Impact of Field Topography and Soil Characteristics on the Productivity of Alfalfa and Rhodes Grass: RTK-GPS Survey and GIS Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and the Experimental Field
2.2. RTK-GPS Survey and Mapping of Topography Indicators
2.3. Sampling Strategy and Field Data Collection
2.4. Soil Physicochemical Properties Mapping
2.5. Satellite Data, Image Analysis and Forage Yield Mapping
2.6. Data Analysis and Spatial Clusters of High and Low Yield Zones
3. Results
3.1. Soil Chemical Properties
3.2. Topographic Attributes
3.3. Vegetation Indices and Crop Yield
4. Discussion
4.1. Yield Prediction
4.2. Topography Features vs. Crop Yield
4.3. Soil Physicochemical Properties vs. Crop Yield
4.4. Crop Yield Cluster Map
5. Conclusions
- The elevation was shown to have a significant effect on the yield of both alfalfa and Rhodes grass. However, there was a significant negative impact of the SL on the yield of both alfalfa and Rhodes grass. Moreover, the FA and TWI had a significant positive influence on the yield of both crops.
- Of the studied soil properties, the soil N had the most significant impact on the yield of both alfalfa and Rhodes grass.
- The generated yield cluster map indicated that the majority area (37.56%) of the experimental field was occupied by the medium-yield class, followed by the high-yield class (33.03%), and the rest of the experimental field (29.41%) is characterized as a low-productivity area.
- The outcomes of this study can be used as a reference for alfalfa crops and Rhodes grass yield mapping with respect to topography and soil chemical properties in the study region and areas with similar environmental conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabia, A.H.; Neupane, J.; Lin, Z.; Lewis, K.; Cao, G.; Guo, W. Chapter four—Principles and applications of topography in precision agriculture. Adv. Agron. 2022, 171, 143–189. [Google Scholar]
- Franz, T.E.; Pokal, S.; Gibson, J.P.; Zhou, Y.; Gholizadeh, H.; Tenorio, F.A.; Rudnick, D.; Heeren, D.M.; McCabe, M.F.; Ziliani, M.; et al. The role of topography, soil, and remotely sensed vegetation condition towards predicting crop yield. Field Crops Res. 2020, 252, 107788. Available online: https://digitalcommons.unl.edu/natrespapers/1112 (accessed on 7 November 2022). [CrossRef]
- Li, Q.; Gu, F.; Zhou, Y.; Xu, T.; Wang, L.; Zuo, Q.; Xiao, L.; Liu, J.; Tian, Y. Changes in the Impacts of Topographic Factors, Soil Texture, and Cropping Systems on Topsoil Chemical Properties in the Mountainous Areas of the Subtropical Monsoon Region from 2007 to 2017: A Case Study in Hefeng, China. Int. J. Environ. Res. Public Health 2021, 18, 832. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Yousef, M.; Greife, A.; Naraharisetti, S.C.S. Influence of Topography on Sustainable Land Management: An Analysis of Socioeconomic and Ecodemographic Conditions of Nepal. Agriculture 2020, 10, 224. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Y.; Xiong, S.; Wu, G.; Deng, O. Multi-scale spatial correlation between vegetation index and terrain attributes in a small watershed of the upper Minjiang River. Ecol. Indic. 2021, 126, 107610. [Google Scholar] [CrossRef]
- Munoz, J.D.; Kravchenko, A. Deriving the optimal scale for relating topographic attributes and cover crop plant biomass. Geomorphology 2012, 179, 197–207. [Google Scholar] [CrossRef]
- Walley, F.; Pennock, D.; Solohub, M.; Hnatowich, G. Spring wheat (Triticum aestivum) yield and grain protein response to N fertilizer in topographically defined landscape positions. Can. J. Soil Sci. 2001, 81, 505–514. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bollero, G.A.; Omonode, R.A.; Bullock, D.G. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 2022, 66, 235–243. [Google Scholar] [CrossRef]
- Green, T.R.; Salas, J.D.; Martinez, A.; Erskine, R.H. Relating crop yield to topographic attributes using Spatial Analysis Neural Networks and regression. Geoderma 2007, 139, 23–37. [Google Scholar] [CrossRef]
- Halvorson, G.A.; Doll, E.C. Topographic effects on spring wheat yields and water use. Soil Sci. Soc. Am. J. 1991, 55, 1680–1685. [Google Scholar] [CrossRef]
- Bakhsh, A.; Colvin, T.; Jaynes, D.; Kanwar, R.; Tim, U. Using soil attributes and GIS for interpretation of spatial variability in yield. Agric. Biosyst. Eng. 2000, 43, 819–828. [Google Scholar] [CrossRef]
- Heil, K.; Heinemann, P.; Schmidhalter, U. Modeling the effects of soil variability, topography and management on the yield of Barley. Front. Environ. Sci. 2018, 6, 146. [Google Scholar] [CrossRef]
- Krummel, J.; Su, H. Topographic effect and its relation to crop production in an individual field. In Precision Agriculture-1996, Proceedings of the 3rd International Conference on Precision Agriculture, Minneapolis, MN, USA, 23–26 June 1996; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar] [CrossRef]
- Iqbal, J.; Read, J.J.; Thomasson, A.J.; Jenkins, J.N. Relationships between Soil–Landscape and Dryland Cotton Lint Yield. Soil Sci. Soc. Am. J. 2005, 69, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.J.; Rampant, P.C.; Callinan, A.P.L.; Rab, M.A.; Fisher, P.D. Advances in precision agriculture in south-eastern Australia. II. Spatio-temporal prediction of crop yield using terrain derivatives and proximally sensed data. Crop Pasture Sci. 2009, 60, 859–869. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Cai, H.; Xiao, L.; Xu, X.; Liu, L. Topographical characteristics of agricultural potential productivity during cropland transformation in China. Sustainability 2015, 7, 96–110. [Google Scholar] [CrossRef] [Green Version]
- Chi, B.L.; Bing, C.S.; Walley, F.; Yates, T. Topographic indices and yield variability in a rolling landscape of western Canada. Pedosphere 2009, 19, 362–370. [Google Scholar] [CrossRef]
- Timlin, D.J.; Pachepsky, Y.; Snyder, V.A.; Bryant, R.B. Spatial and temporal variability of corn grain yield on a hillslope. Soil Sci. Soc. Am. J. 1998, 51, 1025–1032. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Colvin, T.S.; Jaynes, D.B.; Karlen, D.L.; James, D.E.; Meek, D.W.; Pulido, D.; Butler, H. Relationship between six years of corn yields and terrain attributes. Precis. Agric. 2003, 4, 87–101. [Google Scholar] [CrossRef]
- Renschler, C.S.; Flanagan, D.C. Site-Specific Decision-Making Based on RTK GPS Survey and Six Alternative Elevation Data Sources: Soil Erosion Predictions. Trans. ASABE Am. Soc. Agric. Biol. Eng. 2008, 51, 413. [Google Scholar] [CrossRef]
- Kumhalova, J.; Kumhala, F.; Kroulik, M.; Matejkova, S. The impact of topography on soil properties and yield and the effect of weather conditions. Precis. Agric. 2011, 12, 813–830. [Google Scholar] [CrossRef]
- Neupane, J.; Guo, W. Agronomic basis and strategies for precision water management: A review. Agronomy 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Pilesjo, P.; Thylen, L.; Persson, A. Topographical data for delineation of agricultural management zones. In Precision Agriculture ’05, Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Stafford, J.V., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 819–826. [Google Scholar]
- Persson, A.; Pilesjo, P.; Eklundh, L. Spatial influence of topographical factors on yield of potato (Solanum tuberosum L.) in central Sweden. Precis. Agric. 2005, 6, 341–357. [Google Scholar] [CrossRef]
- Ouma, Y.O. Evaluation of multiresolution digital elevation model (DEM) from real-time kinematic GPS and ancillary data for reservoir storage capacity estimation. Hydrology 2016, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Kizil, U.; Tisor, L. Evaluation of RTK-GPS and Total Station for Applications in Land Surveying. J. Earth Syst. Sci. 2011, 120, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Idris, M. Evaluation of GPS-RTK and Total Station for Topographic Survey and Strategic Decision in Private Companies. KnE Eng. 2019, 4, 323–332. [Google Scholar] [CrossRef]
- Kumhalova, J.; Matejkova, S.; Fifernova, M.; Lipavsky, J.; Kumhala, F. Topography impact on nutrition content in soil and yield. Plant Soil Environ. 2008, 54, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Ziliani, M.G.; Parkes, S.D.; Hoteit, I.; McCabe, M.F. Intra-Season Crop Height Variability at Commercial Farm Scales Using a Fixed-Wing UAV. Remote Sens. 2018, 10, 2007. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.; Brozovic, N.; Butler, A.P.; Neale, C.M.U.; Raes, D.; Steduto, P.; Fereres, E.; Hsiao, T.C. AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.E.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Dor, E.B.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Patil, V.C.; Al-Gaadi, K.A.; Madugundu, R.; Tola, E.; Marey, S.; Aldosari, A.; Biradar, C.M.; Gowda, P.H. Assessing agricultural water productivity in desert farming System of Saudi Arabia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 284–297. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.Y.; Pan, M.; Li, Y. Benefits of Seasonal Climate Prediction and Satellite Data for Forecasting US Maize Yield. Geophys. Res. Lett. 2018, 45, 9662–9671. [Google Scholar] [CrossRef]
- Leroux, L.; Castets, M.; Baron, C.; Escorihuela, M.J.; Begue, A.; Lo Seen, D. Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. Eur. J. Agron. 2019, 108, 11–26. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Kayad, A.G.; Hassaballa, A.A.; Patil, V.C. Seasonal dynamics of surface energy fluxes over a centre-pivot irrigated cropland in Saudi Arabia. J. Environ. Biol. 2017, 38, 743–751. [Google Scholar] [CrossRef]
- Al-Mamoori, S.K.; Al-Maliki, L.A.; Al-Sulttani, A.H.; El-Tawil, K.; Al-Ansari, N. Statistical analysis of the best GIS interpolation method for bearing capacity estimation in An-Najaf City, Iraq. Environ. Earth Sci. 2021, 80, 683. [Google Scholar] [CrossRef]
- Achilleos, G.A. The Inverse Distance Weighted interpolation method and error propagation mechanism—Creating a DEM from an analogue topographical map. J. Spat. Sci. 2011, 56, 283–304. [Google Scholar] [CrossRef]
- Kirkby, M.J.; Beven, K.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 1979, 24, 43–69. [Google Scholar]
- Lynch, J.M.; Barbano, D.M. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int. 1999, 82, 1389–1398. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, NASA SP-351, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Yang, C.; Peterson, C.L.; Shropshire, G.J.; Otawa, T. Spatial variability of field topography and wheat yield in the Palouse region of the Pacific Northwest. Trans. ASAE 1998, 41, 17–27. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Bullock, D.G. Correlation of corn and soybean grain yield with topography and soil properties. Agron. J. 2000, 92, 75–83. [Google Scholar] [CrossRef]
- Wright, R.J.; Boyer, D.G.; Winant, W.M.; Perry, H.D. The influence of soil factors on yield differences among landscape positions in an Appalachian cornfield. Soil Sci. 1990, 149, 375–382. [Google Scholar] [CrossRef]
- Dinaburga, G.; Lapins, D.; Kopmanis, J. Effect of differences in soil moisture on winter wheat yield. In Proceedings of the Engineering for Rural Development Conference, Jelgava, Latvia, 27–28 May 2010. [Google Scholar]
- Bodner, G.; Nakhforoosh, A.; Kaul, H. Management of crop water under drought: A review. Agron. Sustain. Dev. 2015, 35, 401–442. [Google Scholar] [CrossRef]
- Marques da Silva, J.R.; Silva, L.L. The yield pattern considering the distance to flow accumulation lines. Eur. J. Agron. 2008, 28, 551–558. [Google Scholar] [CrossRef] [Green Version]
- McConkey, B.G.; Ulrich, D.J.; Dyck, F.B. Slope position and subsoiling effects on soil water and spring wheat yield. Can. J. Soil Sci. 1997, 77, 83–90. [Google Scholar] [CrossRef]
- Emam, Y.; Bijanzadeh, E.; Naderi, R.; Edalat, M. Effect of salt stress on vegetative growth and ion accumulation of two alfalfa (Medicago sativa L.) cultivars. Desert 2009, 14, 163–169. [Google Scholar]
- Bernardi, A.C.C.; Bettiol, G.M.; Ferreira, R.P.; Santos, K.E.L.; Rabello, L.M.; Inamasu, R.Y. Spatial variability of soil properties and yield of a grazed alfalfa pasture in Brazil. Precis. Agric. 2016, 17, 737–752. [Google Scholar] [CrossRef]
Month | 2015 | 2016 | 2017 |
---|---|---|---|
January | - | 3, 19 | 5 |
February | 1 | 4, 20 | - |
March | 5 | 7, 23 | 26 |
April | 22 | 8, 24 | 11, 27 |
May | 24 | 10, 26 | 13, 29 |
June | 9, 25 | 11, 27 | 30 |
July | 11, 27 | 13, 29 | 16 |
August | 12, 28 | 14, 30 | 1, 17 |
September | 13, 29 | 15 | 2, 18 |
October | 15, 31 | 1, 17 | 20 |
November | 16 | 2 | 5 |
December | 2, 18 | 20 | 7, 23 |
Crop | Yield Model | Reference |
---|---|---|
Alfalfa | Y = 9.6754 × NDVI − 0.1097 | [32] |
Rhodes grass | Y = 11.3946 × NDVI − 0.3807 |
Sample No. = 86 | 2015 | 2016 | 2017 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Avg. | CV (%) | Min | Max | Avg. | CV (%) | Min | Max | Avg. | CV (%) | |
Soil EC (mS cm−1) | 0.9 | 2.1 | 1.5 | 42.6 | 1.6 | 3.2 | 2.2 | 49.1 | 1.4 | 3.3 | 2.3 | 44.9 |
Soil pH | 7.7 | 7.9 | 7.8 | 12.6 | 7.7 | 8.0 | 7.9 | 17.2 | 7.8 | 8.1 | 7.9 | 19.6 |
Soil Nitrogen (%) | 0.09 | 4.59 | 2.15 | 31.19 | 0.18 | 5.62 | 2.74 | 36.46 | 0.12 | 5.16 | 2.94 | 24.19 |
Soil Organic Carbon (%) | 0.69 | 2.24 | 1.32 | 11.92 | 0.79 | 2.04 | 1.34 | 16.11 | 0.94 | 2.19 | 1.44 | 20.47 |
Parameters | Elevation (m) | SL (%) | FA (m) | TWI |
---|---|---|---|---|
Minimum | 346.85 | 0.10 | 20.25 | −6.61 |
Maximum | 351.39 | 3.05 | 205.96 | 15.75 |
Mean | 349.25 | 0.68 | 41.61 | 6.94 |
Standard Deviation | 1.08 | 0.25 | 23.65 | 3.98 |
Coefficient of Variation (CV), % | 0.31 | 10.29 | 56.84 | 57.34 |
N = 85 | Season | 2015 (Alfalfa) | 2016 (Alfalfa) | 2017 (Rhodes Grass) |
---|---|---|---|---|
Cumulative NDVI | Summer | 0.90 | 1.60 | 2.30 |
Spring | 1.69 | 2.15 | 2.74 | |
Winter | 0.09 | 1.40 | 2.04 | |
Cumulative SAVI | Summer | 2.10 | 3.59 | 2.87 |
Spring | 3.20 | 2.94 | 3.12 | |
Winter | 2.20 | 2.24 | 2.16 | |
Yield (YP) | Summer | 4.71 | 4.49 | 5.18 |
Spring | 6.65 | 6.64 | 7.35 | |
Winter | 2.22 | 2.66 | 4.92 | |
Mean | 5.53 | 5.08 | 6.67 |
Covariance | Alfalfa (2015) | Alfalfa (2016) | Rhodes Grass (2017) | ||||||
---|---|---|---|---|---|---|---|---|---|
Summer | Spring | Winter | Summer | Spring | Winter | Summer | Spring | Winter | |
R2 | 0.61 * | 0.71 ** | 0.56 * | 0.59 ** | 0.74 ** | 0.64 NS | 0.62 * | 0.58 ** | 0.53 * |
RMSE (t ha−1) | 0.91 | 0.93 | 0.54 | 1.03 | 1.34 | 0.62 | 1.15 | 1.19 | 1.02 |
RMSE (%) | 22.46 | 17.28 | 21.97 | 19.19 | 20.69 | 24.21 | 20.29 | 18.19 | 15.92 |
MBE (t ha−1) | 0.58 | 0.76 | 0.24 | 0.69 | 0.92 | 0.55 | 0.87 | 0.78 | 0.66 |
MBE (%) | 17.19 | −9.62 | −12.9 | 10.62 | 16.84 | −17.19 | −12.81 | −9.14 | −11.9 |
Year | Crop | Elevation | SL | FA | TWI |
---|---|---|---|---|---|
2015 | Alfalfa | −0.288 NS | −0.595 NS | 0.621 * | 0.489 NS |
2016 | Alfalfa | −0.331 NS | −0.617 ** | 0.551 ** | 0.614 * |
2017 | Rhodes grass | −0.425 NS | −0.591 * | 0.578 * | 0.519 * |
Overall | −0.398 NS | −0.593 * | 0.583 * | 0.546 * | |
F | 0.840 | 17.395 | 17.888 | 7.374 | |
Pr > F | 0.364 | 0.002 | 0.001 | 0.009 |
Year | Crop | Soil pH | Soil EC | SOC | Nitrogen |
---|---|---|---|---|---|
2015 | Alfalfa | 0.216 NS | 0.435 * | 0.562 * | 0.424 ** |
2016 | Alfalfa | 0.337 NS | 0.547 ** | 0.579 ** | 0.602 * |
2017 | Rhodes grass | 0.309 NS | 0.319 NS | 0.512 * | 0.519 * |
Overall | 0.279 NS | 0.443 * | 0.547 * | 0.552 ** | |
F | 7.7 | 11.43 | 25.856 | 9.526 | |
Pr > F | 0.081 | 0.001 | 0.003 | 0.000 |
Yield (Yp), t ha−1 | Alfalfa (2015) | Alfalfa (2016) | Rhodes Grass (2017) | Overall Mean | ||||
---|---|---|---|---|---|---|---|---|
ha | % | ha | % | ha | % | ha | % | |
VV high: 10–12 | 0.17 | 0.34 | 0.00 | 0.00 | 0.56 | 1.12 | 0.24 | 0.49 |
Very High: 8–10 | 3.84 | 7.68 | 6.21 | 12.42 | 9.88 | 19.76 | 6.64 | 13.29 |
High: 6–8 | 9.49 | 18.98 | 14.62 | 29.24 | 25.43 | 50.86 | 16.51 | 33.03 |
Medium: 4–6 | 27.73 | 55.46 | 21.14 | 42.28 | 7.47 | 14.94 | 18.78 | 37.56 |
Low: 2–4 | 4.85 | 9.70 | 6.11 | 12.22 | 3.92 | 7.84 | 4.96 | 9.92 |
Very Low: 0–2 | 3.92 | 7.84 | 1.92 | 3.84 | 2.74 | 5.48 | 2.86 | 5.72 |
Overall | 50.00 | 100.00 | 50.00 | 100.00 | 50.00 | 100.00 | 50.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Zeyada, A.M.; Alameen, A.A.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. Impact of Field Topography and Soil Characteristics on the Productivity of Alfalfa and Rhodes Grass: RTK-GPS Survey and GIS Approach. Agronomy 2022, 12, 2918. https://doi.org/10.3390/agronomy12122918
Madugundu R, Al-Gaadi KA, Tola E, Zeyada AM, Alameen AA, Edrris MK, Edrees HF, Mahjoop O. Impact of Field Topography and Soil Characteristics on the Productivity of Alfalfa and Rhodes Grass: RTK-GPS Survey and GIS Approach. Agronomy. 2022; 12(12):2918. https://doi.org/10.3390/agronomy12122918
Chicago/Turabian StyleMadugundu, Rangaswamy, Khalid A. Al-Gaadi, ElKamil Tola, Ahmed M. Zeyada, Ahmed A. Alameen, Mohamed K. Edrris, Haroon F. Edrees, and Omer Mahjoop. 2022. "Impact of Field Topography and Soil Characteristics on the Productivity of Alfalfa and Rhodes Grass: RTK-GPS Survey and GIS Approach" Agronomy 12, no. 12: 2918. https://doi.org/10.3390/agronomy12122918