Detection of Planting Systems in Olive Groves Based on Open-Source, High-Resolution Images and Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Image Acquisition
2.2. Procedure
2.2.1. PNOA Dataset Generation
2.2.2. Mini-Crop Set Generation
2.2.3. Planting System Classifier Based on Convolutional Neural Network (CNN)
- Accuracy: The accuracy computed the fraction of correct predictions among all the predictions done for the evaluation set.
- Precision (macro): The precision was the ratio Tp/(Tp + Fp) where Tp was the number of true positives and Fp was the number of false positives. For this multiclass classification problem, the precision was computed as the average precision for every single label (macroscopic precision).
- ROC AUC 1 vs. 1 (macro): The area under Receiver Operating Characteristic Curve (ROC AUC) indicated the area under the trade-off curve between the true positive rate and the false positive rate. When 1 vs. 1, the AUC was computed for all possible pairwise combinations of classes available and averaged (macro).
- ROC AUC 1 vs. Others (macro): The ROC AUC 1 vs. Others (macro) was similar to the 1 vs. 1 AUC, but it computed the area of each class against the rest.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT (Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 4 October 2022).
- Loumou, A.; Giourga, C. Olive Groves: “The Life and Identity of the Mediterranean”; Kluwer Academic Publishers: Alphen aan den Rijn, The Netherlands, 2003; Volume 20. [Google Scholar]
- Maps and Statistics of the World and Regions. Available online: https://www.atlasbig.com/en-us/countries-olive-production (accessed on 4 October 2022).
- Stroosnijder, L.; Mansinho, M.I.; Palese, A.M. OLIVERO: The project analysing the future of olive production systems on sloping land in the Mediterranean basin. J. Environ. Manag. 2008, 89, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Encuesta Sobre Superficies y Rendimientos de Cultivos. Análisis de Plantaciones de Olivar en España (Survey of Surfaces and Crop Yields. Analysis of Olive Groves in Spain); Ministry of Agriculture, Fisheries and Food: Palacio de Fomento Madrid, Spain, 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/olivar2019_tcm30-122331.pdf (accessed on 4 October 2022).
- Análisis de la Densidad en las Plantaciones de Olivar en Andalucía (Density Analysis in Olive Groves of Andalusia); Government of the Andalusian Government. General Secretariat of Agriculture, Livestock and Food: Palacio de Fomento Madrid, Spain, 2019. Available online: https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/19/11/An%C3%A1lisis%20densidad%20olivar%20andaluz%20v3.pdf (accessed on 4 October 2022).
- Council of Europe Landscape Convention/Official Website. Available online: https://www.coe.int/en/web/landscape (accessed on 4 October 2022).
- Europena Commision. The New Common Agricultural Policy: 2023–2027. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/new-cap-2023-27_en (accessed on 4 October 2022).
- lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Gómez, J.A.; Montero, A.S.; Guzmán, G.; Soriano, M.A. In-Depth Analysis of Soil Management and Farmers’ Perceptions of Related Risks in Two Olive Grove Areas in Southern Spain. Int. Soil Water Conserv. Res. 2021, 9, 461–473. [Google Scholar] [CrossRef]
- Guzmán, G.; Boumahdi, A.; Gómez, J.A. Expansion of Olive Orchards and Their Impact on the Cultivation and Landscape through a Case Study in the Countryside of Cordoba (Spain). Land Use Policy 2022, 116, 106065. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Grybas, H.; Congalton, R.G. A Comparison of Multi-Temporal RGB and Multispectral UAS Imagery for Tree Species Classification in Heterogeneous New Hampshire Forests. Remote Sens. 2021, 13, 2631. [Google Scholar] [CrossRef]
- Aparecido dos Santos, A.; Marcato Junior, J.; Santos Araújo, M.; Robledo Di Martini, D.; Castelão Tetila, E.; Lopes Siqueira, H.; Aoki, C.; Eltner, A.; Takashi Matsubara, E.; Pistori, H.; et al. Assessment of CNN-Based Methods for Individual Tree Detection on Images Captured by RGB Cameras Attached to UAVs. Sensors 2019, 19, 3595. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.; Xia, K.; Yang, Y.; Du, X.; Feng, H. Evaluation of Dimensionality Reduction Methods for Individual Tree Crown Delineation Using Instance Segmentation Network and UAV Multispectral Imagery in Urban Forest. Comput Electron. Agric. 2021, 191, 106506. [Google Scholar] [CrossRef]
- Osco, L.P.; de Arruda, M.D.S.; Marcato Junior, J.; da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T.; et al. A Convolutional Neural Network Approach for Counting and Geolocating Citrus-Trees in UAV Multispectral Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, J.; Member, S.; Chapman, M.A. Quantifying the Carbon Storage in Urban Trees Using Multispectral ALS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3358–3365. [Google Scholar] [CrossRef]
- Kurihara, J.; Koo, V.-C.; Guey, C.W.; Lee, Y.P.; Abidin, H. Early Detection of Basal Stem Rot Disease in Oil Palm Tree Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging. Remote Sens. 2022, 14, 799. [Google Scholar] [CrossRef]
- Abbas, S.; Peng, Q.; Wong, M.S.; Li, Z.; Wang, J.; Ng, K.T.K.; Kwok, C.Y.T.; Hui, K.K.W. Characterizing and Classifying Urban Tree Species Using Bi-Monthly Terrestrial Hyperspectral Images in Hong Kong. ISPRS J. Photogramm. Remote Sens. 2021, 177, 204–216. [Google Scholar] [CrossRef]
- Sun, X.; Qu, Y.; Gao, L.; Sun, X.; Qi, H.; Zhang, B.; Shen, T. Target Detection through Tree-Structured Encoding for Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4233–4249. [Google Scholar] [CrossRef]
- Skoneczny, H.; Kubiak, K.; Spiralski, M.; Kotlarz, J. Fire Blight Disease Detection for Apple Trees: Hyperspectral Analysis of Healthy, Infected and Dry Leaves. Remote Sens. 2020, 12, 2101. [Google Scholar] [CrossRef]
- Zakrzewska, A.; Kopeć, D.; Krajewski, K.; Charyton, J. Canopy Temperatures of Selected Tree Species Growing in the Forest and Outside the Forest Using Aerial Thermal Infrared (3.6–4.9 Μm) Data. Eur. J. Remote Sens. 2022, 55, 313–325. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Soto-Valles, F.; Jiménez-Buendía, M.; Navarro-Hellín, H.; Torres-Sánchez, R. Intelligent Thermal Image-Based Sensor for Affordable Measurement of Crop Canopy Temperature. Comput Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- Noguera, M.; Millán, B.; Pérez-Paredes, J.J.; Ponce, J.M.; Aquino, A.; Andújar, J.M. A New Low-Cost Device Based on Thermal Infrared Sensors for Olive Tree Canopy Temperature Measurement and Water Status Monitoring. Remote Sens. 2020, 12, 723. [Google Scholar] [CrossRef] [Green Version]
- Sepulcre-Cantó, G.; Zarco-Tejada, P.J.; Jiménez-Muñoz, J.C.; Sobrino, J.A.; de Miguel, E.; Villalobos, F.J. Detection of Water Stress in an Olive Orchard with Thermal Remote Sensing Imagery. Agric. For. Meteorol. 2006, 136, 31–44. [Google Scholar] [CrossRef]
- Hanssen, F.; Barton, D.N.; Venter, Z.S.; Nowell, M.S.; Cimburova, Z. Utilizing LiDAR Data to Map Tree Canopy for Urban Ecosystem Extent and Condition Accounts in Oslo. Ecol. Indic. 2021, 130, 108007. [Google Scholar] [CrossRef]
- Heffernan, S.; Strimbu, B.M. Estimation of Surface Canopy Water in Pacific Northwest Forests by Fusing Radar, Lidar, and Meteorological Data. Forests 2021, 12, 339. [Google Scholar] [CrossRef]
- Chen, R.H.; Pinto, N.; Duan, X.; Tabatabaeenejad, A.; Moghaddam, M. Mapping Tree Canopy Cover and Canopy Height with L-Band SAR Using LiDAR Data and Random Forests. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4136–4139. [Google Scholar]
- Feng, Z.; Chen, Y.; Hyyppa, J.; Hakala, T.; Zhou, H.; Wang, Y.; Karjalainen, M. Estimating Ground Level and Canopy Top Elevation with Airborne Microwave Profiling Radar. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2283–2294. [Google Scholar] [CrossRef]
- Lin, C.; Jin, Z.; Mulla, D.; Ghosh, R.; Guan, K.; Kumar, V.; Cai, Y. Toward Large-Scale Mapping of Tree Crops with High-Resolution Satellite Imagery and Deep Learning Algorithms: A Case Study of Olive Orchards in Morocco. Remote Sens. 2021, 13, 1740. [Google Scholar] [CrossRef]
- Solano, F.; di Fazio, S.; Modica, G. A Methodology Based on GEOBIA and WorldView-3 Imagery to Derive Vegetation Indices at Tree Crown Detail in Olive Orchards. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101912. [Google Scholar] [CrossRef]
- Gonzalez, J.; Galindo, C.; Arevalo, V.; Ambrosio, G. Applying Image Analysis and Probabilistic Techniques for Counting Olive Trees in High-Resolution Satellite Images; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4678 LNCS, ISBN 9783540746065. [Google Scholar]
- Castillejo-González, I.L. Mapping of Olive Trees Using Pansharpened QuickBird Images: An Evaluation of Pixel- And Object-Based Analyses. Agronomy 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Kurucu, Y.; Esetlili, T.; Erden, H.; Öztürk, G.; Güven, A.I.; Çamaşircioʇlu, E. Digitalization of Olive Trees by Using Remote Sensing Techniques. In Proceedings of the 2015 4th International Conference on Agro-Geoinformatics, Agro-Geoinformatics, Istanbul, Turkey, 20–24 July 2015; pp. 121–124. [Google Scholar]
- Safonova, A.; Guirado, E.; Maglinets, Y.; Alcaraz-Segura, D.; Tabik, S. Olive Tree Biovolume from Uav Multi-Resolution Image Segmentation with Mask r-Cnn. Sensors 2021, 21, 1617. [Google Scholar] [CrossRef] [PubMed]
- Modica, G.; Messina, G.; de Luca, G.; Fiozzo, V.; Praticò, S. Monitoring the Vegetation Vigor in Heterogeneous Citrus and Olive Orchards. A Multiscale Object-Based Approach to Extract Trees’ Crowns from UAV Multispectral Imagery. Comput. Electron. Agric. 2020, 175, 105500. [Google Scholar] [CrossRef]
- Jiménez-Brenes, F.M.; López-Granados, F.; Castro, A.I.; Torres-Sánchez, J.; Serrano, N.; Peña, J.M. Quantifying Pruning Impacts on Olive Tree Architecture and Annual Canopy Growth by Using UAV-Based 3D Modelling. Plant. Methods 2017, 13, 55. [Google Scholar] [CrossRef] [Green Version]
- Lima-Cueto, F.J.; Blanco-Sepúlveda, R.; Gómez-Moreno, M.L.; Galacho-Jiménez, F.B. Using Vegetation Indices and a UAV Imaging Platform to Quantify the Density of Vegetation Ground Cover in Olive Groves (Olea europaea L.) in Southern Spain. Remote Sens. 2019, 11, 2564. [Google Scholar] [CrossRef]
- AlMahamid, F.; Grolinger, K. Autonomous Unmanned Aerial Vehicle Navigation Using Reinforcement Learning: A Systematic Review. Eng. Appl. Artif. Intell. 2022, 115, 105321. [Google Scholar] [CrossRef]
- Ministerio de Transporte, M. y A. Urbana. PNOA: Plan Nacional de Ortofotografía Aérea. Available online: https://pnoa.ign.es/ (accessed on 4 October 2022).
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A Meta-Analysis of Remote Sensing Research on Supervised Pixel-Based Land-Cover Image Classification Processes: General Guidelines for Practitioners and Future Research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Eide, A.; Koparan, C.; Zhang, Y.; Ostlie, M.; Howatt, K.; Sun, X. UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed Canopies for Glyphosate Resistance Detection. Remote Sens. 2021, 13, 4606. [Google Scholar]
- Castillejo-González, I.L.; Angueira, C.; García-Ferrer, A.; Orden, M.S. de la Combining Object-Based Image Analysis with Topographic Data for Landform Mapping: A Case Study in the Semi-Arid Chaco Ecosystem, Argentina. ISPRS Int. J. Geo-Inf. 2019, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; He, G.; Long, T.; Ni, Y. Detecting Water Bodies in Landsat8 OLI Image Using Deep Learning. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2018, 42, 669–672. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep Learning for Remote Sensing Image Classification: A Survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Yao, L.; Qin, J.; Lu, J.; Lu, N.; Zhou, C. A deep neural network for the estimation of tree density based on high-spatial resolution image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4403811. [Google Scholar] [CrossRef]
- Hao, Z.; Lin, L.; Post, C.J.; Jiang, Y.; Li, M.; Wei, N.; Yu, K.; Liu, J. Assessing tree height and density of a young forest using a consumer unmanned aerial vehicle (UAV). New For. 2021, 52, 843–862. [Google Scholar] [CrossRef]
- Paul, A.; Bhattacharyya, S.; Chakraborty, D. Estimation of shade tree density in tea garden using remote sensing images and deep convolutional neural network. J. Spat. Sci. 2021. [Google Scholar] [CrossRef]
- Habibi, L.N.; Watanabe, T.; Matsui, T.; Tanaka, T.S.T. Machine learning techniques to predict soybean plant density using UAV and satellite-based remote sensing. Remote Sens. 2021, 13, 2548. [Google Scholar] [CrossRef]
- Junta de Andalucía: Consejería de Agricultura, G.P. y D.Sostenible. Descarga de Información Geográfica SIGPAC. Available online: https://www.juntadeandalucia.es/organismos/agriculturapescaaguaydesarrollorural/servicios/sigpac/visor/paginas/sigpac-descarga-informacion-geografica-shapes-provincias.html (accessed on 4 October 2022).
- Martínez-Ruedas, C.; Emilio Guerrero-Ginel, J.; Fernández-Ahumada, E. Methodology for the Automatic Inventory of Olive Groves at the Plot and Polygon Level. Agronomy 2022, 12, 1735. [Google Scholar]
- Open Geospatial Consurtium: Web Map Service. Available online: https://www.ogc.org/standards/wms (accessed on 4 October 2022).
- Instituto Geográfico Nacional. IGN: Servicios de Visualización y Descarga. Available online: https://www.ign.es/web/ign/portal/ide-area-nodo-ide-ign (accessed on 4 October 2022).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE Xplore 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Smith, L.N.; Topin, N. Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 11–15 August 2019. [Google Scholar]
- Guerrero-Casado, J.; Carpio, A.J.; Tortosa, F.S.; Villanueva, A.J. Environmental Challenges of Intensive Woody Crops: The Case of Super High-Density Olive Groves. Sci. Total Environ. 2021, 798, 149212. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lobato, L.; García-Ruiz, R.; Jurado, F.; Vera, D. Life Cycle Assessment, C Footprint and Carbon Balance of Virgin Olive Oils Production from Traditional and Intensive Olive Groves in Southern Spain. J. Environ. Manag. 2021, 293, 112951. [Google Scholar] [CrossRef] [PubMed]
- Diez, C.M.; Trujillo, I.; Martinez-Urdiroz, N.; Barranco, D.; Rallo, L.; Marfil, P.; Gaut, B.S. Olive Domestication and Diversification in the Mediterranean Basin. New Phytol. 2015, 206, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Transporte Movilidad y Agencia Urbana: Instituto Geográfico Nacional Centro Descargas PNOA. Available online: https://pnoa.ign.es/productos-a-descarga (accessed on 4 October 2022).
Optimizer | Adam |
---|---|
Adam Weight Decay | 1 × 10−3 |
Training Epochs | 50 |
Batch size | 64 |
Learning Rate | 1 Cycle LR Schedule with LRmax = 1 × 10−2 |
Sub-Image Size (H,W) | Stride Size (s) | Accuracy | Precision (Macro) | AOC 1 vs. 1 | AOC 1 vs. R |
---|---|---|---|---|---|
(50, 50) | 5 | 0.887 | 0.890 | 0.974 | 0.974 |
(80, 80) | 8 | 0.945 | 0.944 | 0.990 | 0.990 |
(100, 100) | 10 | 0.930 | 0.931 | 0.986 | 0.986 |
(120, 120) | 12 | 0.957 | 0.957 | 0.994 | 0.994 |
Sub-Image Size (H,W) | Stride Size (s) | Accuracy | Precision (Macro) | AOC 1 vs. 1 | AOC 1 vs. R |
---|---|---|---|---|---|
(50, 50) | 5 | 0.800 | 0.807 | 0.848 | 0.845 |
(80, 80) | 8 | 0.826 | 0.832 | 0.874 | 0.876 |
(100, 100) | 10 | 0.819 | 0.813 | 0.868 | 0.970 |
(120, 120) | 12 | 0.809 | 0.813 | 0.867 | 0.867 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Ruedas, C.; Yanes-Luis, S.; Díaz-Cabrera, J.M.; Gutiérrez-Reina, D.; Linares-Burgos, R.; Castillejo-González, I.L. Detection of Planting Systems in Olive Groves Based on Open-Source, High-Resolution Images and Convolutional Neural Networks. Agronomy 2022, 12, 2700. https://doi.org/10.3390/agronomy12112700
Martínez-Ruedas C, Yanes-Luis S, Díaz-Cabrera JM, Gutiérrez-Reina D, Linares-Burgos R, Castillejo-González IL. Detection of Planting Systems in Olive Groves Based on Open-Source, High-Resolution Images and Convolutional Neural Networks. Agronomy. 2022; 12(11):2700. https://doi.org/10.3390/agronomy12112700
Chicago/Turabian StyleMartínez-Ruedas, Cristina, Samuel Yanes-Luis, Juan Manuel Díaz-Cabrera, Daniel Gutiérrez-Reina, Rafael Linares-Burgos, and Isabel Luisa Castillejo-González. 2022. "Detection of Planting Systems in Olive Groves Based on Open-Source, High-Resolution Images and Convolutional Neural Networks" Agronomy 12, no. 11: 2700. https://doi.org/10.3390/agronomy12112700
APA StyleMartínez-Ruedas, C., Yanes-Luis, S., Díaz-Cabrera, J. M., Gutiérrez-Reina, D., Linares-Burgos, R., & Castillejo-González, I. L. (2022). Detection of Planting Systems in Olive Groves Based on Open-Source, High-Resolution Images and Convolutional Neural Networks. Agronomy, 12(11), 2700. https://doi.org/10.3390/agronomy12112700