Dissipation, Residue Behavior and Dietary Risk Assessment of Difenoconazole on Jujube (Ziziphus jujuba Mill.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Supervised Field Trials
2.3. Standard Solutions Preparation
2.4. Sample Preparation
2.5. GC/ECD Conditions
2.6. Recovery Study
2.7. Data Calculation and Analysis
2.7.1. Dietary Risk Assessment
2.7.2. Dissipation Kinetics
3. Results and Discussion
3.1. Method Validation
3.2. Dissipation Residue
3.3. Final Residue
3.4. Dietary Risk Exposure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, S.; Duan, J.A.; Tang, Y.P.; Zhu, Z.H.; Qian, Y.F.; Yang, N.Y.; Shang, E.X.; Qian, D.W. Characterization of nucleosides and nucleobases in fruits of Ziziphus jujuba by UPLC-DAD-MS. J. Agric. Food Chem. 2010, 58, 10774–10780. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.H.; Wu, C.S.; Wang, M.; Xu, B.N.; Du, L.J. Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, alpha-tocopherol, beta-carotene, and phenolic compounds. J. Agric. Food Chem. 2012, 60, 9642–9648. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Fan, L.P.; Ding, S.D.; Ding, X.L. Nutritional composition of five cultivars of Chinese jujube. Food Chem. 2007, 103, 454–460. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.L.; Wang, Z.T.; Liu, Z.G.; Zhao, Z.H.; Zhou, G.F.; Liu, M.J.; Liu, P. Variations of the nutritional composition of jujube fruit (Ziziphus jujuba Mill.) during maturation stages. Int. J. Food Prop. 2020, 23, 1066–1081. [Google Scholar] [CrossRef]
- Kwon, J.H.; Won, S.J.; Moon, J.H.; Kim, C.W.; Ahn, Y.S. Control of Fungal Diseases and Increase in Yields of a Cultivated Jujube Fruit (Zizyphus jujuba Miller var. inermis Rehder) Orchard by Employing Lysobacter antibioticus HS124. Forests 2019, 10, 1146. [Google Scholar] [CrossRef] [Green Version]
- Phoulivong, S.; Cai, L.; Chen, H.; McKenzie, E.H.C.; Abdelsalam, K.; Chukeatirote, E.; Hyde, K.D. Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Divers. 2010, 44, 33–43. [Google Scholar] [CrossRef]
- He, C.; Zhang, Z.Q.; Li, B.Q.; Xu, Y.; Tian, S.P. Effect of natamycin on Botrytis cinerea and Penicillium expansum—Postharvest pathogens of grape berries and jujube fruit. Postharvest. Biol. Tec. 2019, 151, 134–141. [Google Scholar] [CrossRef]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Wang, X.H.; Xiao, C.; Ji, C.; Liu, Z.Y.; Song, X.; Liu, Y.; Li, C.H.; Yan, D.L.; Li, H.Y.; Qin, Y.M.; et al. Isolation and characterization of endophytic bacteria for controlling root rot disease of Chinese jujube. J. Appl. Microbiol. 2021, 130, 926–936. [Google Scholar] [CrossRef]
- Sun, C.X.; Cang, T.; Wang, Z.W.; Wang, X.Q.; Yu, R.X.; Wang, Q.; Zhao, X.P. Degradation of three fungicides following application on strawberry and a risk assessment of their toxicity under greenhouse conditions. Environ. Monit. Assess. 2015, 187, 303. [Google Scholar] [CrossRef]
- Reuveni, M.; Sheglov, D. Effects of azoxystrobin, difenoconazole, polyoxin B (polar) and trifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious apple fruit. Crop Prot. 2002, 21, 951–955. [Google Scholar] [CrossRef]
- Dong, M.F.; Ma, L.; Zhan, X.P.; Chen, J.B.; Huang, L.Q.; Wang, W.M.; Zhao, L. Dissipation rates and residue levels of diflubenzuron and difenoconazole on peaches and dietary risk assessment. Regul. Toxicol. Pharmacol. 2019, 108, 104447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Jiang, W.N.; Jian, Q.; Song, W.C.; Zheng, Z.T.; Wang, D.L.; Liu, X.J. Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chem. 2015, 168, 396–403. [Google Scholar] [CrossRef] [PubMed]
- China Pesticide Information Network. Pesticide Registration Data. Available online: http://www.chinapesticide.org.cn/hysj/index.jhtml (accessed on 15 April 2021).
- Dong, X.C.; Zhang, L.M.; Chen, M.; Yang, Z.B.; Zuo, Z.H.; Wang, C.G. Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma). J. Environ. Sci. 2018, 63, 126–132. [Google Scholar] [CrossRef]
- Sanches, A.L.M.; Vieira, B.H.; Reghini, M.V.; Moreira, R.A.; Freitas, E.C.; Espíndola, E.L.G.; Daam, M.A. Single and mixture toxicity of abamectin and difenoconazole to adult zebrafish (Danio rerio). Chemosphere. 2017, 188, 582–587. [Google Scholar] [CrossRef]
- Sanches, A.L.M.; Daam, M.A.; Freitas, E.C.; Godoy, A.A.; Meireles, G.; Almeida, A.R.; Domingues, I.; Espindola, E.L.G. Lethal and sublethal toxicity of abamectin and difenoconazole (individually and in mixture) to early life stages of zebrafish. Chemosphere 2018, 210, 531–538. [Google Scholar] [CrossRef]
- Dong, F.S.; Li, J.; Chankvetadze, B.; Cheng, Y.P.; Xu, J.; Liu, X.; Li, Y.B.; Chen, X.; Bertucci, C.; Tedesco, D.; et al. Chiral triazole fungicide difenoconazole: Absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil. Environ. Sci. Technol. 2013, 47, 3386–3394. [Google Scholar] [CrossRef]
- Moreira, R.A.; Araujo, G.S.; Silva, A.R.R.G.; Daam, M.A.; Rocha, O.; Soares, A.M.V.M.; Loureiro, S. Effects of abamectin-based and difenoconazole-based formulations and their mixtures in Daphnia magna: A multiple endpoint approach. Ecotoxicology 2020, 29, 1486–1499. [Google Scholar] [CrossRef]
- Teng, M.M.; Zhu, W.T.; Wang, D.Z.; Qi, S.Z.; Wang, Y.; Yan, J.; Dong, K.; Zheng, M.Q.; Wang, C.J. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquat. Toxicol. 2018, 194, 112–120. [Google Scholar] [CrossRef]
- Mu, X.Y.; Pang, S.; Sun, X.Z.; Gao, J.J.; Chen, J.Y.; Chen, X.F.; Li, X.F.; Wang, C.J. Evaluation of acute and developmental effects of difenoconazole via multiple stage zebrafish assays. Environ. Pollut. 2013, 175, 147–157. [Google Scholar] [CrossRef]
- Mu, X.Y.; Chai, T.T.; Wang, K.; Zhu, L.Z.; Huang, Y.; Shen, G.M.; Li, Y.R.; Li, X.F.; Wang, C.J. The developmental effect of difenoconazole on zebrafish embryos: A mechanism research. Environ. Pollut. 2016, 212, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Syromyatnikov, M.Y.; Kokina, A.V.; Lopatin, A.V.; Starkov, A.A.; Popov, V.N. Evaluation of the toxicity of fungicides to flight muscle mitochondria of bumblebee (Bombus terrestris L.). Pestic Biochem. Physiol. 2017, 135, 41–46. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Jia, C.H.; Zhao, E.; Chen, L.; Yu, P.Z.; Jing, J.J.; Zheng, Y.Q. Concentrations and dissipation of difenoconazole and fluxapyroxad residues in apples and soil, determined by ultrahigh-performance liquid chromatography electrospray ionization tandem mass spectrometry. Environ. Sci. Pollut. Res. 2015, 23, 5618–5626. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Cai, L.; Zhang, H.P.; Zhang, Q.K.; Song, J.J.; Zhang, Z.H.; Deng, Y.F.; Liu, Y.L.; Wang, X.G.; Fang, H. Deposition distribution, metabolism characteristics, and reduced application dose of difenoconazole in the open field and greenhouse pepper ecosystem. Agric. Ecosyst. Environ. 2021, 313, 107370. [Google Scholar] [CrossRef]
- Yan, B.P.; Ye, F.; Gao, D.P. Residues of the fungicide epoxiconazole in rice and paddy in the Chinese field ecosystem. Pest. Manag. Sci. 2015, 71, 65–71. [Google Scholar] [CrossRef]
- European Commission, Pesticides Database. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 10 November 2021).
- Electronic Code of Federal Regulations, USA Pesticide MRLs. Available online: https://www.bryantchristie.com/BCGlobal-Subscriptions/Pesticide-MRLs (accessed on 10 November 2021).
- The Japan Food Chemical Research Foundation, Maximum Residue Limits (MRLs) List of Agricultural Chemicals in Foods. Available online: http://www.m5.ws001.squarestart.ne.jp/foundation/note_en.html (accessed on 10 November 2021).
- NY/T788-2018; Guideline for the Testing of Pesticide Residues in Crops. China Agricultural Press: Beijing, China, 2018. (In Chinese)
- Li, H.X.; Zhong, Q.; Wang, M.; Luo, F.J.; Wang, X.R.; Zhou, L.; Zhang, X.Z. Residue degradation, transfer and risk assessment of pyriproxyfen and its metabolites from tea garden to cup by ultra performance liquid chromatography tandem mass spectrometry. J. Sci. Food Agric. 2022, 102, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, J.; Yue, N.; Wang, Y.L.; Wang, J.; Jin, F. Dissipation and dietary risk assessment of tristyrylphenol ethoxylate homologues in cucumber after field application. Food Chem. 2021, 338, 127988. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.Z.; Luo, F.J.; Zhang, X.Z.; Zhou, L.; Lou, Z.Y.; Chen, Z.M. Residue analysis and dietary exposure risk assessment of acibenzolar-S-methyl and its metabolite acibenzolar acid in potato, garlic, cabbage, grape and tomato. Ecotoxicol. Environ. Saf. 2021, 207, 111178. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.F.; Chai, Y.D.; Li, C.D.; Liu, R.; Chen, Z.L.; Li, L.; Li, W.; He, Y.J. Dissipation, residue, dietary, and ecological risk assessment of atrazine in apples, grapes, tea, and their soil. Environ. Sci. Pollut. Res. 2021, 28, 35064–35072. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Sun, R.X.; Su, Y.; Hu, J.Y.; Liu, X.L. Fate, residues and dietary risk assessment of the fungicides epoxiconazole and pyraclostrobin in wheat in twelve different regions, China. Ecotoxicol. Environ. Saf. 2021, 207, 111236. [Google Scholar] [CrossRef]
- Li, H.X.; Zhong, Q.; Wang, X.R.; Luo, F.J.; Zhou, L.; Chen, Z.M.; Zhang, X.Z. Residue degradation and metabolism of spinetoram in tea: A growing, processing and brewing risk assessment. Food Control. 2022, 125, 107955. [Google Scholar] [CrossRef]
- Li, H.X.; Zhong, Q.; Wang, X.R.; Luo, F.J.; Zhou, L.; Chen, Z.M.; Zhang, X.Z. Simultaneous quantitative determination of residues of pyriproxyfen and its metabolites in tea and tea infusion using ultra-performance liquid chromatography-tandem mass spectrometry. Agronomy 2022, 12, 1829. [Google Scholar] [CrossRef]
- Wang, X.M.; You, Q.H.; Hou, Z.G.; Yu, X.L.; Gao, H.M.; Gao, Y.X.; Wang, L.R.; Wei, L.P.; Lu, Z.B. Establishing the HPLC-MS/MS method for monitoring the residue and degradation of butralin in ginseng during field and risk assessments. Agronomy 2022, 12, 2675. [Google Scholar] [CrossRef]
- Souza, L.P.; Faroni, L.R.D.; Heleno, F.F.; Pinto, F.G.; Queiroz, M.E.L.R.; Prates, L.H.F. Difenoconazole and linuron dissipation kinetics in carrots under open-field conditions. Ecotoxicol. Environ. Saf. 2019, 168, 479–485. [Google Scholar] [CrossRef]
- Wang, Z.H.; Yang, T.; Qin, D.M.; Gong, Y.; Ji, Y. Determination and dynamics of difenoconazole residues in Chinese cabbage and soil. Chin. Chem. Lett. 2008, 19, 969–972. [Google Scholar] [CrossRef]
- Zheng, K.M.; Meng, B.H.; Wu, S.Z.; Zhang, H.Z.; Wang, F.; Cui, Y.; Zeng, S.; Zhang, K.K.; Hu, D.Y. Simultaneous determination and method validation of difenoconazole, propiconazole and pyraclostrobin in pepper and soil by LC-MS/MS in field trial samples from three provinces, China. Biomed. Chromatogr. 2018, 32, e4052. [Google Scholar] [CrossRef]
- Kang, D.; Zhang, H.Z.; Chen, Y.L.; Wang, F.; Shi, L.H.; Hu, D.Y.; Zhang, K.K. Simultaneous determination of difenoconazole, trifloxystrobin and its metabolite trifloxystrobin acid residues in watermelon under field conditions by GC-MS/MS. Biomed. Chromatogr. 2017, 31, e3987. [Google Scholar] [CrossRef]
- Mohapatra, S. Dynamics of difenoconazole and propiconazole residues on pomegranate over 2 years under field conditions. Environ. Sci. Pollut. Res. 2016, 23, 5795–5806. [Google Scholar] [CrossRef]
- Angioni, A.; Aguilera, D.R.A.; Russo, M.; Melis, M.; Cabitza, F.; Cabras, P. Triazole fungicide degradation in peaches in the field and in model systems. Food Addit. Contam. 2003, 20, 368–374. [Google Scholar] [CrossRef]
- You, X.W.; Li, Y.Q.; Wang, X.G.; Xu, J.L.; Zheng, X.; Sui, C.C. Residue analysis and risk assessment of tebuconazole in jujube (Ziziphus jujuba Mill). Biomed. Chromatogr. 2017, 31, e3917. [Google Scholar] [CrossRef]
- GB2763-2019; National Food Safety Standard-Maximum Residue Limits for Pesticides in Food. China Agricultural Press: Beijing, China, 2019. (In Chinese)
- Chinese Nutrition Society. The Chinese Dietary Guidelines; People’s Publishing House: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Guidelines for Maximum Residue Limits of Pesticides in Food. Available online: http://www.moa.gov.cn/govpublic/ZZYGLS/201510/t20151012_4860918.htm (accessed on 10 November 2021).
Sample | Spiked Level (mg·kg−1) | Recovery (%) | Average Recovery (%) | RSD (%) | ||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||
Jujube | 0.02 | 84 | 79 | 86 | 73 | 94 | 83 | 9 |
0.2 | 106 | 107 | 104 | 99 | 108 | 105 | 3 | |
2 | 82 | 94 | 87 | 88 | 90 | 88 | 5 |
Crop | Experimental Site | Dissipation Dynamics Equation | R | t1/2 (d) |
---|---|---|---|---|
Jujube | Yuncheng | Ct = 0.2298e−0.042t | 0.992 | 16.5 |
Qingdao | Ct = 0.1319e−0.053t | 0.959 | 13.1 |
Dosage (mg a.i.·kg−1) | Spray Times | PHI (Day) | Final Residue * (mg·kg−1) | |||||
---|---|---|---|---|---|---|---|---|
Dalian | Jiyuan | Yuncheng | Beijing | Shijiazhuang | Qingdao | |||
100 | 2 | 7 | 0.40 ± 0.11 | 0.29 ± 0.08 | 0.39 ± 0.01 | 0.53 ± 0.03 | 0.14 ± 0.02 | 0.11 ± 0.01 |
14 | 0.35 ± 0.04 | 0.23 ± 0.10 | 0.25 ± 0.04 | 0.25 ± 0.04 | 0.08 ± 0.02 | 0.05 ± 0.01 | ||
21 | 0.27 ± 0.06 | 0.24 ± 0.11 | 0.16 ± 0.01 | 0.17 ± 0.06 | 0.06 ± 0.03 | 0.07 ± 0.02 | ||
3 | 7 | 0.78 ± 0.08 | 0.57 ± 0.09 | 0.55 ± 0.02 | 0.50 ± 0.06 | 0.28 ± 0.03 | 0.27 ± 0.03 | |
14 | 0.62 ± 0.09 | 0.34 ± 0.02 | 0.41 ± 0.08 | 0.43 ± 0.02 | 0.36 ± 0.05 | 0.16 ± 0.01 | ||
21 | 0.46 ± 0.15 | 0.32 ± 0.04 | 0.27 ± 0.02 | 0.37 ± 0.01 | 0.13 ± 0.04 | 0.13 ± 0.03 | ||
150 | 2 | 7 | 1.29 ± 0.10 | 0.78 ± 0.03 | 0.58 ± 0.08 | 0.83 ± 0.01 | 0.33 ± 0.02 | 0.11 ± 0.03 |
14 | 0.56 ± 0.04 | 0.71 ± 0.06 | 0.48 ± 0.00 | 0.54 ± 0.02 | 0.28 ± 0.03 | 0.05 ± 0.01 | ||
21 | 0.63 ± 0.11 | 0.56 ± 0.02 | 0.28 ± 0.05 | 0.31 ± 0.01 | 0.21 ± 0.02 | 0.04 ± 0.01 | ||
3 | 7 | 1.59 ± 0.26 | 0.63 ± 0.04 | 0.77 ± 0.14 | 0.73 ± 0.06 | 0.44 ± 0.01 | 0.18 ± 0.02 | |
14 | 0.68 ± 0.07 | 0.77 ± 0.05 | 0.59 ± 0.01 | 0.66 ± 0.04 | 0.32 ± 0.04 | 0.21 ± 0.06 | ||
21 | 0.63 ± 0.05 | 0.50 ± 0.02 | 0.31 ± 0.02 | 0.47 ± 0.03 | 0.38 ± 0.05 | 0.11 ± 0.01 |
Crop | PHI (Day) | Final Residue * (mg·kg−1) | STMR (mg·kg−1) | HR (mg·kg−1) |
---|---|---|---|---|
Jujube | 7 | 0.11, 0.11, 0.14, 0.18, 0.27, 0.28, 0.29, 0.33, 0.39, 0.40, 0.44, 0.50, 0.53, 0.55, 0.57, 0.58, 0.63, 0.73, 0.77, 0.78, 0.78, 0.83, 1.29, 1.59 | 0.52 | 1.59 |
14 | 0.05, 0.05, 0.08, 0.16, 0.21, 0.23, 0.25, 0.25, 0.28, 0.32, 0.34, 0.35, 0.36, 0.41, 0.43, 0.48, 0.54, 0.56, 0.59, 0.62, 0.66, 0.68, 0.71, 0.77 | 0.36 | 0.77 | |
21 | 0.04, 0.06, 0.07, 0.11, 0.13, 0.13, 0.16, 0.17, 0.21, 0.24, 0.27, 0.27, 0.28, 0.31, 0.31, 0.32, 0.37, 0.38, 0.46, 0.47, 0.50, 0.56, 0.63, 0.63 | 0.28 | 0.63 |
Registration Crops | Food Classification | Fi (kg) | Reference Residue Limits (mg·kg−1) | Sources | NEDI (mg) | ADI (mg) | RQ (%) |
---|---|---|---|---|---|---|---|
Rice | Rice and its products | 0.2399 | 0.5 | MRL(China) | 0.11995 | ADI × 63 | |
Wheat | Noodles and its products | 0.1385 | 0.1 | MRL(China) | 0.01385 | ||
Corn | Other grains | 0.0233 | 0.1 | MRL(China) | 0.00233 | ||
Potato | Tubers | 0.0495 | 0.02 | MRL(China) | 0.00099 | ||
Soybean | Dried beans and bean products | 0.016 | 0.05 | MRL(China) | 0.0008 | ||
Celery | Dark vegetables | 0.0915 | 3 | MRL(China) | 0.2745 | ||
Cucumber | Light vegetable | 0.1837 | 0.02 | STMR (China) | 0.003674 | ||
Jujube | Fruits | 0.0457 | 0.52 | STMR | 0.018737 | ||
Hazelnut | Nuts | 0.0039 | 0.03 | MRL(CAC) | 0.000117 | ||
Peanut | Vegetable oil | 0.0327 | 0.2 | MRL(China) | 0.00654 | ||
Sugar cane | Sugar, starch | 0.0044 | 0.05 | MRL(EU) | 0.00022 | ||
Wolfberry | Salt | 0.012 | 0.81 | STMR(China) | 0.000972 | ||
Sanchi | Soy sauce | 0.009 | 10 | MRL(China) | 0.09 | ||
Other foods * | 0.2191 | ||||||
Total | 1.0286 | 0.541 | 0.63 | 84.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, L.; Zhao, J.; Liao, C.; Wang, H.; Xiong, S.; Deng, Y.; Gong, D. Dissipation, Residue Behavior and Dietary Risk Assessment of Difenoconazole on Jujube (Ziziphus jujuba Mill.). Agronomy 2022, 12, 3145. https://doi.org/10.3390/agronomy12123145
Su L, Zhao J, Liao C, Wang H, Xiong S, Deng Y, Gong D. Dissipation, Residue Behavior and Dietary Risk Assessment of Difenoconazole on Jujube (Ziziphus jujuba Mill.). Agronomy. 2022; 12(12):3145. https://doi.org/10.3390/agronomy12123145
Chicago/Turabian StyleSu, Long, Jia Zhao, Chanjuan Liao, Han Wang, Sheng Xiong, Yaocheng Deng, and Daoxin Gong. 2022. "Dissipation, Residue Behavior and Dietary Risk Assessment of Difenoconazole on Jujube (Ziziphus jujuba Mill.)" Agronomy 12, no. 12: 3145. https://doi.org/10.3390/agronomy12123145
APA StyleSu, L., Zhao, J., Liao, C., Wang, H., Xiong, S., Deng, Y., & Gong, D. (2022). Dissipation, Residue Behavior and Dietary Risk Assessment of Difenoconazole on Jujube (Ziziphus jujuba Mill.). Agronomy, 12(12), 3145. https://doi.org/10.3390/agronomy12123145