Mapping of Phenological Traits in Northeast China Maize (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Initial Assumptions
2.3.2. Raster Mapping of Phenological Stages
- (1)
- Sowing stage: The 192 maize phenology records used in this paper are known with acceptable accuracy. Hence, there is no need to reconstruct these dates.
- (2)
- Emergence stage: The missing records of the emergence stage were completed by establishing quantitative relationships between the emergence stage and the sowing stage, longitude, latitude, and altitude. Subsequently, the original records were replaced with the model-derived emergence data.
- (3)
- Three-leaf stage, seven-leaf stage, jointing stage, tasseling stage, and harvesting stage: The same method of integration and construction as that of the emergence stage was applied. Only the relationship between the phenological stage and its previous nearest phenological stage, longitude, latitude, and altitude were considered.
- (4)
- Flowering stage and silking stage: It was assumed that the maize entered the flowering stage 1 day after the tasseling stage and the maize entered the silking stage 2 days after the flowering stage.
2.3.3. Spatial Interpolation Accuracy
3. Results
3.1. Phenological Model
3.2. Model Accuracy Analysis
3.3. Raw and Fused Data Correlation Analysis
3.4. Phenological Maps
3.4.1. Sowing Stage (SW)
3.4.2. Emergence Stage (VE)
3.4.3. Three-Leaf Stage (V3)
3.4.4. Seven-Leaf Stage (V7)
3.4.5. Jointing Stage (JT)
3.4.6. Tasseling Stage (VT)
3.4.7. Flowering Stage (FR)
3.4.8. Silking Stage (R1)
3.4.9. Harvesting Stage (R6)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akram, M.A.; Wahid, A.; Abrar, M.; Manan, A.; Naeem, S.; Zahid, M.A.; Gilani, M.M.; Paudyal, R.; Gong, H.Y.; Ran, J.Z.; et al. Comparative study of six maize (Zea mays L.) Cultivars concerning cadmium uptake, partitioning and tolerance. Appl. Ecol. Environ. Res. 2021, 19, 2305–2331. [Google Scholar] [CrossRef]
- Shah, T.R.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, J.; Xu, Y.; Mu, J. Effects of climate change on cultivation patterns of spring maize and its climatic suitability in Northeast China. Agric. Ecosyst. Environ. 2015, 202, 178–187. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ehsanullah; Ashraf, U.; Tanveer, M.; Qamar, R.; Khan, I. Morphological and phenological attributes of maize affected by different tillage practices and varied sowing methods. Am. J. Plant Sci. 2014, 5, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Zhang, Y.; Sun, Z.; Zheng, J.; Bai, W.; Zhang, Y.; Liu, Y.; Feng, L.; Feng, C.; Zhang, Z.; et al. Morphological Plasticity of Root Growth under Mild Water Stress Increases Water Use Efficiency without Reducing Yield in Maize. Biogeosciences 2017, 14, 3851–3858. [Google Scholar] [CrossRef] [Green Version]
- Dabrowska-Zielinska, K.; Malinska, A.; Bochenek, Z.; Bartold, M.; Gurdak, R.; Paradowski, K.; Lagiewska, M. Drought model diss based on the fusion of satellite and meteorological data under variable climatic conditions. Remote Sens. 2020, 12, 2944. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, W.; Wang, J.; Xu, X.; Yan, G. Progress and application of integrating GIS and RS technology to monitor and forecast crop diseases and pests. Trans. Chin. Soc. Agric. Eng. 2008, 24, 331–336. [Google Scholar]
- Xue-Jun, C.; Guang-Cai, C.; Qun, S.; Dong-Bin, W.; Jing, C.; Ya-Xiong, Y.; Jie, L.; Wei, L. Altitude effects on maize growth period and quality traits. Acta Ecol. Sin. 2013, 33, 233–236. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Yin, X.; Zou, X.; Chen, F. Influence of climate change and mechanized harvest- 394 ing on the maize (Zea mays L.) Planting and northern limits in northeast China. J. Sci. Food 2020, 101, 3889–3897. [Google Scholar] [CrossRef]
- Mo, F.; Sun, M.; Liu, X.Y.; Wang, J.Y.; Zhang, X.C.; Ma, B.L.; Xiong, Y.C. Phenological responses of spring wheat and maize to changes in crop management and rising temperatures from 1992 to 2013 across the Loess Plateau. Field Crops Res. 2016, 196, 337–347. [Google Scholar] [CrossRef]
- Xiao, D.; Zhang, Y.; Bai, H.; Tang, J. Trends and climate response in the phenology of crops in northeast China. Front. Earth Sci. 2021, 9, 811621. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Xu, Y.; Hayashi, Y.; Zhang, Z.J.A. Climate changes and trends in phenology and yields of field crops in China, 1981–2000. Agric. For. Meteorol. 2006, 138, 82–92. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Yang, H.Z.; Qiao, G.X.; Zhang, G.X.; Zhong, T.S.; Li, X.T. Species diversity, fauna and distribution of aphids in Northeast China. In Proceedings of the 8th International Symposium on Aphids, Catania, Italy, 8–12 June 2009; pp. 199–204. [Google Scholar]
- Zhao, J.; Yang, X.; Liu, Z.; Lv, S.; Wang, J.; Dai, S. Variations in the potential climatic suitability distribution patterns and grain yields for spring maize in Northeast China under climate change. Clim. Chang. 2016, 137, 29–42. [Google Scholar] [CrossRef]
- Yang, X.; Ming, B.; Tao, H.; Wang, P. Spatial distribution characteristics and impact on spring maize yield of drought in Northeast China. Chin. J. Eco-Agric. 2015, 23, 758–767. [Google Scholar]
- Tian, B.; Zhu, J.; Nie, Y.; Xu, C.; Meng, Q.; Wang, P. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. J. Agron. Crops Sci. 2019, 205, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Wang, Y.; Uwimpaye, F.; Yan, Z.; Li, L.; Liu, X.; Shao, L. Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize. Agric. Water Manag. 2021, 245, 106628. [Google Scholar] [CrossRef]
- González-Longatt, F.; Medina, H.; González, J.S. Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela. Renew. Sustain. Energy 2015, 48, 1–16. [Google Scholar] [CrossRef]
- Kim, E.Y.; Koh, D.C.; Ko, K.S.; Yeo, I.W. Prediction of nitrate contamination of groundwater in the northern nonsan area using multiple regression analysis. J. Soil Groundw. Environ. 2008, 13, 57–73. [Google Scholar]
- Liu, Y.; Zhang, J.; Pan, T.; Ge, Q. Assessing the adaptability of maize phenology to climate change: The role of anthropogenic-management practices. J. Environ. Manag. 2021, 293, 112874. [Google Scholar] [CrossRef]
- Yin, W.; Feng, F.; Zhao, C.; Yu, A.; Hu, F.; Chai, Q.; Gan, Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeorol. 2016, 60, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Hu, J.; Fan, J.; Fu, W.; Hao, M. No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agric. Ecosyst. Environ. 2021, 309, 107288. [Google Scholar] [CrossRef]
- Chu, Z.; Guo, J.P.; Zhao, J.F. Impacts of future climate change on agroclimatic resources in Northeast China. J. Geogr. Sci. 2017, 27, 1044–1058. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.Q.; Liu, X.P.; Li, Y.; Wang, R. Impacts of northern expansion of typical corn planting regions in china under the background of climate warming and spatial evolution of cold damage. Aebmr Adv. Econ. 2018, 66, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Finch-Savage, W.E.; Dent, K.C.; Clark, L.J. Soak conditions and temperature following sowing influence the response of maize (Zea mays L.) seeds to on-farm priming (pre-sowing seed soak). Field Crops Res. 2004, 90, 361–374. [Google Scholar] [CrossRef]
- Chen, C.; Qian, C.; Deng, A.; Zhang, W. Progressive and Active Adaptations of Cropping System to Climate Change in Northeast China. Eur. J. Agron. 2012, 38, 94–103. [Google Scholar] [CrossRef]
- Kumar, R.; Farooq, Z.; Nabi, S.; Jhajharia, D. Ecohydrological modeling of irrigation scheduling of maize using time series analysis in the temperate region of Kashmir valley, India. Water Supply 2015, 15, 727–735. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, S.; Cai, K.; Huang, F.; Pan, B.; Wang, W. Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 2020, 242, 125128. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Chen, Y.; Li, Z.; Tao, F. ChinaCropPhen1km: A high-resolution crop phenological dataset for three staple crops in China during 2000–2015 based on leaf area index (LAI) products. Earth Syst. Sci. Data. 2020, 12, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Feng, L.; Yao, F. Improved maize cultivated area estimation over a large scale combining MODIS–EVI time series data and crop phenological information. ISPRS J. Photogramm. Remote Sens. 2014, 94, 102–113. [Google Scholar] [CrossRef]
- Ding, Y.; He, X.; Zhou, Z.; Hu, J.; Cai, H.; Wang, X.; Li, L.; Xu, J.; Shi, H. Response of vegetation to drought and yield monitoring based on NDVI and SIF. CATENA 2022, 219, 106328. [Google Scholar] [CrossRef]
- Safian, N.; Naderi, M.R.; Torabi, M.; Soleymani, A.; Salemi, H.R. Corn (Zea mays L.) And sorghum (Sorghum bicolor (L.) Moench) yield and nutritional quality affected by drought stress. Biocatal. Agric. Biotechnol. 2022, 102486. [Google Scholar] [CrossRef]
- Yang, C.; Lei, H. Climate and management impacts on crop growth and evapotranspiration in the north china plain based on long-term eddy covariance observation. Agric. For. Meteorol. 2022, 325, 109147. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, D.; Zhang, S.; Zhang, Z.; Roetter, R.P. Wheat Yield Benefited from Increases in Minimum Temperature in the Huang-Huai-Hai Plain of China in the Past Three Decades. Agric. For. Meteorol. 2017, 239, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the north china plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Jing, Y.; Liu, J.; Wan, L. Comparison of climate responses to orbital forcing at different latitudes during the holocene. Quat. Int. 2022, 622, 65–76. [Google Scholar] [CrossRef]
- Guo, M.; Wu, C.; Peng, J.; Lu, L.; Li, S. Identifying contributions of climatic and atmospheric changes to autumn phenology over mid-high latitudes of north-ern hemisphere. Glob. Planet. Chang. 2021, 197, 103396. [Google Scholar] [CrossRef]
- Wang, T.; Li, N.; Li, Y.; Lin, H.; Yao, N.; Chen, X.; Li Liu, D.; Yu, Q.; Feng, H. Impact of climate variability on grain yields of spring and summer maize. Comput. Electron. Agric. 2022, 199, 107101. [Google Scholar] [CrossRef]
- Radočaj, D.; Jug, I.; Vukadinović, V.; Jurišić, M.; Gašparović, M. The effect of soil sampling density and spatial autocorrelation on interpolation accuracy of chemical soil properties in arable cropland. Agronomy 2021, 11, 2430. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Shi, W.; Zhao, H.; Sun, C.; You, S. Study of mapping of maize growth period in Huang-Huai-Hai region. JiangSu Agric. Sci. 2022, accepted. [Google Scholar]
Data Source | Phenological Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|
SW | VE | V3 | V7 | JT | VT | FR | R1 | R6 | |
CMA | 61 | 60 | 61 | 60 | 61 | 61 | |||
IEDA, CAAS | 99 | 99 | 99 | 99 | |||||
CNKI | 32 | 32 | 8 | 11 | 23 | 11 | 4 | 10 | 18 |
SW | VE | V3 | V7 | JT | VT | FR | R1 | Long (°N) | Lat (°E) | Alt (m) | p | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VE | 0.51 | 0.41 | 0.44 | 0.01 | 0.02 | 0.75 | |||||||
V3 | 1.24 | 0.00 | 0.70 | ||||||||||
V7 | 0.96 | 0.00 | 0.58 | ||||||||||
JT | 0.88 | 0.39 | 0.00 | 0.62 | |||||||||
VT | 0.46 | 0.96 | 0.00 | 0.78 | |||||||||
FR | +3 | ||||||||||||
R1 | +2 | ||||||||||||
R6 | 0.76 | 0.01 | 0.02 | 0.49 |
Growth Period | Number of Validation Sites | MAE | RMSE (Days) |
---|---|---|---|
SW | 61 | 3.23 | 3.90 |
VE | 55 | 2.08 | 2.81 |
V3 | 60 | 2.40 | 3.05 |
V7 | 59 | 2.38 | 2.98 |
JT | 50 | 2.71 | 3.28 |
VT | 43 | 3.91 | 4.90 |
R6 | 34 | 2.34 | 3.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, X.; Gu, J.; Shi, W.; Zhao, H.; Sun, C.; You, S. Mapping of Phenological Traits in Northeast China Maize (Zea mays L.). Agronomy 2022, 12, 2585. https://doi.org/10.3390/agronomy12102585
Wang X, Li X, Gu J, Shi W, Zhao H, Sun C, You S. Mapping of Phenological Traits in Northeast China Maize (Zea mays L.). Agronomy. 2022; 12(10):2585. https://doi.org/10.3390/agronomy12102585
Chicago/Turabian StyleWang, Xiaowei, Xiaoyu Li, Jiatong Gu, Wenqi Shi, Haigen Zhao, Chen Sun, and Songcai You. 2022. "Mapping of Phenological Traits in Northeast China Maize (Zea mays L.)" Agronomy 12, no. 10: 2585. https://doi.org/10.3390/agronomy12102585
APA StyleWang, X., Li, X., Gu, J., Shi, W., Zhao, H., Sun, C., & You, S. (2022). Mapping of Phenological Traits in Northeast China Maize (Zea mays L.). Agronomy, 12(10), 2585. https://doi.org/10.3390/agronomy12102585