Characteristics of Grain Yield, Dry Matter Production and Nitrogen Uptake and Transport of Rice Varieties with Different Grain Protein Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Varieties and Cultivation
2.2. Sampling and Measurements
2.2.1. Dry Matter Production and Nitrogen Uptake
2.2.2. Grain Yield and Yield Components
2.2.3. Grain Protein Content
2.3. Calculation Formulae
2.4. Statistical Analysis
3. Results
3.1. GPC and Growth Period
3.2. Grain Yield and Yield Components
3.3. Dry Matter Production
3.4. Nitrogen Accumulation, Distribution and Transport
3.5. Key Indexes Affecting GPC
4. Discussion
4.1. The Relationships between Grain Yield, Dry Matter Production, Nitrogen Uptake and Transport and GPC
4.2. The Key Indexes Affecting GPC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M.; Fitzgerald, M.A. Proteins in rice grains influence cooking properties. J. Cereal. Sci. 2002, 36, 285–294. [Google Scholar] [CrossRef]
- Derycke, V.; Veraverbeke, W.S.; Vandeputte, G.E.; De Man, W.; Hoseney, R.C.; Delcour, J.A. Impact of proteins on pasting and cooking properties of non-parboiled and parboiled rice. Cereal Chem. 2005, 82, 468–474. [Google Scholar] [CrossRef]
- Likitwattanasade, T.; Hongsprabhas, P. Effect of storage proteins on pasting properties and microstructure of Thai rice. Food Res. Int. 2010, 43, 1402–1409. [Google Scholar] [CrossRef]
- Matsue, Y.; Sato, H.; Uchimura, Y. The palatability and physicochemical properties of milled rice for each grain-thickness group. Plant Prod. Sci. 2001, 4, 71–76. [Google Scholar] [CrossRef]
- Lin, J.-H.; Singh, H.; Chang, Y.-T.; Chang, Y.-H. Factor analysis of the functional properties of rice flours from mutant genotypes. Food Chem. 2011, 126, 1108–1114. [Google Scholar] [CrossRef]
- Balindong, J.L.; Ward, R.M.; Rose, T.J.; Liu, L.; Raymond, C.A.; Snell, P.J.; Ovenden, B.W.; Waters, D.L.E. Rice grain protein composition influences head rice yield. Cereal Chem. 2018, 95, 253–263. [Google Scholar] [CrossRef]
- Zhang, J.G.; Liu, X.D.; Cao, Z.Z.; Zhu, Y.; Lu, Y.G. Current status and perspectives of research and utilization of forage rice. Acta Prataculturae Sin. 2008, 17, 151–155. [Google Scholar] [CrossRef]
- Chen, N.; Luo, Y.K.; Xie, L.H.; Zhu, Z.W.; Duan, B.W.; Zhang, L.P. Protein content and its correlation with other quality parameters of rice in China. Acta Agron. Sin. 2006, 32, 1193–1196. [Google Scholar] [CrossRef]
- Yoneyama, T.; Tanno, F.; Tatsumi, J.; Mae, T. Whole-plant dynamic system of nitrogen use for vegetative growth and grain filling in rice plants (Oryza sativa L.) as revealed through the production of 350 grains from a germinated seed over 150 days: A review and synthesis. Front. Plant Sci. 2016, 7, 1151. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.G.; Jing, Q.; Cao, W.X.; Takeshi, H. Modeling grain protein formation in relation to nitrogen uptake and remobilization in rice plant. Front. Agric. China 2007, 1, 8–16. [Google Scholar] [CrossRef]
- Rakotoson, T.; Dusserre, J.; Letourmy, P.; Ramonta, I.R.; Cao, T.-V.; Ramanantsoanirina, A.; Roumet, P.; Ahmadi, N.; Raboin, L.-M. Genetic variability of nitrogen use efficiency in rainfed upland rice. Field Crops Res. 2017, 213, 194–203. [Google Scholar] [CrossRef]
- Mi, W.H.; Zheng, S.Y.; Yang, X.; Wu, L.H.; Liu, Y.L.; Chen, J.Q. Comparison of yield and nitrogen use efficiency of different types of nitrogen fertilizers for different rice cropping systems under subtropical monsoon climate in China. Eur. J. Agron. 2017, 90, 78–86. [Google Scholar] [CrossRef]
- Tsukaguchi, T.; Nitta, S.; Matsuno, Y. Cultivar differences in the grain protein accumulation ability in rice (Oryza sativa L.). Field Crops Res. 2016, 192, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Gomez, K.A.; De Datta, S.K. Influence of environment on protein content of rice. Agron. J. 1975, 67, 565–568. [Google Scholar] [CrossRef]
- Wood, R.M.; Dunn, B.W.; Balindong, J.L.; Waters, D.L.E.; Blanchard, C.L.; Mawson, A.J.; Oli, P. Effect of agronomic management on rice grain quality Part II: Nitrogen rate and timing. Cereal Chem. 2020, 98, 234–248. [Google Scholar] [CrossRef]
- Leesawatwong, M.; Jamjod, S.; Kuo, J.; Dell, B.; Rerkasem, B. Nitrogen fertilizer increases seed protein and milling quality of rice. Cereal Chem. 2005, 82, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.Y.; Zhang, H.C.; Blumwald, E.; Li, H.L.; Cheng, J.Q.; Dai, Q.G.; Huo, Z.Y.; Xu, K.; Guo, B.W. Different characteristics of high yield formation between inbred japonica super rice and inter-sub-specific hybrid super rice. Field Crops Res. 2016, 198, 179–187. [Google Scholar] [CrossRef]
- Juliano, B.O.; Bressani, R.; Elias, L.G. Evaluation of the protein quality and milled rice differing in protein content. J. Agric. Food Chem. 1971, 19, 1028–1034. [Google Scholar] [CrossRef]
- Liu, Z.X.; Gao, F.; Yang, J.Q.; Zhen, X.Y.; Li, Y.; Zhao, J.H.; Li, J.R.; Qian, B.C.; Yang, D.Q.; Li, X.D. Photosynthetic characteristics and uptake and translocation of nitrogen in peanut in a wheat-peanut rotation system under different fertilizer management regimes. Front. Plant Sci. 2019, 10, 86. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhu, Z.Y.; Liu, Y.W.; Zhao, H.J. Application of path analysis in stepwise linear regression SPSS. Arid. Zone Res. 2016, 1, 108–113. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.-G.; Zhu, C.-W.; Cao, J.-L.; Wang, M.-N.; Zeng, Q.; Xie, Z.-B.; Liu, G. Relationship between decrease in nitrogen content and activities of key enzymes related to nitrogen metabolism in rice leaves under elevated CO2 concentration. Chin. J. Rice Sci. 2008, 2, 499–506. [Google Scholar] [CrossRef]
- Wang, K.J.; Xiong, Y.W.; Ge, L.L.; Zhang, H.; Wang, Z.Q.; Yang, J.C.; Liu, L.J. Yield formation characteristics of transgenic rice strains with different protein contents in grains. Acta Agron. Sin. 2013, 39, 1266–1275. [Google Scholar] [CrossRef]
- Imagawa, F.; Minagawa, H.; Nakayama, Y.; Kanno, K.; Hayakawa, T.; Kojima, S. Tos17 insertion in NADH-dependent glutamate synthase genes leads to an increase in grain protein content in rice. J. Cereal Sci. 2018, 84, 38–43. [Google Scholar] [CrossRef]
- Simmonds, N.W. The relation between yield and protein in cereal grain. J. Sci. Food Agric. 1995, 67, 309–315. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, C.; Xu, K.; Huo, Z.Y.; Wei, H.Y.; Guo, B.W.; Zhang, H.C.; Dai, Q.G. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/indica hybrids indica hybrids, and japonica conventional varieties. Field Crops Res. 2017, 204, 101–109. [Google Scholar] [CrossRef]
- Chen, T.T.; Yang, X.Q.; Fu, W.M.; Li, G.Y.; Feng, B.H.; Fu, G.F.; Tao, L.X. Strengthened assimilate transport improves yield and quality of super rice. Agronomy 2022, 12, 753. [Google Scholar] [CrossRef]
- Sheehy, J.E.; Mnzava, M.; Cassman, K.G.; Mitchell, P.I.; Pablico, P.; Robles, R.P.; Samonte, H.P.; Lales, J.S.; Ferrer, A.B. Temporal origin of nitrogen in the grain of irrigated rice in the dry season: The outcome of uptake cycling, senescence and competition studied using a N-15-point placement technique. Field Crops Res. 2004, 89, 337–348. [Google Scholar] [CrossRef]
- Ida, M.; Ohsugi, R.; Sasaki, H.; Aoki, N.; Yamagishi, T. Contribution of nitrogen absorbed during ripening period to grain filling in a high-yielding rice variety, Takanari. Plant Prod. Sci. 2009, 12, 176–184. [Google Scholar] [CrossRef]
- Mae, T.; Ohira, K. Relation between leaf age and nitrogen incorporation in the leaf of the rice plant (Oryza sativa L.). Plant Cell Physiol. 1982, 23, 1019–1024. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Li, X.Y.; Dai, Q.G.; Zhang, H.C.; Yin, X.Y. Sink-source relationship during rice grain filling is associated with grain nitrogen concentration. Field Crops Res. 2018, 215, 23–38. [Google Scholar] [CrossRef]
- Ntanos, D.A.; Koutroubas, S.D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res. 2002, 74, 93–101. [Google Scholar] [CrossRef]
- Jiang, L.G.; Dai, T.B.; Jiang, D.; Cao, W.X.; Gan, X.Q.; Wei, S.Q. Charactering physiological N-use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Res. 2004, 88, 239–250. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, J.; Chen, C.; Zhang, J.X.; Li, W.Y.; Tang, D.N.; Zhong, J.; Yang, B.; Zhu, Z.K.; Yao, Y.L.; et al. Nitrogen absorption and utilization characteristics of the newly approved early-maturity late japonica rice cultivars in Jiangsu province. Chin. J. Rice Sci. 2017, 31, 619–630. [Google Scholar] [CrossRef]
- Yin, C.Y.; Zhang, Q.; Wei, H.Y.; Zhang, H.C.; Dai, Q.G.; Huo, Z.Y.; Xu, K.; Ma, Q.; Hang, J.; Zhang, S.F. Differences in nitrogen absorption and use efficiency in rice genotypes with different yield performance. Sci. Agric. Sin. 2010, 43, 39–50. [Google Scholar] [CrossRef]
- Zhang, X.C.; Lei, J.C.; Zheng, D.Y.; Liu, Z.H.; Li, G.H.; Wang, S.H.; Ding, Y.F. Amino acid composition of leaf, grain and bracts of japonica rice (Oryza Sativa ssp. japonica) and its response to nitrogen fertilization. Plant Growth Regul. 2017, 82, 1–9. [Google Scholar] [CrossRef]
- Su, D.; Muneer, M.A.; Chen, X.H.; Rasmussen, S.K.; Wu, L.Q.; Cai, Y.Y.; Cheng, F.M. Response of phytic acid to nitrogen application and its relation to protein content in rice grain. Agronomy 2022, 12, 1234. [Google Scholar] [CrossRef]
- Chen, J.; Tang, L.; Liu, X.J.; Cao, W.X.; Zhu, Y. Modeling plant nitrogen uptake and grain protein accumulation in rice. Sci. Agric. Sin. 2011, 44, 1997–2004. [Google Scholar] [CrossRef]
- Zhang, X.L.; Yin, X.H.; Chen, J.N.; Cao, F.B.; Liu, Y.; Xiao, Z.W.; Hu, L.Q.; Chen, G.G.; Liang, T.F.; Huang, M. Accumulation characteristics of protein and non-protein components and their correlations with protein concentration in rice grains. Phyton-Int. J. Exp. Bot. 2021, 90, 1285–1292. [Google Scholar] [CrossRef]
- Tang, T.; Xie, H.; Wang, Y.X.; Lu, B.; Liang, J.S. The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J. Exp. Bot. 2009, 60, 2641–2652. [Google Scholar] [CrossRef]
- Kaushik, D.; Binay, B.P.; Sudhanshu, S.; Ekamber, K.; Pravat, K.M.; Birendra, P.S. Comparative proteomics of the superior and inferior spikelets at the early grain filling stage in rice cultivars contrast for panicle compactness and ethylene evolution. J. Plant Physiol. 2016, 202, 65–74. [Google Scholar] [CrossRef]
- Wang, Z. Plant Physiological Science, 3rd ed.; China Agricultural Press: Beijing, China, 2000; pp. 246–247. [Google Scholar]
- Xu, D.; Zhu, Y.; Zhu, H.B.; Hu, Q.; Liu, G.D.; Wei, H.Y.; Zhang, H.C. Effects of a one-time application of controlled-release nitrogen fertilizer on yield and nitrogen accumulation and utilization of late japonica rice in china. Agriculture 2021, 11, 1041. [Google Scholar] [CrossRef]
- Ning, H.F.; Qiao, J.F.; Liu, Z.H.; Lin, Z.M.; Li, G.H.; Wang, Q.S.; Wang, S.H.; Ding, Y.F. Distribution of proteins and amino acids in milled and brown rice as affected by nitrogen fertilization and genotype. J. Cereal Sci. 2010, 52, 90–95. [Google Scholar] [CrossRef]
- Swain, D.K.; Bhaskar, B.C.; Krishnan, P.; Rao, K.S.; Nayak, S.K.; Dash, R.N. Variation in yield, N uptake and N use efficiency of medium and late duration rice varieties. J. Agric. Sci. 2006, 144, 69–83. [Google Scholar] [CrossRef]
- Tan, Y.F.; Sun, M.; Xing, Y.Z.; Hua, J.P.; Sun, X.L.; Zhang, Q.F.; Corke, H. Mapping quantitative trait loci for milling quality, protein content and color characteristics of rice using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. 2001, 103, 1037–1045. [Google Scholar] [CrossRef]
Variety | Heading | Maturity | S-H (d) | H-M (d) | Total Growth Duration (d) |
---|---|---|---|---|---|
2020 | |||||
Huajing NO.5 | 9-Aug | 3-Oct | 76 | 55 | 131 |
Songzaoxiang NO.1 | 9-Aug | 1-Oct | 76 | 53 | 129 |
Suxiangjing NO.3 | 11-Aug | 4-Oct | 78 | 54 | 132 |
Nanjing9108 | 17-Aug | 10-Oct | 84 | 54 | 138 |
Su1785 | 17-Aug | 12-Oct | 84 | 56 | 140 |
Wuyunjing80 | 19-Aug | 11-Oct | 86 | 53 | 139 |
2021 | |||||
Huajing NO.5 | 8-Aug | 1-Oct | 75 | 54 | 129 |
Songzaoxiang NO.1 | 9-Aug | 1-Oct | 76 | 53 | 129 |
Suxiangjing NO.3 | 8-Aug | 1-Oct | 75 | 54 | 129 |
Nanjing9108 | 14-Aug | 7-Oct | 81 | 54 | 135 |
Su1785 | 14-Aug | 9-Oct | 81 | 56 | 137 |
Wuyunjing80 | 18-Aug | 9-Oct | 85 | 52 | 137 |
Type | Variety | Spikelet Per Panicle | Filled Grain Rate (%) | 1000-Grains Weight (g) | No. of Panicles (×104 hm−2) | Sink Capacity (t hm−2) | Grain Yield (t hm−2) |
---|---|---|---|---|---|---|---|
2020 | |||||||
H-GPC | Huajing NO.5 | 92.25 | 96.78 | 28.57 | 322.77 | 8.51 | 7.83 |
Songzaoxiang NO.1 | 87.44 | 94.82 | 25.93 | 371.79 | 8.43 | 7.57 | |
Suxiangjing NO.3 | 83.78 | 96.22 | 20.93 | 456.36 | 8.00 | 7.58 | |
Mean | 87.83 b | 95.94 a | 25.14 a | 383.64 a | 8.31 b | 7.66 b | |
L-GPC | Nanjing9108 | 120.80 | 91.13 | 26.37 | 345.23 | 11.00 | 9.65 |
Su1785 | 114.15 | 88.93 | 26.73 | 386.83 | 11.80 | 10.02 | |
Wuyunjing80 | 127.92 | 90.03 | 24.32 | 353.08 | 10.98 | 9.49 | |
Mean | 120.96 a | 90.03 b | 25.81 a | 361.72 b | 11.26 a | 9.72 a | |
2021 | |||||||
H-GPC | Huajing NO.5 | 101.30 | 96.52 | 28.52 | 301.73 | 8.72 | 7.98 |
Songzaoxiang NO.1 | 92.89 | 91.93 | 26.23 | 343.80 | 8.38 | 7.63 | |
Suxiangjing NO.3 | 88.47 | 95.91 | 21.33 | 433.88 | 8.19 | 7.69 | |
Mean | 94.22 b | 94.79 a | 25.36 a | 359.80 a | 8.43 b | 7.77 b | |
L-GPC | Nanjing9108 | 118.03 | 90.88 | 26.70 | 352.35 | 11.10 | 9.84 |
Su1785 | 117.43 | 86.20 | 27.07 | 373.05 | 11.85 | 9.97 | |
Wuyunjing80 | 130.90 | 88.16 | 24.39 | 332.70 | 10.62 | 9.55 | |
Mean | 122.12 a | 88.41 b | 26.05 a | 352.70 b | 11.19 a | 9.79 a | |
Results of ANOVA | |||||||
Year | * | ns | * | ** | ns | ns | |
Type | ** | ** | ** | ** | ** | ** | |
Year × Type | Ns | ns | ns | ns | ns | ns |
Type | Variety | SDM-H | LDM-H | PDM-H | TDM-H | SDM-M | LDM-M | PDM-M | TDM-M | DMP-GF |
---|---|---|---|---|---|---|---|---|---|---|
2020 | ||||||||||
H-GPC | Huajing NO.5 | 480.57 | 258.04 | 141.12 | 879.74 | 451.73 | 233.17 | 846.28 | 1531.18 | 651.44 |
Songzaoxiang NO.1 | 459.78 | 282.74 | 145.88 | 888.40 | 439.24 | 215.64 | 807.32 | 1462.20 | 573.80 | |
Suxiangjing NO.3 | 458.46 | 252.90 | 144.13 | 855.49 | 383.54 | 208.03 | 793.76 | 1385.32 | 529.83 | |
Mean | 466.27 b | 264.56 b | 143.71 b | 874.54 b | 424.84 b | 218.94 b | 815.79 b | 1459.57 b | 585.02 b | |
L-GPC | Nanjing9108 | 542.18 | 338.16 | 147.13 | 1027.47 | 457.57 | 285.39 | 1022.31 | 1765.28 | 737.81 |
Su1785 | 638.53 | 367.49 | 195.60 | 1201.63 | 573.25 | 337.47 | 1124.77 | 2035.48 | 833.86 | |
Wuyunjing80 | 588.08 | 345.83 | 182.62 | 1116.53 | 476.81 | 309.39 | 1001.58 | 1787.78 | 671.25 | |
Mean | 589.60 a | 350.49 a | 175.12 a | 1115.21 a | 502.55 a | 310.75 a | 1049.55 a | 1862.85 a | 747.64 a | |
2021 | ||||||||||
H-GPC | Huajing NO.5 | 468.68 | 259.65 | 136.11 | 864.44 | 411.94 | 242.85 | 860.00 | 1514.79 | 650.34 |
Songzaoxiang NO.1 | 438.92 | 281.00 | 133.39 | 853.31 | 403.72 | 212.34 | 812.35 | 1428.41 | 575.10 | |
Suxiangjing NO.3 | 444.68 | 245.85 | 135.36 | 825.88 | 350.63 | 194.03 | 754.19 | 1298.85 | 472.96 | |
Mean | 450.76 b | 262.17 b | 134.96 b | 847.88 b | 388.76 b | 216.41 b | 808.85 b | 1414.01 b | 566.13 b | |
L-GPC | Nanjing9108 | 586.55 | 324.63 | 173.83 | 1085.00 | 480.66 | 252.66 | 1054.70 | 1788.03 | 703.03 |
Su1785 | 717.68 | 350.84 | 209.97 | 1278.50 | 596.70 | 300.57 | 1246.34 | 2143.62 | 865.12 | |
Wuyunjing80 | 614.16 | 346.90 | 197.18 | 1158.24 | 484.08 | 295.73 | 1063.53 | 1843.34 | 685.10 | |
Mean | 639.46 a | 340.79 a | 193.66 a | 1173.91 a | 520.48 a | 282.99 a | 1121.52 a | 1925.00 a | 751.08 a | |
Results of ANOVA | ||||||||||
Year | ns | ns | ns | ns | Ns | ns | Ns | ns | ns | |
Type | ** | ** | ** | ** | ** | ** | ** | ** | ** | |
Year × Type | ns | ns | ns | ns | Ns | ns | Ns | ns | ns |
Type | Variety | SNC-H (g/m2) | LNC-H (g/m2) | PNC-H (g/m2) | TNC-H (g/m2) | SNC-M (g/m2) | LNC-M (g/m2) | PNC-M (g/m2) | TNC-M (g/m2) | NHI (%) |
---|---|---|---|---|---|---|---|---|---|---|
2020 | ||||||||||
H-GPC | Huajing NO.5 | 6.37 | 8.00 | 2.12 | 16.49 | 3.60 | 3.40 | 11.75 | 18.75 | 62.69 |
Songzaoxiang NO.1 | 6.49 | 8.85 | 2.32 | 17.66 | 4.39 | 3.39 | 11.42 | 19.20 | 59.47 | |
Suxiangjing NO.3 | 6.36 | 8.24 | 2.14 | 16.74 | 4.09 | 3.14 | 11.38 | 18.61 | 61.15 | |
Mean | 6.40 a | 8.37 b | 2.19 a | 16.96 b | 4.03 a | 3.31 a | 11.52 a | 18.85 b | 61.10 a | |
L-GPC | Nanjing9108 | 6.62 | 10.04 | 1.95 | 18.61 | 3.73 | 3.58 | 11.75 | 19.06 | 61.64 |
Su1785 | 7.07 | 10.74 | 2.59 | 20.37 | 4.84 | 4.18 | 12.14 | 21.16 | 57.35 | |
Wuyunjing80 | 6.67 | 9.36 | 2.47 | 18.45 | 4.49 | 3.69 | 11.14 | 19.32 | 57.66 | |
Mean | 6.79 a | 10.04 a | 2.32 a | 19.14 a | 4.36 a | 3.82 a | 11.67 a | 19.84 a | 58.88 a | |
2021 | ||||||||||
H-GPC | Huajing NO.5 | 6.14 | 8.18 | 1.93 | 16.26 | 3.08 | 3.38 | 11.92 | 18.38 | 64.85 |
Songzaoxiang NO.1 | 5.90 | 8.70 | 1.98 | 16.58 | 3.51 | 3.25 | 11.58 | 18.34 | 63.13 | |
Suxiangjing NO.3 | 6.17 | 7.86 | 1.96 | 15.98 | 3.78 | 2.88 | 10.64 | 17.30 | 61.53 | |
Mean | 6.07 b | 8.24 b | 1.96 b | 16.27 b | 3.46 a | 3.17 a | 11.38 b | 18.00 b | 63.17 a | |
L-GPC | Nanjing9108 | 6.80 | 9.81 | 2.34 | 18.95 | 3.77 | 3.12 | 12.68 | 19.56 | 64.82 |
Su1785 | 7.31 | 10.48 | 2.79 | 20.58 | 4.25 | 3.66 | 14.11 | 22.02 | 64.07 | |
Wuyunjing80 | 6.49 | 9.65 | 2.65 | 18.78 | 4.01 | 3.54 | 12.20 | 19.74 | 61.78 | |
Mean | 6.87 a | 9.98 a | 2.59 a | 19.44 a | 4.01 a | 3.44 a | 12.99 a | 20.44 a | 63.56 a | |
Results of ANOVA | ||||||||||
Year | ns | ns | ns | ns | ns | ns | ns | ns | * | |
Type | ** | ** | * | ** | ns | * | * | ** | ns | |
Year × Type | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Type | Variety | S-NTA (g/m2) | S-NTE (%) | L-NTA (g/m2) | L-NTE (%) | NUP-GF (g/m2) | NIA-P (g/m2) | NAV (mg/g) |
---|---|---|---|---|---|---|---|---|
2020 | ||||||||
H-GPC | Huajing NO.5 | 2.77 | 43.50 | 4.61 | 57.56 | 2.26 | 9.63 | 15.20 |
Songzaoxiang NO.1 | 2.09 | 32.24 | 5.46 | 61.74 | 1.53 | 9.09 | 16.58 | |
Suxiangjing NO.3 | 2.27 | 35.69 | 5.10 | 61.85 | 1.87 | 9.24 | 15.98 | |
Mean | 2.38 a | 37.14 a | 5.06 b | 60.39 a | 1.89 a | 9.32 a | 15.92 a | |
L-GPC | Nanjing9108 | 2.89 | 43.64 | 6.46 | 64.38 | 0.45 | 9.80 | 11.95 |
Su1785 | 2.23 | 31.57 | 6.52 | 60.93 | 0.79 | 9.55 | 12.40 | |
Wuyunjing80 | 2.18 | 32.67 | 5.67 | 60.61 | 0.87 | 8.73 | 11.84 | |
Mean | 2.44 a | 35.96 a | 6.22 a | 61.97 a | 0.70 b | 9.36 a | 12.06 b | |
2021 | ||||||||
H-GPC | Huajing NO.5 | 3.06 | 49.85 | 4.80 | 58.69 | 2.12 | 9.99 | 14.69 |
Songzaoxiang NO.1 | 2.39 | 40.48 | 5.45 | 62.65 | 1.76 | 9.59 | 16.04 | |
Suxiangjing NO.3 | 2.39 | 38.73 | 4.98 | 64.37 | 1.31 | 8.68 | 15.25 | |
Mean | 2.61 a | 42.99 a | 5.08 b | 61.57 a | 1.73 a | 9.42 a | 15.33 a | |
L-GPC | Nanjing9108 | 3.04 | 44.65 | 6.69 | 68.23 | 0.61 | 10.34 | 11.90 |
Su1785 | 3.06 | 41.91 | 6.82 | 65.05 | 1.44 | 11.32 | 12.52 | |
Wuyunjing80 | 2.48 | 38.19 | 6.11 | 63.35 | 0.96 | 9.56 | 11.91 | |
Mean | 2.86 a | 44.31 a | 6.54 a | 65.55 a | 0.82 b | 10.42 a | 12.11 b | |
Results of ANOVA | ||||||||
Year | ns | ns | ns | ns | ns | ns | ns | |
Type | ns | ns | ** | ns | ** | ns | ** | |
Year × Type | ns | ns | ns | ns | ns | ns | ns |
Index | 2020 | 2021 | Index | 2020 | 2021 |
---|---|---|---|---|---|
Spikelet per panicle | −0.975 ** | −0.946 ** | LNC−H | −0.826 * | −0.876 * |
Filled grain rate | 0.691 | 0.781 | PNC−H | −0.305 | −0.894 * |
1000-grains weight | −0.197 | −0.356 | TNC−H | −0.793 | −0.897 * |
No. of panicles | 0.274 | 0.047 | SNC−M | −0.342 | −0.688 |
Sink capacity | −0.973 ** | −0.961 ** | LNC−M | −0.751 | −0.506 |
Grain yield | −0.977 ** | −0.981 ** | PNC−M | −0.203 | −0.726 |
SDM-H | −0.901 * | −0.898 * | TNC−M | −0.542 | −0.774 |
LDM-H | −0.936 ** | −0.914 * | NHI | 0.529 | 0.155 |
PDM-H | −0.727 | −.924 ** | S−NTA | −0.119 | −0.424 |
TDM-H | −0.908 * | −0.920 ** | S−NTE | 0.084 | 0.113 |
SDM-M | −0.656 | −0.803 | L−NTA | −0.791 | −0.873 * |
LDM-M | −0.935 ** | −0.857 * | L−NTE | −0.345 | −0.637 |
PDM-M | −0.929 ** | −0.891 * | NIA−P | −0.026 | −0.574 |
TDM-M | −0.886 * | −0.873 * | NUP−GF | 0.892 * | 0.728 |
DMP-GF | −0.789 | −0.749 | NAV | 0.989 ** | 0.991 ** |
SNC-H | −0.757 | −0.823 * |
Year | Selected Dependent | Regression Equation | R2 |
---|---|---|---|
2020 | NAV | Y = −0.229 + 0.495·NAV | 0.978 ** |
2021 | NAV | Y = −0.688 + 0.584·NAV | 0.983 ** |
Year | Trait | Correlation Coefficient | Direct Path Coefficient | Indirect Path Coefficient | ||||
---|---|---|---|---|---|---|---|---|
Sink Capacity | LDM-H | LNC-H | NUP-GF | Total | ||||
2020 | Sink capacity | −0.961 ** | −1.447 | 0.000 | 0.195 | 0.618 | −0.327 | 0.486 |
LDM-H | −0.890 * | 0.202 | −1.396 | 0.000 | 0.646 | −0.342 | −1.091 | |
LNC-H | −0.767 | 0.686 | −1.305 | 0.190 | 0.000 | −0.755 | −1.870 | |
NUP-GF | 0.837 * | 0.374 | 1.264 | −0.184 | −0.618 | 0.000 | 0.462 | |
2021 | Sink capacity | −0.935 ** | −1.610 | 0.000 | −0.140 | 0.962 | −0.147 | 0.675 |
LDM-H | −0.860 * | −0.146 | −1.538 | 0.000 | 0.972 | −0.148 | −0.714 | |
LNC-H | −0.818 * | 1.004 | −1.542 | −0.141 | 0.000 | −0.137 | −1.821 | |
NUP-GF | 0.723 | 0.263 | 0.900 | 0.082 | −0.522 | 0.000 | 0.460 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Li, M.; Ji, X.; Liu, J.; Wang, F.; Wei, Y. Characteristics of Grain Yield, Dry Matter Production and Nitrogen Uptake and Transport of Rice Varieties with Different Grain Protein Content. Agronomy 2022, 12, 2866. https://doi.org/10.3390/agronomy12112866
Liu Q, Li M, Ji X, Liu J, Wang F, Wei Y. Characteristics of Grain Yield, Dry Matter Production and Nitrogen Uptake and Transport of Rice Varieties with Different Grain Protein Content. Agronomy. 2022; 12(11):2866. https://doi.org/10.3390/agronomy12112866
Chicago/Turabian StyleLiu, Qiuyuan, Meng Li, Xin Ji, Juan Liu, Fujuan Wang, and Yunfei Wei. 2022. "Characteristics of Grain Yield, Dry Matter Production and Nitrogen Uptake and Transport of Rice Varieties with Different Grain Protein Content" Agronomy 12, no. 11: 2866. https://doi.org/10.3390/agronomy12112866
APA StyleLiu, Q., Li, M., Ji, X., Liu, J., Wang, F., & Wei, Y. (2022). Characteristics of Grain Yield, Dry Matter Production and Nitrogen Uptake and Transport of Rice Varieties with Different Grain Protein Content. Agronomy, 12(11), 2866. https://doi.org/10.3390/agronomy12112866