Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments
- Raw slurry as control (treatment: Control);
- Acidification of raw slurry to pH 5.0 (treatment: Acidified);
- Alkalinization of raw slurry to pH 9.5 (treatment: Alkalinized);
- Neutralization of raw slurry to pH 7.5 (treatment: Neutralized);
- Raw slurry amended with wood shavings biochar (treatment: Agroforestry);
- Raw slurry amended with cardoon biochar (treatment: Cardoon);
- Raw slurry amended with elderberry biochar (treatment: Elderberry).
Parameter | Raw Slurry | Agroforestry | Cardoon | Elderberry | Method |
---|---|---|---|---|---|
pH (H2O) | 8.1 | 9.5 | 12.4 | 12.6 | Potentiometry, EN 13037, Brussels, Belgium |
Dry matter, g kg−1 | 12.2 | 934.0 | 645.3 | 980.8 | Gravimetric method, EN 13040, Brussels, Belgium |
Total C, g kg−1 | 41.2 | 759.0 | 448.0 | 670.0 | Dumas method |
Total N, g kg−1 | 5.8 | 2.0 | 7.0 | 15.0 | Kjeldahl method, EN 13654-1, Brussels, Belgium |
NH4+-N, g kg−1 | 3.4 | Absorption spectrophotometry, EN 13652, Brussels, Belgium | |||
NO3−-N, mg kg−1 | 1.7 | Absorption spectrophotometry, EN 13652, Brussels, Belgium | |||
Average particle size, µm | 21 | 12 | 32 | Sieving method | |
90% size of particles, µm | <37 | <26 | <59 | Sieving method | |
Specific surface area, m2 g−1 | 22 | 180 | 32 | Brunauer, Emmett, and Teller method | |
Pore volume, mm3 g−1 | 1.1 | 67.0 | 16.0 | Mercury porosimetry |
2.2. Measurement of Gaseous Emissions
2.3. Statistical Treatment of Data
3. Results and Discussion
3.1. Composition of the Slurries
3.2. Nitrogen Emissions
3.3. Carbon Emissions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uwizeye, A.; de Boer, I.J.M.; Opio, C.I.; Schulte, R.P.O.; Falcucci, A.; Tempio, G.; Teillard, F.; Casu, F.; Rulli, M.; Galloway, J.N.; et al. Nitrogen emissions along global livestock supply chains. Nat. Food 2020, 1, 437–446. [Google Scholar] [CrossRef]
- Sajeev, E.P.M.; Winiwarter, W.; Amon, B. Greenhouse gas and ammonia emissions from different stages of liquid manure management chains: Abatement options and emission interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Velthof, G.L.; Lesschen, J.P.; Staritsky, I.G.; Oenema, O. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: Effects of manure treatment technologies. Environ. Sci. Technol. 2017, 51, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Hristov, A.N.; Cassidy, T.; Heyler, K. Nitrogen isotope fractionation and origin of ammonia nitrogen volatilized from cattle manure in simulated storage. Atmosphere 2011, 2, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Thompson, R.B.; Meisinger, J.J. Management factors affecting ammonia volatilization from land-applied cattle slurry in the mid-Atlantic USA. J. Environ. Qual. 2002, 31, 1329–1338. [Google Scholar] [CrossRef]
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. (Eds.) Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen; Project Reference: CEH Project no. C04910; NERC/Centre for Ecology & Hydrology: Edinburgh, UK, 2014; 83p, Available online: http://www.clrtap-tfrn.org/sites/clrtap-tfrn.org/files/documents/AGD_final_file.pdf (accessed on 27 September 2022).
- Sommer, S.G.; Zhang, G.Q.; Bannink, A.; Chadwick, D.; Misselbrook, T.; Harrison, R.; Hutchings, N.J.; Menzi, H.; Monteny, G.J.; Ni, J.Q.; et al. Algorithms determining ammonia emission from buildings housing cattle and pigs and from manure stores. Adv. Agron. 2006, 89, 261–335. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Perdigão, A.; Tavares, A.; Silva, M.E.F.; Brás, I.; Wessel, D.F. Effects of the Addition of Different Additives before Mechanical Separation of Pig Slurry on Composition and Gaseous Emissions. Agronomy 2022, 12, 1618. [Google Scholar] [CrossRef]
- Petersen, S.O.; Blanchard, M.; Chadwick, D.; Del Prado, A.; Edouard, N.; Mosquera, J.; Sommer, S.G. Manure management for greenhouse gas mitigation. Animal 2013, 7, 266–282. [Google Scholar] [CrossRef] [Green Version]
- Medinets, S.; Skiba, U.; Rennenberg, H.; Butterbach-Bahl, K. A review of soil NO transformation: Associated processes and possible physiological significance on organisms. Soil Biol. Biochem. 2015, 80, 92–117. [Google Scholar] [CrossRef] [Green Version]
- Petersen, S.O. Greenhouse gas emissions from liquid dairy manure: Prediction and mitigation. J. Dairy Sci. 2018, 101, 6642–6654. [Google Scholar] [CrossRef]
- Misselbrook, T.; Hunt, J.; Perazzolo, F.; Provolo, G. Greenhouse gas and ammonia emissions from slurry storage: Impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J. Environ. Qual. 2016, 45, 1520–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chianese, D.S.; Rotz, C.A.; Richard, T.L. Whole-farm greenhouse gas emissions: A review with application to a Pennsylvania dairy farm. Appl. Eng. Agric. 2009, 25, 431–442. [Google Scholar] [CrossRef]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Prado, J.; Chieppe, J.; Raymundo, A.; Fangueiro, D. Bio-acidification and enhanced crusting as an alternative to sulphuric acid addition to slurry to mitigate ammonia and greenhouse gases emissions during short term storage. J. Clean. Prod. 2020, 263, 121443. [Google Scholar] [CrossRef]
- Ndegwa, P.M.; Hristov, A.N.; Arogo, J.; Sheffield, R.E. A review of ammonia emission mitigation techniques for concentrated animal feeding operations. Biosyst. Eng. 2008, 100, 453–469. [Google Scholar] [CrossRef]
- Pereira, J.; Barneze, A.S.; Misselbrook, T.H.; Coutinho, J.; Moreira, N.; Trindade, H. Effects of a urease inhibitor and aluminium chloride alone or combined with a nitrification inhibitor on gaseous N emissions following soil application of cattle urine. Biosyst. Eng. 2013, 115, 396–407. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Figueiredo, V.; Pinto, A.; Pinto, A.F.M.A.; Silva, M.E.F.; Brás, I.; Perdigão, A.; Wessel, D.F. Effects of biochar and clinoptilolite on composition and gaseous emissions during the storage of separated liquid fraction of pig slurry. Appl. Sci. 2020, 10, 5652. [Google Scholar] [CrossRef]
- Owusu-Twum, M.Y.; Polastre, A.; Subedi, R.; Santos, A.S.; Mendes Ferreira, L.M.; Coutinho, J.; Trindade, H. Gaseous emissions and modification of slurry composition during storage and after field application: Effect of slurry additives and mechanical separation. J. Environ. Manag. 2017, 200, 416–422. [Google Scholar] [CrossRef]
- Rodrigues, J.; Alvarenga, P.; Silva, A.C.; Brito, L.; Tavares, J.; Fangueiro, D. Animal Slurry Sanitization through pH Adjustment: Process Optimization and Impact on Slurry Characteristics. Agronomy 2021, 11, 517. [Google Scholar] [CrossRef]
- Pereira, J.L.S.; Perdigão, A.; Fangueiro, D. Evaluation of a Tomato Waste Biofilter for the Retention of Gaseous Losses from Pig Slurry Hygienization by pH Modification. Agronomy 2022, 12, 1838. [Google Scholar] [CrossRef]
- Soares, A.S.; Miranda, C.; Teixeira, C.A.; Coutinho, J.; Trindade, H.; Coelho, A.C. Impact of different treatments on Escherichia coli during storage of cattle slurry. J. Environ. Manag. 2019, 236, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Regueiro, I.; Coutinho, J.; Gioelli, F.; Balsari, P.; Dinuccio, E.; Fangueiro, D. Acidification of raw and co-digested pig slurries with alum before mechanical separation reduces gaseous emission during storage of solid and liquid fractions. Agric. Ecosyst. Environ. 2016, 227, 42–51. [Google Scholar] [CrossRef]
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; Available online: http://www.ipcc-nggip.iges.or.jp (accessed on 27 September 2022).
- Rodrigues, J.; Fragoso, R.; Brito, L.; Fangueiro, D. Impact of Sandy Soil Amendment with Dairy Slurry Treated Through pH Adjustment on Nutrient and Coliform Leaching. SSRN 2022, 4084676. [Google Scholar] [CrossRef]
- Awad, M.; Liu, Z.; Skalicky, M.; Dessoky, E.S.; Brestic, M.; Mbarki, S.; Rastogi, A.; EL Sabagh, A. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Biomolecules 2021, 11, 448. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Müller, C. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valorization 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Kalus, K.; Koziel, J.A.; Opaliński, S. A review of biochar properties and their utilization in crop agriculture and livestock production. Appl. Sci. 2019, 9, 3494. [Google Scholar] [CrossRef] [Green Version]
- Maurer, D.L.; Koziel, J.A.; Kalus, K.; Andersen, D.S.; Opalinski, S. Pilot-scale testing of non-activated biochar for swine manure treatment and mitigation of ammonia, hydrogen sulfide, odorous volatile organic compounds (VOCs), and greenhouse gas emissions. Sustainability 2017, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Perdigão, A.; da Silva Pereira, J.L. Effects of Biochar in Soil and Water Remediation: A Review. In Biodegradation Technology of Organic and Inorganic Pollutants; Mendes, K.F., de Sousa, R., Mielke, K.C., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Lefcourt, A.M.; Meisinger, J.J. Effect of adding alum or zeolite to dairy slurry on ammonia volatilization and chemical composition. J. Dairy Sci. 2001, 84, 1814–1821. [Google Scholar] [CrossRef]
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; VanderZaag, A. Ammonia and greenhouse gas emissions from slurry storage—A review. Agric. Ecosyst. Environ. 2020, 300, 106963. [Google Scholar] [CrossRef]
- Berg, W.; Brunsch, R.; Pazsiczki, I. Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agric. Ecosyst. Environ. 2006, 112, 129–134. [Google Scholar] [CrossRef]
- Dinuccio, E.; Berg, W.; Balsari, P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos. Environ. 2008, 42, 2448–2459. [Google Scholar] [CrossRef] [Green Version]
- Moset, V.; Cambra-Lopez, M.; Estellés, F.; Torres, A.G.; Cerisuelo, A. Evolution of chemical composition and gas emission from aged pig slurry during outdoor storage with and without prior solid separation. Biosyst. Eng. 2012, 111, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Fangueiro, D.; Surgy, S.; Coutinho, J.; Vasconcelos, E. Impact of cattle slurry acidification on carbon and nitrogen dynamics during storage and after soil incorporation. J. Plant Nutr. Soil Sci. 2013, 176, 540–550. [Google Scholar] [CrossRef]
- Dai, X.R.; Blanes-Vidal, V. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration. J. Environ. Manag. 2013, 115, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended with biochar—The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef]
- Sommer, S.G.; Petersen, S.O.; Sørensen, P.; Poulsen, H.D.; Møller, H.B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutr. Cycl. Agroecosyst. 2007, 78, 27–36. [Google Scholar] [CrossRef]
- Petersen, S.O.; Andersen, A.J.; Eriksen, J. Effects of cattle slurry acidification on ammonia and methane evolution during storage. J. Environ. Qual. 2012, 41, 88–94. [Google Scholar] [CrossRef]
- Heděnec, P.; Rui, J.; Yao, M.; Li, J.; Lin, Q.; Frouz, J.; Li, X. Temporal response of soil prokaryotic communities to acidification and alkalization under laboratory conditions. Eur. J. Soil Biol. 2018, 86, 63–71. [Google Scholar] [CrossRef]
Treatments | pH | DM | TC | TN | NH4+ | NO3− | NH4+/TN | C/N |
---|---|---|---|---|---|---|---|---|
Control | 8.1 ± 0.1 d | 12.2 ± 0.3 ef | 41.2 ± 2.9 a | 5.8 ± 0.2 a | 3.4 ± 0.1 cd | 1.7 ± 0.5 a | 0.6 ± 0.1 e | 7.1 ± 0.5 a |
Acidified | 5.0 ± 0.1 f | 13.8 ± 0.3 d | 40.7 ± 1.7 a | 5.8 ± 0.1 a | 3.3 ± 0.1 d | 0.8 ± 0.5 c | 0.6 ± 0.1 e | 7.0 ± 0.5 a |
Alkalinized | 9.5 ± 0.1 a | 11.6 ± 0.4 f | 39.6 ± 1.8 a | 5.7 ± 0.2 a | 3.4 ± 0.1 d | 1.2 ± 0.5 b | 0.6 ± 0.1 e | 7.0 ± 0.5 a |
Neutralized | 7.5 ± 0.1 e | 13.3 ± 0.7 de | 37.4 ± 4.2 a | 5.6 ± 0.3 a | 3.8 ± 0.1 c | 1.3 ± 0.5 b | 0.7 ± 0.1 d | 6.7 ± 0.5 a |
Agroforestry | 8.5 ± 0.1 c | 58.9 ± 0.1 b | 42.9 ± 2.8 a | 5.5 ± 0.2 a | 4.7 ± 0.1 b | 1.7 ± 0.5 a | 0.8 ± 0.1 b | 7.7 ± 0.5 a |
Cardoon | 9.0 ± 0.1 b | 62.9 ± 0.3 a | 42.5 ± 2.7 a | 5.6 ± 0.2 a | 4.5 ± 0.1 b | 1.7 ± 0.5 a | 0.8 ± 0.1 c | 7.5 ± 0.5 a |
Elderberry | 8.6 ± 0.1 c | 43.8 ± 0.4 c | 41.4 ± 2.8 a | 5.6 ± 0.2 a | 5.2 ± 0.2 a | 1.8 ± 0.5 a | 0.9 ± 0.1 a | 7.4 ± 0.5 a |
Treatments | Days of Experiment | Total Flux | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–11 | 12–15 | 16–20 | 21–25 | 26–30 | ∑0–30 | |
Control | 806 ± 15 bc | 849 ± 25 bc | 678 ± 25 b | 501 ± 16 a | 361 ± 12 a | 380 ± 16 ab | 346 ± 15 a | 242 ± 1 ab | 137 ± 1 b | 110 ± 3 b | 256,397 ± 5725 b |
Acidified | 203 ± 5 c | 214 ± 10 d | 193 ± 11 c | 168 ± 9 b | 145 ± 8 b | 147 ± 9 c | 149 ± 8 c | 127 ± 3 cd | 112 ± 3 b | 106 ± 1 bc | 107,638 ± 3624 c |
Alkalinized | 6789 ± 229 a | 3851 ± 197 a | 1575 ± 168 a | 563 ± 89 a | 248 ± 31 ab | 155 ± 10 c | 129 ± 3 c | 110 ± 1 d | 99 ± 1 b | 93 ± 1 cd | 538,707 ± 27,004 a |
Neutralized | 1182 ± 90 b | 959 ± 67 b | 585 ± 50 bc | 378 ± 44 ab | 253 ± 31 ab | 227 ± 31 bc | 211 ± 28 bc | 177 ± 25 bcd | 132 ± 25 b | 102 ± 14 bc | 221,383 ± 21,434 b |
Agroforestry | 335 ± 44 c | 345 ± 25 cd | 363 ± 33 bc | 325 ± 22 ab | 305 ± 20 ab | 322 ± 28 ab | 261 ± 25 ab | 240 ± 30 ab | 119 ± 30 b | 82 ± 8 d | 178,492 ± 15,357 bc |
Cardoon | 444 ± 18 c | 392 ± 15 cd | 396 ± 17 bc | 341 ± 14 ab | 324 ± 12 a | 353 ± 14 ab | 297 ± 12 ab | 338 ± 19 a | 228 ± 19 a | 165 ± 8 a | 228,547 ± 8836 b |
Elderberry | 345 ± 47 c | 359 ± 39 cd | 407 ± 49 bc | 405 ± 50 ab | 404 ± 50 a | 390 ± 44 a | 266 ± 22 ab | 232 ± 18 abc | 139 ± 18 b | 111 ± 1 b | 200,799 ± 17,796 bc |
Treatments | NH3 (% Total N Applied) | N2O (% Total N Applied) | N (g m−2) | N (% Total N Applied) | CO2 (% Total C Applied) | CH4 (% Total C Applied) | C (g m−2) | C (% Total C Applied) | GWP (g CO2-eq. m−2) |
---|---|---|---|---|---|---|---|---|---|
Control | 31.4 ± 0.5 b | 0.7 ± 0.1 d | 215.9 ± 8.2 b | 32.1 ± 0.5 b | 78.0 ± 5.0 a | 1.7 ± 0.2 a | 3799.5 ± 43.0 abc | 79.7 ± 5.2 a | 19,008.6 ± 10.0 abc |
Acidified | 13.3 ± 0.9 c | 0.7 ± 0.1 d | 93.4 ± 10.1 c | 14.0 ± 0.9 c | 75.8 ± 3.7 a | 1.6 ± 0.1 a | 3637.0 ± 83.7 cd | 77.4 ± 3.8 a | 18,198.6 ± 316.9 c |
Alkalinized | 68.0 ± 6.9 a | 0.7 ± 0.1 bcd | 448.4 ± 77.1a | 68.4 ± 6.9 a | 77.4 ± 3.3 a | 1.8 ± 0.1 a | 3625.2 ± 17.5 d | 79.3 ± 3.4 a | 18,525.2 ± 86.6 bc |
Neutralized | 27.8 ± 4.3 b | 0.7 ± 0.1 cd | 187.0 ± 61.3 b | 28.7 ± 4.3 b | 84.8 ± 11.8 a | 1.8 ± 0.3 a | 3743.4 ± 119.9 bcd | 86.6 ± 12.0 a | 18,603.8 ± 311.2 bc |
Agroforestry | 22.8 ± 3.0 bc | 0.8 ± 0.1 abc | 152.1 ± 44.1 bc | 23.7 ± 3.0 bc | 75.3 ± 4.0 a | 1.6 ± 0.1 a | 3811.6 ± 156.7 ab | 76.9 ± 4.1 a | 19,125.5 ± 466.5 abc |
Cardoon | 29.2 ± 2.7 b | 0.8 ± 0.1 a | 193.5 ± 25.3 b | 29.8 ± 2.7 b | 78.6 ± 5.3 a | 1.7 ± 0.1 a | 3942.4 ± 83.7 a | 80.3 ± 5.5 a | 19,880.7 ± 217.7 a |
Elderberry | 25.5 ± 3.5 bc | 0.8 ± 0.1 ab | 170.5 ± 51.1 bc | 26.5 ± 3.5 bc | 78.3 ± 4.1 a | 1.7 ± 0.1 a | 3829.5 ± 187.8 ab | 80.0 ± 4.2 a | 19277.9 ± 587.4 ab |
Treatments | Days of Experiment | Total Flux | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–11 | 12–15 | 16–20 | 21–25 | 26–30 | ∑0–30 | |
Control | 11 ± 1 bc | 10 ± 1 b | 9 ± 1 b | 10 ± 1 c | 10 ± 1 c | 9 ± 1 b | 9 ± 1 b | 11 ± 1 ab | 10 ± 1 b | 9 ± 1 b | 7399 ± 39 c |
Acidified | 10 ± 1 c | 10 ± 1 b | 10 ± 1 b | 10 ± 1 c | 10 ± 1 bc | 10 ± 1 b | 9 ± 1 b | 10 ± 1 b | 10 ± 1 ab | 10 ± 1 ab | 7492 ± 113 bc |
Alkalinized | 8 ± 1 d | 8 ± 1 c | 9 ± 1 b | 10 ± 1 c | 10 ± 1 bc | 10 ± 1 b | 9 ± 1 b | 11 ± 1 ab | 11 ± 1 a | 10 ± 1 a | 7527 ± 20 bc |
Neutralized | 10 ± 1 c | 9 ± 1 b | 9 ± 1 b | 9 ± 1 c | 10 ± 1 c | 9 ± 1 b | 9 ± 1 b | 10 ± 1 b | 10 ± 1 ab | 10 ± 1 ab | 7419 ± 69 c |
Agroforestry | 11 ± 1 ab | 11 ± 1 a | 11 ± 1 a | 10 ± 1 b | 10 ± 1 abc | 11 ± 1 a | 11 ± 1 a | 11 ± 1 ab | 10 ± 1 b | 10 ± 1 ab | 7946 ± 115ab |
Cardoon | 12 ± 1 a | 12 ± 1 a | 11 ± 1 a | 11 ± 1 a | 11 ± 1 a | 11 ± 1 a | 11 ± 1 a | 11 ± 1 a | 10 ± 1 ab | 10 ± 1 a | 8238 ± 45 a |
Elderberry | 11 ± 1 a | 11 ± 1 a | 11 ± 1 a | 10 ± 1 ab | 10 ± 1 ab | 11 ± 1 a | 11 ± 1 a | 11 ± 1 ab | 10 ± 1 ab | 10 ± 1 ab | 8068 ± 161 a |
Treatments | Days of Experiment | Total Flux | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–11 | 12–15 | 16–20 | 21–25 | 26–30 | ∑0–30 | |
Control | 19.0 ± 0.2 abc | 19.6 ± 0.2 a | 19.0 ± 0.2 a | 18.1 ± 0.1 a | 17.0 ± 0.1 b | 17.4 ± 0.1 b | 17.6 ± 0.1 a | 18.8 ± 0.1 ab | 17.6 ± 0.1 bc | 17.4 ± 0.1 b | 13,633.7 ± 50.1 abc |
Acidified | 21.8 ± 1.6 a | 16.4 ± 0.1 d | 16.6 ± 0.1 b | 16.5 ± 0.1 b | 15.8 ± 0.1 c | 16.1 ± 0.1 c | 16.5 ± 0.1 b | 18.0 ± 0.1 ab | 17.5 ± 0.1 bc | 17.5 ± 0.1 b | 13,060.6 ± 82.7 cd |
Alkalinized | 16.3 ± 0.1 c | 16.2 ± 0.1 d | 16.5 ± 0.1 b | 16.4 ± 0.1 b | 15.9 ± 0.1 c | 16.3 ± 0.1 bc | 16.7 ± 0.1 b | 18.2 ± 0.1 ab | 17.8 ± 0.1 abc | 17.7 ± 0.1 ab | 12,983.3 ± 16.0 d |
Neutralized | 17.2 ± 0.2 bc | 17.4 ± 0.3 c | 18.1 ± 0.4 a | 17.7 ± 0.3 a | 16.7 ± 0.2 bc | 16.8 ± 0.2 bc | 17.2 ± 0.2 ab | 19.0 ± 0.1 a | 18.0 ± 0.1 ab | 17.6 ± 0.1 ab | 13,447.4 ± 123.6 bcd |
Agroforestry | 19.1 ± 0.4 abc | 18.2 ± 0.3 bc | 18.4 ± 0.3 a | 17.7 ± 0.2 a | 18.4 ± 0.2 a | 19.6 ± 0.3 a | 17.6 ± 0.2 a | 18.0 ± 0.3 ab | 17.5 ± 0.1 c | 17.4 ± 0.1 b | 13,685.0 ± 158.9 ab |
Cardoon | 19.8 ± 0.2 ab | 18.8 ± 0.1 ab | 19.0 ± 0.1 a | 18.2 ± 0.1 a | 18.8 ± 0.1 a | 20.2 ± 0.1 a | 18.0 ± 0.1 a | 18.8 ± 0.2 ab | 18.3 ± 0.1 a | 17.9 ± 0.1 a | 14,145.5 ± 86.2 a |
Elderberry | 18.8 ± 0.3 abc | 18.4 ± 0.3 bc | 18.7 ± 0.4 a | 18.3 ± 0.4 a | 19.0 ± 0.4 a | 19.8 ± 0.4 a | 17.6 ± 0.2 a | 17.9 ± 0.3 b | 17.4 ± 0.1 c | 17.4 ± 0.1 b | 13,745.3 ± 189.5 ab |
Treatments | Days of Experiment | Total Flux | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3–4 | 5–6 | 7–8 | 9–11 | 12–15 | 16–20 | 21–25 | 26–30 | ∑0–30 | |
Control | 112 ± 1 c | 164 ± 2 bc | 164 ± 1 bc | 153 ± 1 b | 226 ± 24 a | 129 ± 1 b | 159 ± 1 a | 171 ± 9 a | 137 ± 1 b | 173 ± 1 b | 121,827 ± 1924 ab |
Acidified | 86 ± 4 c | 136 ± 4 d | 146 ± 3 c | 141 ± 3 b | 148 ± 1 b | 122 ± 2 b | 153 ± 3 ab | 142 ± 4 ab | 112 ± 5 ab | 190 ± 6 a | 112,559 ± 2640 b |
Alkalinized | 266 ± 7 a | 227 ± 6 a | 177 ± 5 ab | 148 ± 2 b | 152 ± 1 b | 124 ± 1 b | 156 ± 1 a | 149 ± 1 ab | 99 ± 1 ab | 198 ± 1 a | 126,449 ± 1023 ab |
Neutralized | 109 ± 4 c | 143 ± 4 cd | 148 ± 3 c | 141 ± 2 b | 159 ± 3 b | 120 ± 1 b | 152 ± 2 ab | 148 ± 1 ab | 132 ± 1 ab | 186 ± 2 ab | 113,846 ± 1391 ab |
Agroforestry | 156 ± 6 b | 183 ± 6 b | 184 ± 7 ab | 181 ± 4 a | 192 ± 3 ab | 199 ± 4 a | 140 ± 2 c | 128 ± 5 b | 119 ± 3 ab | 140 ± 2 c | 119,022 ± 2860 ab |
Cardoon | 167 ± 2 b | 190 ± 2 b | 197 ± 2 a | 193 ± 1 a | 201 ± 1 ab | 211 ± 1 a | 146 ± 1 bc | 140 ± 2 b | 228 ± 1 a | 148 ± 1 c | 126,765 ± 985 a |
Elderberry | 154 ± 6 b | 178 ± 6 b | 187 ± 8 ab | 190 ± 6 a | 199 ± 6 ab | 205 ± 7 a | 142 ± 3 c | 130 ± 5 b | 139 ± 4 ab | 142 ± 3 c | 121,144 ± 3843 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.L.S.; Perdigão, A.; Marques, F.; Wessel, D.F.; Trindade, H.; Fangueiro, D. Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars. Agronomy 2022, 12, 2744. https://doi.org/10.3390/agronomy12112744
Pereira JLS, Perdigão A, Marques F, Wessel DF, Trindade H, Fangueiro D. Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars. Agronomy. 2022; 12(11):2744. https://doi.org/10.3390/agronomy12112744
Chicago/Turabian StylePereira, José L. S., Adelaide Perdigão, Francisco Marques, Dulcineia F. Wessel, Henrique Trindade, and David Fangueiro. 2022. "Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars" Agronomy 12, no. 11: 2744. https://doi.org/10.3390/agronomy12112744
APA StylePereira, J. L. S., Perdigão, A., Marques, F., Wessel, D. F., Trindade, H., & Fangueiro, D. (2022). Mitigating Ammonia and Greenhouse Gas Emissions from Stored Pig Slurry Using Chemical Additives and Biochars. Agronomy, 12(11), 2744. https://doi.org/10.3390/agronomy12112744