Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Species
2.2. Test Material and Experimental Design
2.3. Sampling
2.4. Sample Analysis
2.4.1. Determination of Soil Physicochemical Properties
2.4.2. High-Throughput Sequencing Analysis of Soil Microbial Community
- DNA extraction and PCR amplification.
- 2.
- Illumina MiSeq sequencing.
- 3.
- Sequencing-data processing.
2.4.3. Determination of Root Traits in Maize
2.4.4. Determination of Maize Growth Traits
2.4.5. Determination of Maize Grain-Filling Rate
2.5. Data Analysis
3. Results
3.1. Effects of Biochar on Soil Physicochemical Properties
3.2. Effects of Biochar on Soil Bacterial and Fungal Alpha Diversity
3.3. Effects of Biochar Application on Relative Abundance of Soil Bacterial and Fungal General
3.4. Drivers of Variation in Soil Bacterial and Fungal Community Structure
3.5. Effects of Biochar on Root Growth and Development
3.6. Effects of Biochar on Dry Matter Accumulation
3.7. Effects of Biochar on the Fitted Equation of Maize Grain Filling
3.8. Effects of Biochar on Maize Yield Traits
3.9. Correlations among Soil Microenvironment, Plant Growth and Development, and Crop Yield
4. Discussion
4.1. Biochar Improved the Microenvironment of Saline-Sodic Soils
4.2. Biochar Promotes Maize Growth and Development and Increases Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, H.; Hu, J.; Wang, Q.; Xu, X.; Zhang, Y. Advance and prospect of the research on improvement by dry farming measures of saline-alkali soils in western songnen plain of china. Chin. J. Soil Sci. 2017, 48, 236–242. [Google Scholar] [CrossRef]
- Meng, J.; He, T.; Sanganyado, E.; Lan, Y.; Zhang, W.; Han, X.; Chen, W. Development of the straw biochar returning concept in China. Biochar 2019, 1, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, M.; Konvalina, P.; Neugschwandtner, R.W.; Kopecky, M.; Amirahmadi, E.; Bucur, D.; Walkiewicz, A. Interaction of biochar with chemical, green and biological nitrogen fertilizers on nitrogen use efficiency indices. Agronomy 2022, 12, 2106. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, S.; Yan, P.; Aurangzeib, M. Effect of biochar application method and amount on the soil quality and maize yield in Mollisols of Northeast China. Biochar 2022, 4, 56. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Hu, L.; Cao, L.; Zhang, R. Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World J. Microbiol. Biotechnol. 2014, 30, 1085–1092. [Google Scholar] [CrossRef]
- Yu, M. Charosphere Effects of Biochar and Its Associated Key Processes of Soil Nitrogen Transformation. Master’s Thesis, Zhejiang University, Hangzhou, China, 2021. [Google Scholar]
- Yao, Q.; Liu, J.; Yu, Z.; Li, Y.; Jin, J.; Liu, X.; Wang, G. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biol. Biochem. 2017, 110, 56–67. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, C.; Wang, H.; Zhao, C.; Yin, D.; Yuan, Y.; Yang, K.; Li, Z. Effect of different amounts of biochar on meadow soil characteristics and maize yields over three years. BioResources 2019, 14, 4194–4209. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, D.; Wang, H.; Zhao, C.; Li, Z. Effects of biochar on waterlogging and the associated change in micro-ecological environment of maize rhizosphere soil in saline-alkali land. BioResources 2020, 15, 9303–9323. [Google Scholar] [CrossRef]
- Laboratory of soil Physics, Nanjing Institute of soil, Chinese Academy of Sciences. Method for Determination of Soil Physical Properties; Science Press: Beijing, China, 1978. [Google Scholar]
- Hong, C. The Effects of the Soil Modifiers on the Bioavailability of Phosphorus and the Physical Properties in Acid Soils. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Bao, S. Soil Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Adams, R.; Miletto, M.; Taylor, J.; Bruns, T. Dispersal in microbes: Fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 2013, 7, 1262–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Liu, J.; Li, J.; Sun, C. Straw input can parallelly influence the bacterial and chemical characteristics of maize rhizosphere. Environ. Pollut. Bioavailab. 2020, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yan, H. Improvement of Tobacco-Planted Cinnamon Soil by Biochar and Its Microecological Mechanism. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2017. [Google Scholar]
- Cao, D.; Lan, Y.; Sun, Q.; Yang, X.; Chen, W.; Meng, J.; Wang, D.; Li, N. Maize straw and its biochar affect phosphorus distribution in soil aggregates and are beneficial for improving phosphorus availability along the soil profile. Eur. J. Soil Sci. 2021, 72, 2165–2179. [Google Scholar] [CrossRef]
- Canfora, L.; Bacci, G.; Pinzari, F.; Lo Papa, G.; Dazzi, C.; Benedetti, A. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil. PLoS ONE 2014, 9, e106662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q. Effect of Biochar Addition on Soil Physicochemical Properties and Microbial Diversity in a Black Soil of Northeast China. Master’s Thesis, University of Chinese Academy of Sciences, Haerbin, China, 2017. [Google Scholar]
- Zhang, L.; Geng, X.; Wang, C.; Li, Y. Identification and virulence of Fusarium spp. causing soybean root rot in Heilongjiang Province. Plant Prot. 2014, 40, 165–168. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, W.; Zeng, F.; Liu, M.; Chen, T.; Huang, Z.; Xue, M.; Xiang, L.; Gong, S.; Yang, L. Effect of biochar on controlling wheat Fusarium head blight and yield. Plant Prot. 2020, 46, 270–274. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, W.; Gao, H.; Han, R.; Qi, F. Serious damage to crop production caused by Alternaria diseases and the safety of agricultural products. Plant Prot. 2017, 43, 9–15. [Google Scholar] [CrossRef]
- Shan, W.; Xu, Y.; Sun, M.; Cai, Y.; Xiu, F.; Sun, X.; Li, X.; Li, L.; Li, F. Evaluation on disease resistance of main potato varieties against F. avenaceum and F. sporotrichioides infection in Heilongjiang Province. Crops 2017, 2, 38–43. [Google Scholar] [CrossRef]
- Taguiam, J.; Evallo, E.; Bengoa, J.; Maghirang, R.; Balendres, M. Pathogenicity of epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. J. Phytopathol. 2020, 168, 303–310. [Google Scholar] [CrossRef]
- Liu, H.; Dong, N.; Chai, S.; Wang, F.; Liu, T.; Jiang, S. Effects of eco-char on controlling wheat root-rot and the mechanism of renovating soil health. J. Plant Prot. 2015, 42, 504–509. [Google Scholar] [CrossRef]
- Wang, G.; Ma, Y.; Guo, D.; Wang, Q. Effect and mechanism of straw biochar on disease control of phytophthora blight of chilli pepper. Soils 2015, 47, 1107–1114. [Google Scholar] [CrossRef]
- Dong, X.; Singh, B.; Li, G.; Lin, Q.; Zhao, X. Biochar has little effect on soil dissolved organic carbon pool 5 years after biochar application under field condition. Soil Use Manag. 2019, 35, 466–477. [Google Scholar] [CrossRef]
- Mosharrof, M.; MKSulaiman, M.F.U.; Mia, S.; Shamsuzzaman, S.M.; Haque, A.N.A. Combined application of biochar and lime increases maize yield and accelerates carbon loss from an acidic soil. Agronomy 2021, 11, 1313. [Google Scholar] [CrossRef]
- Turan, V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. Ecotoxicol. Environ. Saf. 2019, 183, 109594. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhu, L. Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci. Total Environ. 2018, 622, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Prendergast-Miller, M.; Duvall, M.; Sohi, S. Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability. Eur. J. Soil Sci. 2014, 65, 173–185. [Google Scholar] [CrossRef]
- Cheng, X. The Effects of Biochar on Nitrogen Utilization and Maize Growth on Brown Soil. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2016. [Google Scholar]
Soil | pH | organic carbon | alkaline hydrolysable nitrogen | available phosphorus | available potassium |
8.32 | 15.30 g/kg | 128.65 mg/kg | 13.05 mg/kg | 139.18 mg/kg | |
Biochar | pH | total organic carbon | total nitrogen | total phosphorus | total potassium |
8.68 | 582.38 g/kg | 8.42 g/kg | 8.15 g/kg | 29.63 g/kg |
Period | Treatment | BD | Moisture | pH | WSAR | SOC (g/kg) | AN (mg/kg) | AP (mg/kg) |
---|---|---|---|---|---|---|---|---|
Jointing | B0 | 1.11 a | 20.14 a | 8.40 a | 85.18 b | 13.69 b | 145.13 a | 13.86 c |
B20 | 1.10 a | 20.75 a | 8.33 a | 85.40 b | 14.84 ab | 151.95 a | 15.28 b | |
B40 | 1.07 a | 20.91 a | 8.32 a | 88.55 a | 15.72 a | 164.73 a | 17.12 a | |
B80 | 1.06 a | 20.92 a | 8.37 a | 87.32 ab | 16.52 a | 153.30 a | 15.79 b | |
Filling | B0 | 1.37 a | 25.15 a | 8.38 a | 78.62 b | 12.13 c | 120.89 b | 7.82 b |
B20 | 1.31 ab | 23.09 b | 8.36 a | 82.05 ab | 13.91 b | 137.67 ab | 10.40 a | |
B40 | 1.23 b | 22.86 b | 8.31 b | 84.30 a | 15.11 b | 152.33 a | 11.62 a | |
B80 | 1.20 b | 21.78 b | 8.31 b | 83.59 ab | 18.16 a | 139.25 ab | 11.15 a |
Treatment | Bacteria | Fungi | ||||||
---|---|---|---|---|---|---|---|---|
Jointing | Filling | Jointing | Filling | |||||
Shannon | Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | Shannon | Chao 1 | |
B0 | 6.69 ± 0.02 a | 4915.26 ± 50.85 a | 6.76 ± 0.02 a | 5101.38 ± 44.60 a | 3.80 ± 0.04 a | 579.03 ± 30.13 a | 4.03 ± 0.09 a | 760.62 ± 24.64 a |
B20 | 6.70 ± 0.02 a | 4949.58 ± 116.79 a | 6.72 ± 0.01 a | 5167.14 ± 143.78 a | 3.44 ± 0.02 b | 634.89 ± 8.92 a | 3.79 ± 0.09 ab | 698.78 ± 6.57 b |
B40 | 6.73 ± 0.01 a | 5128.01 ± 59.34 a | 6.70 ± 0.02 a | 5316.60 ± 64.57 a | 3.49 ± 0.06 b | 620.68 ± 26.08 a | 3.82 ± 0.06 ab | 701.24 ± 19.64 b |
B80 | 6.64 ± 0.05 a | 5163.54 ± 70.72 a | 6.74 ± 0.01 a | 5407.98 ± 92.95 a | 3.53 ± 0.08 b | 606.79 ± 23.21 a | 3.78 ± 0.05 b | 642.82 ± 8.95 c |
Kenel Position | Treatment | Grain-Filling Fitted Equation | Parameter of Grain-Filling | |||
---|---|---|---|---|---|---|
Tmax (d) | Wmax (g/Hundred Kernel) | Gmax [g/(d·Hundred Kernel)] | P (d) | |||
Upper part | B0 | W = 19.83/(1 + 36.23e−0.14t) R2 = 0.9957 | 25.64 | 9.92 | 0.69 | 42.86 |
B20 | W = 32.80/(1 + 60.95e−0.15t) R2 = 0.9961 | 27.40 | 16.40 | 1.23 | 40.00 | |
B40 | W = 39.35/(1 + 55.15e−0.14t) R2 = 0.9957 | 28.64 | 19.68 | 1.38 | 42.86 | |
B80 | W = 38.59/(1 + 70.11e−0.14t) R2 = 0.9976 | 30.36 | 19.30 | 1.35 | 42.86 | |
Middle part | B0 | W = 20.44/(1 + 39.25e−0.14t) R2 = 0.9916 | 26.21 | 10.22 | 0.72 | 42.86 |
B20 | W = 30.77/(1 + 44.70e−0.14t) R2 = 0.9948 | 27.14 | 15.39 | 1.08 | 42.86 | |
B40 | W = 40.04/(1 + 30.88e−0.12t) R2 = 0.9988 | 28.58 | 20.02 | 1.20 | 50.00 | |
B80 | W = 37.27/(1 + 36.97e−0.13t) R2 = 0.9975 | 27.77 | 18.64 | 1.21 | 46.15 | |
Under part | B0 | W = 28.36/(1 + 33.78e−0.14t) R2 = 0.9973 | 25.14 | 14.18 | 0.99 | 42.86 |
B20 | W = 33.74/(1 + 30.57e−0.13t) R2 = 0.9961 | 26.31 | 16.87 | 1.10 | 46.15 | |
B40 | W = 43.00/(1 + 32.79e−0.13t) R2 = 0.9989 | 26.85 | 21.50 | 1.40 | 46.15 | |
B80 | W = 39.83/(1 + 34.47e−0.12t) R2 = 0.9960 | 29.50 | 19.92 | 1.19 | 50.00 |
Treatment | Ear Length (cm) | Barren Ear Tip (cm) | Number of Rows per Ear | Number of Grains per Ear | Hundred Kernel Weight (g) | Yield (kg/hm2) |
---|---|---|---|---|---|---|
B0 | 22.14 ± 0.33 a | 1.54 ± 0.04 a | 15.77 ± 0.19 b | 39.43 ± 0.43 b | 36.76 ± 0.65 b | 11146.33 ± 530.99 b |
B20 | 22.44 ± 0.46 a | 1.39 ± 0.03 b | 16.30 ± 0.15 a | 41.10 ± 0.49 ab | 37.83 ± 1.05 ab | 11538.67 ± 732.13 ab |
B40 | 22.76 ± 0.52 a | 1.30 ± 0.03 b | 16.80 ± 0.20 a | 41.63 ± 0.62 a | 40.40 ± 0.90 a | 13561.00 ± 706.82 a |
B80 | 22.37 ± 0.19 a | 1.31 ± 0.02 b | 16.53 ± 0.07 a | 41.10 ± 0.80 ab | 39.76 ± 1.34 ab | 12573.33 ± 489.24 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, H.; Zhao, C.; Yang, K.; Li, Z.; Yin, K. Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy 2022, 12, 2859. https://doi.org/10.3390/agronomy12112859
Wang Z, Wang H, Zhao C, Yang K, Li Z, Yin K. Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy. 2022; 12(11):2859. https://doi.org/10.3390/agronomy12112859
Chicago/Turabian StyleWang, Zhihui, Hongyi Wang, Changjiang Zhao, Kejun Yang, Zuotong Li, and Kuide Yin. 2022. "Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth" Agronomy 12, no. 11: 2859. https://doi.org/10.3390/agronomy12112859
APA StyleWang, Z., Wang, H., Zhao, C., Yang, K., Li, Z., & Yin, K. (2022). Effects of Biochar on the Microenvironment of Saline-Sodic Soil and Maize Growth. Agronomy, 12(11), 2859. https://doi.org/10.3390/agronomy12112859