Z. Diversity, use and production of farmers’ varieties of common bean (Phaseolus vulgaris L., Fabaceae) in southwestern and northeastern Ethiopia. Genet. Resour. Crop Evol. 2020, 67, 339–356. [Google Scholar] [CrossRef]
- Gurmu, F. Assessment of farmers’ criteria for common bean variety selection: The case of Umbullo Watershed in Sidama Zone of the Southern Region of Ethiopia. Ethiop. e-J. Res. Innov. Foresight 2013, 5, 4–13. [Google Scholar]
- Delele, T.A.; Gebre, Y.F.S.D.H.; Zenebe, T.A. Evaluation of newly released soybean varieties (Glycine max) under smallholder farmers’ condition in western Ethiopia. Evaluation 2021, 12, 20–26. [Google Scholar]
- Belay, G.; Tefera, H.; Tadesse, B.; Metaferia, G.; Jarra, D.; Tadesse, T. Participatory variety selection in the Ethiopian cereal tef (Eragrostis tef). Exp. Agric. 2005, 42, 91–101. [Google Scholar] [CrossRef]
- Dutamo, D.; Assefa, E.; Menamo, M. Adaptability study and performance evaluation of tef (Eragrostis tef L.) varieties at Shone, Southern Ethiopia. Int. J. Res. Agric. For. 2020, 7, 17–22. [Google Scholar]
- Wegary, D.; Temesgen, A.; Admasu, S.; Jemal, S.; Tirfessa, A.; Hidoto, L.; Getnet, F.; Bogale, G.; Chibsa, T.; Mekuria, M. Towards sustainable intensification of maize-legume cropping systems in Ethiopia. In Meeting the Challenges of Global Climate Change and Food Security Through Innovative Maize Research, Proceedings of the Third National Maize Workshop of Ethiopia, Addis Ababa, Ethiopia, 1–20 April 2011; Worku, M., Twumasi-Afriyie, S., Wolde, L., Tadesse, B., Demisie, G., Bogale, G., Wegary, D., Prasanna, B.M., Eds.; International Maize and Wheat Improvement Center (CIMMYT): El Batan, Mexico, 2012. [Google Scholar]
- Abebe, G.; Assefa, T.; Harrun, H.; Mesfine, T. Participatory selection of drought tolerant maize varieties using mother and baby methodology: A case study in the semi-arid zones of the central rift valley of Ethiopia. Afr. Crop Sci. Conf. Proc. 2005, 7, 1479–1485. [Google Scholar]
- Hei, N.; Shimelis, H.A.; Laing, M. Appraisal of farmers’ wheat production constraints and breeding priorities in rust prone agro-ecologies of Ethiopia. Afr. J. Agric. Res. 2017, 12, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Mancini, C.; Kidane, Y.G.; Mengistu, D.K.; Pè, M.E.; Fadda, C.; Dell’Acqua, M. Joining smallholder farmers’ traditional knowledge with metric traits to select better varieties of Ethiopian wheat. Sci. Rep. 2017, 7, 9120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belay, G.; Tefera, H.; Getachew, A.; Assefa, K.; Metaferia, M. Highly client-oriented breeding with farmer participation in the Ethiopian cereal tef [Eragrostis tef (Zucc.) Trotter]. Afr. J. Agric. Res. 2008, 3, 22–28. [Google Scholar]
- Bishaw, Z.; Sahlu, Y.; Simane, B. The status of the Ethiopian seed industry. In Farmers, Seeds and Varieties: Supporting Informal Seed Supply in Ethiopia; Thijssen, H.M., Bishaw, Z., Beshir, A., de Boef, W.S., Eds.; Wageningen International: Wageningen, The Netherlands, 2008; 348p. [Google Scholar]
- Alemu, D.; Mwangi, W.; Nigussie, M.; Spielman, D.J. The maize seed system in Ethiopia: Challenges and opportunities in drought prone areas. Afr. J. Agric. Res. 2018, 3, 305–314. [Google Scholar]
- Clark, C.; Clarke, J.; Javaid, K.; Biscaye, P.; Reynolds, T.; Anderson, C.L. Review of Realized Yield Gains from Quality Seed and Improved Varieties. EPAR Brief No. 312. Prepared for the Agricultural Development Team of the Bill and Melinda Gates Foundation. Available online: https://epar.evans.uw.edu/research/realized-yield-gains-quality-seed-and-improved-varieties (accessed on 12 March 2021).
- Balcha, G.; Tanto, T. Conservation of genetic diversity and supporting informal seed supply in Ethiopia. In Farmers, Seeds and Varieties: Supporting Informal Seed Supply in Ethiopia; Thijssen, H.M., Bishaw, Z., Beshir, A., de Boef, W.S., Eds.; Wageningen International: Wageningen, The Netherlands, 2008; p. 348. [Google Scholar]
- Alemayehu, D.; Shumi, D.; Afeta, T. Effect of variety and time of intercropping of common bean (Phaseolus vulgaris L.) With Maize (Zea mays L.) on yield components and yields of associated crops and productivity of the system at Mid-Land of Guji, Southern Ethiopia. Adv. Crop Sci. Technol. 2018, 6, 1000324. [Google Scholar] [CrossRef] [Green Version]
- Tadesse, T.; Liben, M.; Asefa, A. Role of maize (Zea mays L.)- faba bean (Vicia faba L.) intercropping planning pattern on productivity and nitrogen use efficiency of maize in north-western Ethiopia highlands. Int. Res. J. Agric. Sci. Soil Sci. 2012, 2, 102–112. [Google Scholar]
- Agegnehu, G.; Ghizaw, A.; Sinebo, W. Yield potential and land-use efficiency of wheat and faba bean mixed intercropping. Agron. Sustain. Dev. 2008, 28, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Zebire, D.A.; Gelgelo, S. Effect of phosphorus fertilizer levels on growth and yield of haricot bean (Phaseolus vulgaris L.) in South Ommo Zone, Ethiopia. Agric. Sci. Digest. 2019, 39, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Girma, A.; Demelash, A.; Ayele, T. The response of haricot bean varieties to different rates of phosphorus at Arba Minch, Southern Ethiopia. ARPN J. Agric. Biol. Sci. 2014, 9, 344–350. [Google Scholar]
- Gadaleta, A.; Lacolla, G.; Giove, S.L.; Fortunato, S.; Nigro, D.; Mastro, M.A.; Corato, U.D.; Caranfa, D.; Cucci, G.; de Pinto, M.C.; et al. Durum Wheat Response to Organic and Mineral Fertilization with Application of Different Levels and Types of Phosphorus-Based Fertilizers. Agronomy 2022, 12, 1861. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali DF, I.; Alhaj Hamoud, Y.; Shaghaleh, H.; Sheteiwy, M.S. The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.; Batool, T.; Siddique, G.; Ali, S.; Binyamin, R.; Shahid, M.J.; Rizwan, M.; Alsahli, A.A.; Alyemeni, M.N. Integrated nutrient management enhances soil quality and crop productivity in maize-based cropping system. Sustainability 2020, 12, 10214. [Google Scholar] [CrossRef]
- Yadav, K.K.; Sarkar, S. Biofertilizers, impact on soil fertility and crop productivity under sustainable agriculture. Environ. Ecol. 2019, 37, 89–93. [Google Scholar]
- Genetu, G.; Yli-Halla, M.; Asrat, M.; Alemayehu, M. Rhizobium inoculation and chemical fertilisation improve faba bean yield and yield components in Northwestern Ethiopia. Agriculture 2021, 11, 678. [Google Scholar] [CrossRef]
- Daba, S.; Haile, M. Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean. J. Plant Nutr. 2000, 23, 581–591. [Google Scholar] [CrossRef]
- Temesgen, D.; Assefa, F. Inoculation of native symbiotic effective Sinorhizobium spp. enhanced soybean [Glycine max (L.) Merr.] grain yield in Ethiopia. Environ. Syst. Res. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Alebachew, G.W. Economic value of pollination service of agricultural crops in Ethiopia: Biological pollinators. J. Apic. Sci. 2018, 62, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Khater, A.; El-Zakardy, K.; Ebadah, I. The efficiency of honeybees and other insect pollinators in pollination of faba bean (Vicia faba L.). Bull.-Fac. Agric. Univ. Cairo 2003, 54, 465–482. [Google Scholar]
- Hailu, E.; Getaneh, G.; Sefera, T.; Tadesse, N.; Bitew, B.; Boydom, A.; Kassa, D.; Tamene, T. Faba bean gall: A new threat for faba bean (Vicia faba) production in Ethiopia. Adv. Crop Sci. Technol. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alehegn, M.; Tiru, M.; Taddess, M. Screening of faba bean (Vicia faba) varieties against faba bean gall diseases (Olpidium viciae) in east Gojjam zone, Ethiopia. Screening 2018, 8, 50–55. [Google Scholar]
- Bekele, B.; Dawit, W.; Kassa, B.; Selvaraj, T. Management of faba bean gall disease using cultivars and fungicides in North Showa Zone of Central Ethiopia. Int. J. Res. Agric. Sci. 2018, 5, 2348–3997. [Google Scholar]
- Beyene, A.T.; Derera, J.S.; Fikre, A. Gene action determining grain yield and chocolate spot (Botrytis fabae) resistance in faba bean. Euphytica 2016, 207, 293–304. [Google Scholar] [CrossRef]
- Wakweya, K.; Dargie, R. Effect of different weed management practices on growth, yield and yield components of faba bean (Vicia faba L.) in Bale highland conditions, South-eastern Ethiopia. Am.-Eurasian J. Agric. Env. Sci. 2017, 17, 383–391. [Google Scholar]
- Habtu, A. Epidemiology of Bean Rust in Ethiopia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1994. [Google Scholar]
- Gidesa, A.; Kebede, M. Integration effects of herbicide and hand weeding on grain yield of soybean (Glycine max (L.) Merr.) in Assosa, Western Ethiopia. Adv. Crop Sci. Tech. 2018, 6, 400. [Google Scholar] [CrossRef]
- Wegary, D.; Kitaw, D.; Demissie, G. Assessment of losses in yield and yield components of maize varieties due to grey leaf spot. Pest Manag. J. Ethiop. 2004, 8, 59–69. [Google Scholar]
- Keno, T.; Azmach, G.; Wegary, D.; Worku, M.; Tadesse, B.; Wolde, L.; Deressa, T.; Abebe, B.; Chibsa, T.; Suresh, L.M. Major biotic maize production stresses in Ethiopia and their management through host resistance. Afr. J. Agric. Res. 2018, 13, 1042–1052. [Google Scholar] [CrossRef] [Green Version]
- Demissie, G.; Bitew, T.; Berhanu, T.; Teshome, K.; Tende, R.; Tefera, T.; Mugo, S. Response of the popular maize cultivars in Ethiopia to stem borers and postharvest pests. In Proceedings of the Consolidating Experiences from IRMA I, II, and III: Achievements, Lessons and Prospects, IRMA Project Document No. 17, Nairobi, Kenya, 23–27 February 2014. [Google Scholar]
- Assefa, T. Weed incidence and control in the major crops at Asosa. An overview. Arem 1999, 5, 14–26. [Google Scholar]
- Sisay, A.; Abebe, F.; Wako, K. Evaluation of three potential botanicals against sorghum covered smut (Sphacelotheca sorghi) at Bako, Western Oromia Ethiopia. Afr. J. Plant Sci. 2012, 6, 226–231. [Google Scholar] [CrossRef]
- Muktadir, M.A.; Adhikari, K.N.; Merchant, A.; Belachew, K.Y.; Vandenberg, A.; Stoddard, F.L.; Khazaei, H. Physiological and biochemical basis of faba bean breeding for drought adaptation—A Review. Agronomy 2020, 10, 1345. [Google Scholar] [CrossRef]
- Belachew, K.Y.; Nagel, A.K.; Poorter, H.; Stoddard, F.L. Association of shoot and root responses to water deficit in young faba bean (Vica faba L.) plants. Front. Plant Sci. 2019, 10, 1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, M. Nature and Management of Acid Soils in Ethiopia; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Zheng, S.J. Crop production on acid soils: Overcoming aluminum toxicity and phosphorus deficiency. Ann. Bot. 2010, 106, 183–184. [Google Scholar] [CrossRef]
- Belachew, K.Y.; Stoddard, F.L. Screening of faba bean (Vicia faba L.) accessions to acidity and aluminium stresses. PeerJ 2017, 5, e2963. [Google Scholar] [CrossRef]
Crop Category | Grain Yield Tonne/ha | Varieties Considered On-Farm and On-Station Trial Yield | References | ||||
---|---|---|---|---|---|---|---|
Average Actual Yield | On-Farm Trial Yield | On-Station Trial Yield | Highest Experimental Yield | ||||
Teff | 1.6 | 2.2 | 2.8 | 4.9 | 4 | [20] | [15,16,17,18,19,28] |
Maize | 3.5 | 6.5 | 8.1 | 11.6 | 6 | [29] | |
Sorghum | 2.4 | 3.3 | 4.2 | 5.3 | 5 | [30] | |
Wheat * | 2.4 | 3.7 | 4.5 | 6.6 | 10 | [22] | |
Faba bean | 1.9 | 3.1 | 4.1 | 6.7 | 5 | [24] | |
Common bean ** | 1.5 | 2.4 | 2.9 | 4.6 | 5 | [31] | |
Soybean | 2.1 | 1.7 | 2.4 | 6.6 | 4 | [31] |
Crop | Harvest Year | Yield Is Tonne/ha | (Ya/Yw) × 100 | ||
---|---|---|---|---|---|
Ya | Yw | Yp | |||
Common bean | 2003–2012 | 1.2 | 3.4 | 3.4 | 35.5 |
Maize | 2005–2017 | 2.8 | 14.3 | 15.8 | 19.7 |
Sorghum | 2005–2017 | 2.0 | 6.9 | 9.1 | 29.3 |
Wheat | 2005–2017 | 2.2 | 8.3 | 9.6 | 26.8 |
Crop | Improved Variety Use (%) | Fertilizer Use (%) | References | ||
---|---|---|---|---|---|
N | P2O5 | N + P2O5 | |||
Teff | 24 | 32 | 99 | 100 | [20,68,69,70,71] |
Maize | 59 | 62 | 41 | 84 | [21,72,73,74,75,76,77] |
Sorghum | 30 | 169 | 90 | 310 | [78,79,80] |
Wheat | 43 | 91 | 63 | 176 | [22,51,64,81] |
Faba bean | 42 | 76 | 94 | 221 | [24,63,82,83,84,85] |
Common bean | 86 | 68 | 60 | 107 | [25,86,87,88,89] |
Soybean | 160 | 125 | 159 | 145 | [60,90,91] |
Crop | Farmers’ Varietal Choice Parameters (Other Than Yield) | Reference |
---|---|---|
Faba bean | Seed size, disease resistance, earliness, cooking quality | [62,96] |
Common bean | Seed size and color, earliness; resistance to drought, bruchids, and disease | [57,97,98] |
Soybean | Earliness, seed size, and disease resistance | [99] |
Teff | Grain color and marketability, earliness, lodging resistance | [70,100,101] |
Maize | Earliness, plant height, pest and pathogen resistance | [102,103] |
Sorghum | Market value, cooking or feed quality, fuelwood | [94,95] |
Wheat | Disease resistance, drought tolerance, earliness, suitability for making injera * | [104,105] |
Crop | Biotic Stress | Yield Loss (%) * | Tolerant Varieties | References |
---|---|---|---|---|
Teff | Cutworms (Agrotis spp.) | |||
Root rot | ||||
Teff rust (Uromyces eragrostidis) | Dursi (Acc. 236952) | [19] | ||
Faba bean | Gall disease | 100 | Dosha, NC 58, Messay, Kassa | [125,126,127] |
Chocolate spot disease | 75 | Tumsa, Gebelcho, Mosissa (EH-99047-1) | [16,24,125,127,128] | |
Rust | Mosissa, | [16,125] | ||
Aschochyta blight | Mosissa | [16,125] | ||
Black root rot | Dida’a, Ashebeka | [1] | ||
Weeds | 49 | [129] | ||
Common bean | Alternaria leaf spot, Common bean bacterial blight, and Rust | Wabero, Gobu (Selian-97), Doyo (SAB 627) | [19,130] | |
Alternaria leaf spot, Common bean bacterial blight, and Rust, Anthracnose, root rot | Wabero, Gobu (Selian-97), Doyo (SAB 627), Fedis (ECAB0060), Hirna (ECAB 0203),Babile (ECAB 0247) | [16,19] | ||
Soybean | Weed competition | 78 | [131] | |
Wheat | Rust (Puccinia spp.) | 26 | FH4-2-11 | [30] |
Septria leaf bloch | ||||
Fusarium head blight | ||||
Maize | Grey leaf spot (GLS) (Cercospora zeae-maydis) | 21–37 | BH-660 | [132] |
Foliar diseases including GLS, TLB, CLR | 28–91 (TLB); | BH-546, BH-547, and BH-661 | [133] | |
MSV | Gambella Composite; Abo-Bako | [133] | ||
Maize stem borer | 7–55 | BH-660; CML-395/CML-202//142-1-e | [134] | |
Maize weevil | 20–100 | Horra; Melkasa-7; Melkasa-6Q | [134] | |
Weeds | 20–100 | [72,135] | ||
Sorghum | Anthracnose (Colletotrichum sublineolum) | |||
Smuts (Sphacelotheca spp.) | 19.4 | [136] | ||
Ergot (Sphacelia sorghi) | ||||
Grain molds |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belachew, K.Y.; Maina, N.H.; Dersseh, W.M.; Zeleke, B.; Stoddard, F.L. Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review. Agronomy 2022, 12, 2528. https://doi.org/10.3390/agronomy12102528
Belachew KY, Maina NH, Dersseh WM, Zeleke B, Stoddard FL. Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review. Agronomy. 2022; 12(10):2528. https://doi.org/10.3390/agronomy12102528
Chicago/Turabian StyleBelachew, Kiflemariam Yehuala, Ndegwa Henry Maina, Waga Mazengia Dersseh, Bantalem Zeleke, and Frederick L. Stoddard. 2022. "Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review" Agronomy 12, no. 10: 2528. https://doi.org/10.3390/agronomy12102528
APA StyleBelachew, K. Y., Maina, N. H., Dersseh, W. M., Zeleke, B., & Stoddard, F. L. (2022). Yield Gaps of Major Cereal and Grain Legume Crops in Ethiopia: A Review. Agronomy, 12(10), 2528. https://doi.org/10.3390/agronomy12102528