The Recovery of Vermicompost Sewage Sludge in Agriculture
Abstract
:1. Introduction
2. Eisenia fetida
3. The Physico-Chemical Properties of the Vermicompost SS
3.1. The Impact of Vermicomposting on the pH of SS
3.2. The Impact of the Vermicomposting Process on the Electrical Conductivity of Sewage Sludge
3.3. The Impact of the Vermicomposting Process on Total Organic Carbon
3.4. Carbon to Nitrogen Ratio (C/N)
3.5. Nitrogen Concentration
3.6. Phosphorus Concentration
4. The Content of Heavy Metals in Vermicomposted Sludge
5. The Impact of Using Vermicompost Sewage Sludge on Plant Growth
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rusănescu, C.O.; Voicu, G.; Paraschiv, G.; Begea, M.; Purdea, L.; Petre, I.C.; Stoian, E.V. Recovery of Sewage Sludge in the Cement Industry. Energies 2022, 15, 2664. [Google Scholar] [CrossRef]
- Neș, A.M.; Lakatos, E.S.; Orban, M.; Crişan, O.A. Sludge valorization from wastewater treatment plant towards a circular economy. Știință Și Ing. 2017, 32, 82. [Google Scholar]
- Purdea, L.; Rusănescu, C.O.; Țucureanu, M.C. Alternative for the Use of Sewage Sludge in Romania. Rev. Chim. 2019, 70, 1967–1970. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, S. Heavy metals distribution and their bioavailability in earthworm assistant sludge treatment wetland. J. Hazard. Mater. 2019, 366, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.A.; Arancon, N.Q.; Sherman, R.L. Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tu, J.C.; Zhao, Q.J.; Wei, L.L.; Yang, Q.Q. Heavy metal concentration and speciation of seven representative municipal sludge’s from wastewater treatment plants in Northeast China. Environ. Monit. Assess. 2012, 184, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Latare, A.M.; Kumar, O.; Singh, S.K.; Gupta, A. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice-wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Bourioug, M.; Alaoui-Sossé, L.; Laffray, X.; Raouf, N.; Benbrahim, M.; Badot, P.M.; Alaoui-Sossé, B. Evaluation of sewage sludge effects on soil properties, plant growth, mineral nutrition state, and heavy metal distribution in European larch seedlings (Larix decid). Arab. J. Sci. Eng. 2014, 39, 5325–5335. [Google Scholar] [CrossRef]
- Dume, B.; Hanc, A.; Svehla, P.; Michal, P.; Chane, A.D. Vermicomposting Technology as a Process Able to Reduce the Content of Potentially Toxic Elements in Sewage Sludge. Agronomy 2022, 12, 2049. [Google Scholar] [CrossRef]
- Li, X.; Xing, M.; Yang, J.; Huang, Z. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J. Hazard. Mater. 2011, 185, 740–748. [Google Scholar] [CrossRef]
- Yadav, K.D.; Tare, V.; Ahammed, M.M. Vermicomposting of source-separated human faeces for nutrient recycling. Waste Manag. 2010, 30, 50–56. [Google Scholar] [CrossRef]
- Adhikary, S. Vermicompost, the story of organic gold: A review. Agric. Sci. 2012, 13, 905–917. [Google Scholar] [CrossRef]
- Yadav, K.D.; Tare, V.; Ahammed, M.M. Integrated composting–vermicomposting process for stabilization of human faecal slurry. Ecol. Eng. 2012, 47, 24–29. [Google Scholar] [CrossRef]
- Lalander, C.V.; Komakech, A.J.; Vinnerås, B. Vermicomposting as manure management strategy for urban small-holder animal farms—Kampala case study. Waste Manag. 2015, 39, 96–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swati, A.; Hait, S. A comprehensive review of the fate of the pathogens during vermicomposting of organic wastes. J. Environ. Qual. 2018, 47, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A. Disposal and Recycling Routes for Sewage Sludge, Part 2—Regulatory Report, October 2001. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_disposal2.pdf (accessed on 12 October 2022).
- El Jawaher, A. Bin Dohaish, Vermicomposting of Organic Waste with Eisenia fetida Increases the Content of Exchangeable Nutrients in Soil. Pak. J. Biol. Sci. 2020, 23, 501–509. [Google Scholar]
- Kumar, R.; Kumar, S. Removal of pathogens during vermi-stabilization. J. Environ. Sci. Technol. 2011, 4, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Parvaresh, A.; Movahediyanatar, H.; Hamidiyan, L. Chemical quality and value vermicompost fertilizer made from sewage sludge. J. Water Wastewater 2004, 15, 29–33. [Google Scholar]
- Going on a Worm Hunt: Eisenia Fetida, a Stripy Worm. Available online: https://www.earthwormwatch.org/blogs/going-worm-hunt-eisenia-fetida-stripy-worm (accessed on 14 October 2022).
- Govindarajan, B.; Vigneeswaran, M.; Rameshkumar, G.; Prabakaran, V. Bioaccumulation studies of heavy metal on impact towards polluted soil using earthworm Lampito mauritii and Eisenia fetida. J. Ecobiotechnology 2010, 2, 6–12. [Google Scholar]
- Wu, Z.; Yin, B.; Song, X.; Qiu, J.; Cao, L.; Zhao, Q. Effects of Salinity on Earthworms and the Product During Vermicomposting of Kitchen Wastes. Int. J. Environ. Res. Public Health 2019, 16, 4737. [Google Scholar] [CrossRef] [Green Version]
- Owojori, O.J.; Reinecke, A.J.; Voua-Otomo, P.; Reinec, S.A. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia 2009, 52, 351–360. [Google Scholar] [CrossRef]
- Micha Kerr, M.; Stewart, A.J. Tolerance test of Eisenia fetida for sodium chloride. J. Undergrad. Res. 2003, 3. Available online: https://www.osti.gov/biblio/1051306 (accessed on 14 October 2022).
- Munroe, G. Manual of on-farm vermicomposting and vermiculture. Org. Agric. Cent. Can. 2007, 39, 40. [Google Scholar]
- Dominguez, J.; Edwards, C. Biology and Ecology of Earthworm Species Used for Vermicomposting by Taylor & Francis Group. In Vermiculture Technology. Earthworms, Organic Wastes, and Environmental Management; Edwards, C.A., Arancon, N.Q., Sherman, R., Eds.; CRC Press: Boca Raton, FL, USA, 2010; 587p. [Google Scholar]
- Hait, S.; Tare, V. Vermistabilization of primary sewage sludge. Bioresour. Technol. 2011, 102, 2812–2820. [Google Scholar] [CrossRef]
- Komakech, A.J.; Zurbrügg, C.; Miito, G.J.; Wanyama, J.; Vinnerås, B. Environmental impact from vermicomposting of organic waste in Kampala Uganda. J. Environ. Manag. 2016, 181, 395–402. [Google Scholar] [CrossRef]
- Kapoor, J.; Sharma, S.; Rana, N.K. Vermicomposting for organic waste management. Int. J. Recent Sci. Res. 2015, 6, 7956–7960. [Google Scholar]
- Mupambwa, H.A.; Mnkeni, P.N. Stocking Density Optimization for Enhanced Bioconversion of Fly Ash Enriched Vermicompost. Environ. Qual. 2016, 45, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Unuofin, F.O.; Mnkeni, P.N. Optimization of Eisenia fetida stocking density for the bioconversion of rock phosphate enriched cow dung-waste paper mixtures. Waste Manag. 2014, 34, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Hanc, A.; Hrebeckova, T.; Pliva, P.; Cajthaml, T. Vermicomposting of sludge from a malt house. Waste Manag. 2020, 118, 232–240. [Google Scholar] [CrossRef]
- Hait, S.; Tare, V. Transformation and availability of nutrients and heavy metals during integrated composting–vermicomposting of sewage sludges. Ecotoxicol. Environ. Saf. 2012, 79, 214–224. [Google Scholar] [CrossRef]
- Khwairakpam, M.; Bhargava, R. Vermitechnology for sewage sludge recycling. J. Hazard. Mater. 2009, 161, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhu, P.; Xue, J. Comparative study on physical and chemical characteristics of sludge vermicomposted by Eisenia fetida. Procedia Environ. Sci. 2012, 16, 418–423. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Ali, A.; Xu, Y.; Abdelrahman, H.; Li, R.; Lin, Y.; Bolan, N.; Shaheen, S.; Rinklebe, J.; Zhang, Z. Earthworms as candidates for remediation of potentially toxic elements contaminated soils and mitigating the environmental and human health risks: A review. Environ. Int. 2022, 158, 106924. [Google Scholar] [CrossRef]
- Del Aguila Juárez, P.; Lugo de la Fuente, J.A.; Paulín, R.V. Vermicomposting as a process to stabilize organic waste and sewage sludge as an apllication for soil. Trop. Subtrop. Agroecosyst. 2011, 14, 949–963. [Google Scholar]
- Srut, M.; Menke, S.; Hockner, M.; Sommer, S. Eartworms and cadmium- Heavy metal resistant gut bacteria as indicators for heavy metal pollution in soils? Ecotox. Environ. Safe. 2019, 171, 843–853. [Google Scholar] [CrossRef]
- Lanno, R.P.; Oorts, K.; Smolders, E.; Albanese, K.; Chowdhury, M.J. Effects of soil properties on the toxicity and bioaccumulation of lead in soil invertebrates. Environ. Toxicol. Chem. 2019, 38, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Delibacak, S.; Voronina, L.; Morachevskay, E.; Onguna, A.R. Use of sewage sludge in agricultural soils: Useful or harmful. Eurasian J. Soil Sci. 2020, 9, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Amouei1, A.; Yousefi, Z.; Khosravi, T. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. J. Environ. Health Sci. Eng. 2017, 15, 5. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J. Hazard. Mater. 2009, 163, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Malinska, K.; Zabochnicka-Swiatek, M.; Cáceres, R.; Marfà, O. The effect of precomposted sewage sludge mixture amended with biochar on the growth and reproduction of Eisenia fetida during laboratory vermicomposting. Ecol. Eng. 2016, 90, 35–41. [Google Scholar] [CrossRef]
- Rorat, A.; Suleiman, H.; Grobelak, A.; Grosser, A. Interactions between sewage sludge-amended soil and earthworms—Comparison between Eisenia fetida and Eisenia andrei composting species. Env. Sci. Pollut. Res. 2016, 23, 3026–3035. [Google Scholar] [CrossRef] [PubMed]
- SAGARPA. Norma Mexicana de Humus y Lombriz, Especificaciones y Métodos de Prueba. 2007. Available online: www.Ordenjuicio.gob.mx/FEDERAL/PE/ADF/SAGARPA/Normas/Oficiales/nmx-ff-109-scfi2007.pdf (accessed on 28 September 2022).
- Karimi, H.; Mokhtari, M.; Salehi, M.; Sojoudi, S.; Ebrahimi, A. Changes in microbial pathogen dynamics during vermicomposting mixture of cow manure–organic solid waste and cow manure—sewage sludge. Int. J. Recycl. Org. Waste Agricult. 2017, 6, 57–61. [Google Scholar] [CrossRef] [Green Version]
- US. EPA. A Plain English Guide to the EPA Part 503 Biosolids Rule; US EPA, Office of Wastewater Management: Washington, DC, USA, 1994. Available online: https://www.epa.gov/sites/default/files/2018-12/documents/plain-english-guide-part503-biosolids-rule.pdf (accessed on 10 October 2022).
- Yadav, A.; Garg, V.K. Recycling of organic wastes by employing Eisenia fetida. Bioresour. Technol. 2011, 102, 2874–2880. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.A.; Akila, S.; Kale, R.D. Management of Secondary Sewage Sludge by Vermicomposting for Use as Soil Amendment. Glob. J. Biotechnol. Biochem. 2012, 7, 13–18. [Google Scholar]
- Azarmi, R.; Giglou, M.T.; Taleshmikail, R.D. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 2008, 7, 2397–2401. [Google Scholar]
- Lv, B.; Zhang, D.; Cui, Y.; Yin, F. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge. Bioresour. Technol. 2018, 268, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Negi, R.; Suthar, S. Vermistabilization of paper mill wastewater sludge using Eisenia fetida. Bioresour. Technol. 2013, 128, 193–198. [Google Scholar] [CrossRef]
- Kujawska, J.; Wójcik-Oliveira, K. Effect of Vermicomposting on the Concentration of Heavy Metals in Soil with Drill Cuttings. J. Ecol. Eng. 2019, 20, 1. [Google Scholar] [CrossRef]
- Heggelund, L.R.; Diez-Ortiz, M.; Lofts, S.; Lahive, E.; Jurkschat, K.; Wojnarowicz, J.; Cedergreen, N.; Spurgeon, D.; Svendsen, C. Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 2014, 8, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, A.; Biswas, S.; Bora, J.; Bhattacharya, S.; Kumar, M. Effect of vermicomposting on copper and zinc removal in activated sludge with special emphasis on temporal variation. Ecohydrol. Hydrobiol. 2015, 15, 101–107. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Megharaj, M. Mercury toxicity to Eisenia fetida in three different soils. Environ. Sci. Pollut. Res. 2017, 24, 1261–1269. [Google Scholar] [CrossRef]
- Mohan, S.M.; Hafsa, K. Biodegradation of Food Waste and Raw Vegetable Peels through Composting and Vermicomposting using sp. Eudrilus eugeniae. J. Solid Waste Technol. Manag. 2013, 39, 25–34. [Google Scholar] [CrossRef]
- EU. On the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge Is Used in Agriculture (86/278/EEC). 1986. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31986L0278 (accessed on 14 October 2022).
- Salado, R.; Vencovsky, D.; Daly, E.; Zamparutti, T.; Palfrey, R. Environmental, economic and social impacts of the use of sewage sludge on land. Final Report Part II: Report on Options and Impacts 2008. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/part_ii_report.pdf (accessed on 14 October 2022).
- Karimi, H.; Rezvani, M.; Mohammadzadeh, M.; Mohammadzadeh, M.; Eshaghi, Y.; Mokhtari, M. Pathogens’ Reduction in Vermicompost Process Resulted from the Mixed Sludge Treatments-Household Wastes. JEHSD 2016, 1, 153–158. [Google Scholar]
- Azizi, A.B.; Choy, M.Y.; Noor, Z.M.; Noorlidah, A. Effect on heavy metals concentration from vermiconversion of agro-waste mixed with landfill leachate. Waste Manag. 2015, 38, 431–435. [Google Scholar] [CrossRef]
- Suthar, S. Pilot-scale vermireactors for sewage sludge stabilization and metal remediation process: Comparison with small-scale vermireactors. Ecol. Eng. 2010, 36, 703–712. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Yang, J.; Xing, M.; Li, X.; Yi, D.; Deng, D. Earthworm–microorganism interactions: A strategy to stabilize domestic wastewater sludge. Water Res. 2010, 44, 2572–2582. [Google Scholar] [CrossRef]
- Parseh, I.; Mousavi, K.; Badieenejad, A.; Mehdi, M.; Mofrad, G.; Hashemi, M.; Azadbakht, O.; Karimi, H. Microbial and Composition Changes during Vermicomposting Process Resulting from Decomposable Domestic Waste, Cow Manure and Dewatered Sludge. Int. J. Environ. Health Eng. 2022, 10, 3. [Google Scholar]
- Paul, S.; Goswami, L.; Pegu, R.; Chatterjee, S.K.; Bhattacharya, S.S. Epigenetic regulations enhance adaptability and valorization efficiency in Eisenia fetida and Eudrilus eugeniae during vermicomposting of textile sludge: Insights on repair mechanisms of metal-induced genetic damage and oxidative stress. Bioresour. Technol. 2022, 345, 126493. [Google Scholar] [CrossRef]
- Miguel, A.; Domínguez-Crespo, Z.; Sánchez-Hernández, E.; Aidé, M. Effect of the Heavy Metals Cu, Ni, Cd and Zn on the Growth and Reproduction of Epigeic Earthworms (E. fetida) during the Vermistabilization of Municipal Sewage Sludge. Water Air Soil Pollut. 2012, 223, 915–931. [Google Scholar]
- Lazcano, C.; Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In Soil Nutrients; Arancon, N.Q., Edwards, C.E., Atiyeh, R.M., Metzger, J.D., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011. [Google Scholar]
- Arancon, N.Q.; Edwards, C.A.; Atiyeh, R.; Metzger, J.D. Effects of vermicompost produced from food waste on the growth and yields of greenhouse peppers. Bioresour. Technol. 2004, 93, 139–144. [Google Scholar] [CrossRef]
- Argüello, J.A.; Ledesma, A.; Núñez, S.B.; Rodríguez, C.H.; Díaz Goldfarb, M.D.C. Vermicompost effects on bulbing dynamics nonstructural carbohydrate content, yield, and quality of ‘Rosado Paraguayo’ garlic bulbs. Hortscience 2006, 41, 589–592. [Google Scholar] [CrossRef] [Green Version]
- Lazcano, C.; Arnold, J.; Tato, A.; Zaller, J.G.; Domínguez, J. Compost and vermicompost as nursery pot components: Effects on tomato plant growth and morphology. Span. J. Agric. Res. 2009, 7, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Gajalakshmi, S.; Abbasi, S.A. Neem leaves as a source of fertilizer-cum-pesticide vermicompost. Bioresour. Technol. 2004, 92, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Cabanas-Echevarría, M.; Torres–García, A.; Díaz-Rodríguez, B.; Ardisana, E.F.H.; Creme-Ramos, Y. Influence of three bioproducts of organic origin on the production of two banana clones (Musa spp AAB.) obtained by tissue cultures. Alimentaria 2005, 369, 111–116. [Google Scholar]
- Wang, D.; Shi, Q.; Wang, X.; Wei, M.; Hu, J.; Liu, J.; Yang, F. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol. Fertil. Soils 2010, 46, 689–696. [Google Scholar] [CrossRef]
- Peyvast, G.; Olfati, J.A.; Madeni, S.; Forghani, A. Effect of vermicompost on the growth and yield of spinach (Spinacia oleracea L.). J. Food Agric. Environ. 2008, 6, 110–113. [Google Scholar]
- Gupta, R.; Garg, V.K. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 2008, 153, 1023–1030. [Google Scholar] [CrossRef]
- Ozdemir, S.; Dede, G.; Dede, O.H.; Turp, S.M. Composting of sewage sludge with mole cricket: Stability, maturity and sanitation aspects. Int. J. Environ. Sci. Technol. 2019, 16, 5827–5834. [Google Scholar] [CrossRef]
- Villar, I.; Alves, D.; Pérez-Díaz, D.; Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 2016, 48, 409–417. [Google Scholar] [CrossRef]
- Rusănescu, C.O.; Rusănescu, M.; Jinescu, C.; Durbacă, I. Recovery of Treated Sludge. Rev.Chim. 2019, 70, 3477–3481. [Google Scholar] [CrossRef]
- Ulmanu, M.; Matsi, T.; Gament, E.; Olănescu, G.; Predescu, C.; Sohaciu, M. The remedial treatment of soil polluted with heavy metals using fly ash. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2007, 69, 109–116. [Google Scholar]
- Rékási, M.; Mazsu, N.; Draskovits, E.; Bernhardt, B.; Szabó, A.; Rivier, P.A.; Farkas, C.; Borsányi, B.; Pirkó, B.; Molnár, S.; et al. Comparing the agrochemical properties of compost and vermicomposts produced from municipal sewage sludge digestate. Bioresour. Technol. 2019, 291, 121861. [Google Scholar] [CrossRef] [PubMed]
- Spurgeon, D.J.; Hopkin, S.P. Comparisons of metal accumulation and excretion kinetics in earthworms (Eisenia fetida) exposed to contaminated field and laboratory soils. Appl. Soil Ecol. 1999, 11, 227–243. [Google Scholar] [CrossRef]
- Iwai, C.B.; Ta-Oun, M.; Chuasavatee, T.; Boonyotha, P. Management of Municipal Sewage Sludge by Vermicomposting Technology: Converting a Waste into a Bio fertilizer for Agriculture. Int. J. Environ. Rural. Dev. 2013, 4, 169–174. [Google Scholar]
- Panday, R.; Basnet, B.B.; Bhatt, P.S.; Tamrakar, A.S. Bioconcentration of heavy metals in vermicomposting earthworms (Eisenia fetida, Perionyx excavatus and Lampito mauritii) InNepal. J. Microbiol. Biotechnol. Food Sci. 2014, 3, 416–418. [Google Scholar]
- Suthar, S. Vermistabilization of wastewater sludge from milk processing industry. Ecol. Eng. 2012, 47, 115–119. [Google Scholar] [CrossRef]
Description | Humidity (%) | EC (μs/cm) | OM (%) | pH | TOC (%) | N (%) | C/N | P (%) | Ash (%) | R |
---|---|---|---|---|---|---|---|---|---|---|
VDS Ef | NM | 3990 ± 47 | NM | 5.49 ± 0.01 | 253.2 ± 3.8 | 35.58 ± 0.7 | 7.11 | NM | NM | [10] |
SSS | NM | 1071 ± 21 | NM | 6.77 ± 0.01 | 368.5 ± 2.0 | 35.80 ± 0.3 | 10.29 | NM | NM | [10] |
VDS Ef | 70 | NM | NM | 7.0 ± 0.04 | 220.8 ± 1.6 | 28.8 ± 2.7 | 7.7 ± 0.3 | 46.7 ± 0.24 | NM | [42] |
SS | 65 | NM | NM | 7.2 ± 0.03 | 242.0 ± 2.81 | 27.4 ± 0.29 | 8.8 ± 0.13 | 44.2 ± 0.1 | NM | [42] |
VDS Ef | 32.2 ± 3.4 | 358 ± 4 | 67.8 ± 3.2 | 8 ± 0.5 | 37.6 ± 2.2 | 2.6 ± 0.5 | 14.5 ± 2 | 0.5 ± 0.3 | 32.2 ± 1.5 | [41] |
SSS | 48.2 ± 1.4 | 1041 ± 15 | 90 ± 1.2 | 7.3 ± 0.5 | 50.3 ± 0.8 | 2.2 ± 0.4 | 22.5 ± 3 | 0.3 ± 0.2 | 9.4 ± 1.6 | [41] |
VDS Ef | 21.2 ± 3 | 636 ± 12 | 63 ± 3 | 7.7 ± 1.2 | 33.5 ± 2.5 | 2.2 ± 0.3 | 15 ± 6 | 0.6 ± 0.2 | 39.5 ± 1.8 | [41] |
SSS | 53.8 ± 5 | 1485 ± 6 | 80.5 ± 3 | 6.7 ± 0.8 | 44.5 ± 1 | 1.5 ± 0.1 | 26.5 ± 8 | 0.4 ± 0.1 | 19.5 ± 1.5 | [41] |
VDS Ef | 81.4 ± 0.4 | NM | 54.1 ± 0.5 | 5.24 | 26.3 | 2.7 | 9.7 | 29.5 ± 0.7 | 45.9 ± 0.5 | [43] |
SSS | 78.9 ± 0.3 | NM | 63.6 ± 0.7 | 7.68 | 35.3 | 4.6 | 7.7 | 23.5 ± 0.7 | 36.4 ± 0.7 | [43] |
SSS | NM | NM | NM | 6.30 ± 0.27 | 285.8 ± 11.44 | 15.68 ± 0.48 | 18.25 ± 1.31 | 5.60 ± 2.00 | NM | [44] |
VDS Ef | NM | NM | NM | 5.66 ± 0.02 | 276.88 ± 6.13 | 15.96 ± 0.00 | 17.35 ± 0.38 | 4.76 ± 0.11 | NM | [44] |
VDS Ea | NM | NM | NM | 5.64 ± 0.02 | 272.56 ± 7.46 | 9.94 ± 1.11 | 27.59 ± 2.22 | 4.06 ± 0.04 | NM | [44] |
SSS | NM | 2800 ± 0.08 | NM | 6.88 ± 0.1 | 33.54 ± 0.44 | 1.31 ± 0.1 | 25.6 ± 1.5 | 7.97 ± 0.1 | 42.16 ± 0.5 | [34] |
VDS Ef | NM | 5000 ± 0.11 | NM | 6.7 ± 0.1 | 30.1 ± 0.2 | 3.2 ± 0.23 | 9.8 | 14.6 ± 0.2 | 47.9 ± 0.5 | [34] |
VDS Eu | NM | 5000 ± 0.09 | NM | 6.8 ± 0.1 | 28.2 ± 0.13 | 3.7 ± 0.24 | 7.8 | 12.6 ± 0.2 | 51.3 ± 0.7 | [34] |
VDS P.ex | NM | 5000 ± 0.12 | NM | 6.9 ± 0.2 | 25 ± 0.15 | 3.6 ± 0.25 | 7 | 11.9 ± 0.1 | 56.8 ± 0.6 | [34] |
VDS | 20–40 | ≤4000 | 20–50 | 5.5–8.54 | - | 1–4 | ≤20 | - | - | [45] |
Description | K (%) | Ca (%) | Mg (%) | P (%) | R |
---|---|---|---|---|---|
VDS Ef | 6.8 ± 0.04 | 58.9 ± 0.21 | 13.8 ± 0.1 | 12.9 ± 0.04 | [41] |
SSS | 6.4 ± 0.04 e | 58.7 ± 1.1 | 12.9 ± 0.1 | 11.7 ± 0.2 | [41] |
VDS Ef | 3.57 ± 0.20 | 52.00 ± 2.83 | 6.1 ± 0.1 | 29.5 ± 0.7 | [43] |
SSS | 2.70 ± 0.14 | 47.00 ± 0.00 | 5.0 ± 0.1 | 23.5 ± 0.7 | [43] |
VDS Ef | 4.9 ± 0.05 | 47.6 ± 0.5 | 24.5 ± 0.5 | 46.7 ± 0.24 | [42] |
SSS | 5.1 ± 0.05 | 46.7 ± 0.24 | 23.7 ± 0.16 | 44.2 ± 0.1 | [42] |
SSS | 0.86 ± 0.56 | 5.39 ± 0.68 | NM | 7.97 ± 0.1 | [34] |
VDS Ef | 1.2 ± 0.87 | 10.7 ± 0.89 | NM | 14.6 ± 0.2 | [34] |
VDS Eu | 1.2 ± 0.86 | 10.3 ± 0.98 | NM | 12.6 ± 0.2 | [34] |
VDS P.ex | 1.2 ± 0.89 | 14.5 ± 1.07 | NM | 11.9 ± 0.1 | [34] |
Type | Cd | Fe | Cu | Cr | Ni | Pb | Zn | R |
---|---|---|---|---|---|---|---|---|
VDS Ef | 0.68 ± 0.051 | NM | 37 ± 4.69 | NM | 10.04 ± 0.51 | 45 ± 2.73 | 109.85 ± 7.18 | [35] |
SSS | 2.57 ± 0.07 | NM | 105 ± 10.92 | NM | 68.73 ± 7.83 | 116 ± 8.47 | 265 ± 19.22 | [35] |
VDS Ef | 0.8 ± 0.5 | 4412 ± 15 | NM | 0 | 0 | 2 ± 0.3 | NM | [41] |
SSS | 1.7 ± 0.4 | 6098 ± 35 | NM | 27 ± 2 | 16.8 ± 7 | 16 ± 7 | NM | [41] |
VDS Ef | 0.12 ± 0.1 | 1506 ± 6 | NM | 0 | 0 | 0 | NM | [41] |
SSS | 0.6 ± 0.2 | 3927 ± 8 | NM | 9.5 ± 0.4 | 19.8 ± 1.2 | 13.4 ± 3 | NM | [41] |
S pH > 6.5 | 20 | NM | 500 | NM | 200 | 1000 | 1000 | [35] |
S pH < 6.5 | 5 | NM | 250 | NM | 100 | 300 | 500 | [35] |
S | 1–3 | NM | 50–140 | - | 30–75 | 50–300 | 150–300 | [58] |
SSA | 20–40 | - | 1000–1750 | - | 300–400 | 750–1200 | 2500–4000 | [58] |
SSS | 1.05 ± 0.11 | NM | 120.69 ± 15.49 | NM | 10.53 ± 0.38 | 44.33 ± 4.75 | 509.72 ± 92.12 | [44] |
VDS Ef | 0.89 ± 0.01 | NM | 115.18 ± 0.81 | NM | 10.35 ± 1.17 | 43.27 ± 0.53 | 550.78 ± 4.48 | [44] |
VDS Ea | 0.99 ± 0.03 | NM | 99.1 ± 0.50 | NM | 8.13 ± 0.13 | 36.6 ± 1.94 | 465.72 ± 5.14 | [44] |
SSS | NM | 0.63 ± 0.03 | 158.2 ± 20 | NM | NM | 49.4 ± 6 | 612 ± 45 | [34] |
VDS Ef | NM | 0.97 ± 0.06 | 158.2 ± 27 | NM | NM | 30.6 ± 3.8 | 513 ± 42 | [34] |
VDS Eu | NM | 0.98 ± 0.06 | 157.2 ± 25 | NM | NM | 36.6 ± 3.2 | 498.26 ± 35 | [34] |
VDS P.ex | NM | 0.95 ± 0.05 | 136.4 ± 31 | NM | NM | 35.8 ± 2.5 | 473.2 ± 31 | [34] |
Type | Cr | Cd | Cu | Ni | Pb | Zn | R |
---|---|---|---|---|---|---|---|
Ef | NM | 7.64 ± 0.35 | 89.93 ± 7.82 | 39.54 ± 1.78 | 51.33 ± 1.97 | 348.75 ± 23.86 | [35] |
BAF Ef | NM | 2.973 | 0.856 | 0.575 | 0.443 | 1.316 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusănescu, C.O.; Rusănescu, M.; Voicu, G.; Paraschiv, G.; Biriș, S.Ș.; Popescu, I.N. The Recovery of Vermicompost Sewage Sludge in Agriculture. Agronomy 2022, 12, 2653. https://doi.org/10.3390/agronomy12112653
Rusănescu CO, Rusănescu M, Voicu G, Paraschiv G, Biriș SȘ, Popescu IN. The Recovery of Vermicompost Sewage Sludge in Agriculture. Agronomy. 2022; 12(11):2653. https://doi.org/10.3390/agronomy12112653
Chicago/Turabian StyleRusănescu, Carmen Otilia, Marin Rusănescu, Gheorghe Voicu, Gigel Paraschiv, Sorin Ștefan Biriș, and Ileana Nicoleta Popescu. 2022. "The Recovery of Vermicompost Sewage Sludge in Agriculture" Agronomy 12, no. 11: 2653. https://doi.org/10.3390/agronomy12112653
APA StyleRusănescu, C. O., Rusănescu, M., Voicu, G., Paraschiv, G., Biriș, S. Ș., & Popescu, I. N. (2022). The Recovery of Vermicompost Sewage Sludge in Agriculture. Agronomy, 12(11), 2653. https://doi.org/10.3390/agronomy12112653