Comparison of Droplet Distribution and Control Effect of Wheat Aphids under Different Operation Parameters of the Crop Protection UAV in the Wheat Flowering Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site
2.2. Test Equipment and Materials
2.3. Methods
2.3.1. Investigation on Field Distribution of Wheat Aphids and Plant Characteristics
2.3.2. Droplet Distribution Test of P20 UAV
Operation Parameter Design
Sampling Point Arrangement
Droplet Distribution Analysis
2.3.3. Control Test of Wheat Aphids
Test Fields and Pesticide Usage Setting
Determination of Wheat Aphid Control Effect
2.4. Data Statistics and Processing
3. Results
3.1. Distribution of Wheat Aphids and Plant Characteristics
3.2. Droplet Depositon in Wheat Canopy
3.2.1. Droplet Coverage Density of Wheat
3.2.2. Uniformity of Droplet Coverage Density
3.3. Control Effect of Wheat Aphids
3.3.1. Operation Parameter Screening for Aphids Control Test
3.3.2. Control Effect of Wheat Aphids
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kauppi, K.; Rajala, A.; Huusela, E.; Kaseva, J.; Ruuttunen, P.; Jalli, H.; Alakukku, L.; Jalli, M. Impact of pests on cereal grain and nutrient yield in boreal growing conditions. Agronomy 2021, 11, 592. [Google Scholar] [CrossRef]
- Wang, L. Occurrence regularity of wheat aphids and integrated control techniques. J. Seed Ind. Guide 2013, 3, 30. (In Chinese) [Google Scholar]
- Jiang, X.P. Symptoms and control techniques of wheat aphid. J. Seed Industyr. Guide 2019, 9, 20–21. (In Chinese) [Google Scholar]
- Sun, B.; Wang, S.P.; Zhang, Z.G.; Yuan, Y.X. Occurrence regularity of wheat aphids and integrated control techniques. Henan Agric. 2016, 12, 50–51. (In Chinese) [Google Scholar]
- Wang, Q.C.; Wu, S.Y.; Mao, Y.B.; Wang, K.H. Study on the destructive characteristics and preventive indexes of wheat aphids. J. Southwest Agric. Univ. 1995, 17, 35–38. (In Chinese) [Google Scholar]
- Reng, C.G.; Chen, F.Q.; Ma, L.K.; Wang, S.L.; Jie, J.Y.; Wang, Z.Q.; Liu, G.L. Study on yield loss and control index of wheat aphids. Entomol. Knowl. 1995, 35, 67–68. (In Chinese) [Google Scholar]
- Hussain, M.; Wang, Z.; Huang, G.; Mo, Y.; Kaousar, R.; Duan, L.; Tan, W. Comparison of droplet deposition 28-Homobrassinolide dosage efficacy and working efficiency of the unmanned aAerial vehicle and knapsack manual sprayer in the maize field. Agronomy 2022, 12, 385. [Google Scholar] [CrossRef]
- Rincón, V.J.; Sánchez-Hermosilla, J.; Páez, F.; Pérez-Alonso, J.; Callejón, Á.J. Assessment of the influence of working pressure and application rate on pesticide spray application with a hand-held spray gun on greenhouse pepper crops. Crop Prot. 2017, 96, 7–13. [Google Scholar] [CrossRef]
- Lan, Y.B.; Chen, S.D. A Current status and trends of crop protection UAV and its spraying technology in China. Int. J. Precis. Agric. Aviat. 2018, 1, 1–9. [Google Scholar]
- Zhang, Y.; Huang, X.; Lan, Y.; Wang, L.; Lu, X.; Yan, K.; Deng, J.; Zeng, W. Development and prospectof UAV-Based aerial electrostatic spray technology in China. Appl. Sci. 2021, 11, 4071. [Google Scholar] [CrossRef]
- Wang, G.B.; Lan, Y.B.; Qi, H.X.; Chen, P.C.; Hewitt, A.; Han, Y.X. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: Effect of spray volume on deposition and the control of pests and disease in wheat. Pest Manag. Sci. 2019, 75, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- He, X.K.; Bonds, J.; Herbst, A.; Langenakens, J. Recent development of unmanned aerial vehicle for crop protection in East Asia. Int. J. Agric. Biol. Eng. 2017, 10, 18–30. [Google Scholar]
- Zhang, S.C.; Xue, X.Y.; Sun, T.; Sun, X.D.; Yang, S.J.; Du, J.L. Study on the crop disease and pest control mode of crop protection UAS: A case study of wheat disease and pest control on Sihong base. J. Chin. Agric. Mech. 2020, 41, 50–58. (In Chinese) [Google Scholar]
- Xu, X.L.; Li, Y.H.; Li, Y.O.; Wu, J.X.; Lu, J.J. Relationship between the population density of ground pests and degree of demage. Acta Phytophylacica Sin. 2012, 39, 385–389. (In Chinese) [Google Scholar]
- Ahmad, F.; Zhang, S.; Qiu, B.; Ma, J.; Xin, H.; Qiu, W.; Ahmed, S.; Chandio, F.A.; Khaliq, A. Comparison of Water Sensitive Paper and Glass Strip Sampling Approaches to Access Spray Deposit by UAV Sprayers. Agronomy 2022, 12, 1302. [Google Scholar] [CrossRef]
- Huang, Y.; Ouellet-Plamondon, C.M.; Thomson, S.J.; Reddy, K.N. Characterizing downwind drift deposition of aerially applied glyphosate using RbCl as tracer. Int. J. Agric. Biol. Eng. 2017, 10, 31–36. [Google Scholar]
- Qin, W.C.; Xue, X.Y.; Zhang, S.M.; Gu, W.; Wang, B.K. Droplet deposition and efficiency of fungicides sprayed with small UAV against wheat powdery mildew. Int. J. Agric. Biol. Eng. 2018, 11, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.C.; Xue, X.Y.; Sun, Z.; Zhou, L.X.; Jin, Y.K. Downwash distribution of single-rotor unmanned agricultural helicopter on hovering state. Int. J. Agric. Biol. Eng. 2017, 10, 14–24. [Google Scholar]
- Zhang, S.C.; Qiu, B.J.; Xue, X.Y.; Sun, T.; Peng, B. Parameters optimization of crop protection UAS based on the first industry standard of China. Int. J. Agric. Biol. Eng. 2020, 13, 29–35. [Google Scholar] [CrossRef]
- Xiao, Q.; Du, R.; Yang, L. Comparison of droplet deposition control efficacy on phytophthora capsica and aphids in the processing pepper field of the unmanned aerial vehicle and knapsack sprayer. Agronomy 2020, 10, 215. [Google Scholar] [CrossRef] [Green Version]
- Gu, W.; Xue, X.Y.; Chen, C.; Zhou, Q.Q.; Zhang, S.C.; Peng, B. Influence of nozzle enabling strategy on spray deposition of crop protection unmanned aerial system. Int. J. Agric. Biol. Eng. 2021, 14, 53–61. [Google Scholar] [CrossRef]
- Qiu, B.J.; Wang, L.W.; Cai, D.L.; Wu, J.H.; Ding, G.R.; Guan, X.P. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform. Trans. CSAE 2013, 29, 25–32. (In Chinese) [Google Scholar]
- Chen, S.D.; Lan, Y.B.; Li, J.Y.; Xu, X.J.; Wang, Z.G.; Peng, B. Evaluation and test of effective spraying width of aerial praying on crop protection UAV. Trans. CSAE 2017, 33, 82–90. (In Chinese) [Google Scholar]
- Zhao, B.M.; Ding, L.L.; Zhang, Q.; Dong, H.Q. Control effects of low volume spraying using unmanned aerial vehicle (UAV) against zygina salina mit. Crop Prot. 2018, 44, 186–189. (In Chinese) [Google Scholar]
- Meng, Y.H.; Lan, Y.B.; Li, J.Y.; Liu, L.L.; Guo, Y.W.; Wang, Z.G.; Zhou, G.Q. Optimization of operation parameters of single-rotor gas-powered UAV for controlling wheat aphid. China Crop Prot. 2017, 37, 66–74. (In Chinese) [Google Scholar]
- Zhang, H.Y.; Lan, Y.B.; Wen, S.; Yin, X.C.; Liang, B.; Tian, W.K. Operational effects of unmanned helicopters for pesticide spraying in rice field. J. South China Agric. Univ. 2019, 40, 116–124. (In Chinese) [Google Scholar]
- Wang, S.; Li, X.; Zeng, A.; Song, J.; Xu, T.; Lv, X.; He, X. Effects of Adjuvants on Spraying Characteristics and Control Efficacy in Unmanned Aerial Application. Agriculture 2022, 12, 138. [Google Scholar] [CrossRef]
- NY/T612-2002; Rules for the Investigation and Forecast of Wheat Aphids. Ministry of Agriculture and Rural Affairs of China: Beijing, China, 2002. (In Chinese)
- Gao, Y.Y.; Zhao, Y.T.; Zhang, N.; Niu, L.; Zheng, W.W.; Yuan, H.Z. Primary studies on spray droplets distribution and control effects of aerial spraying using unmanned aerial vehicle (UAV) against wheat midge. Crops 2013, 2, 139–142. (In Chinese) [Google Scholar]
- NY/T3213-2018; Technical Specification of Quality Evaluation for Crop Protection UAS. Ministry of Agriculture and Rural Affairs of China: Beijing, China, 2018. (In Chinese)
- Chen, S.D.; Lan, Y.B.; Li, J.Y.; Zhou, Z.Y.; Jin, J.; Liu, A.M. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy. Trans. CSAE 2016, 32, 40–46. (In Chinese) [Google Scholar]
- Zhu, H.; Dorner, J.W.; Rowland, D.L.; Derksen, R.C.; Ozkan, H.E. Spray penetration into peanut canopies with hydraulic nozzle tips. Biosyst. Eng. 2004, 87, 275–283. [Google Scholar] [CrossRef]
- Wang, C.L.; He, X.K.; Jane, B.; Qi, P.; Yang, Y.; Gao, W.L. Effect of downwash airflow field of 8-rotor unmanned aerial vehicle on spray deposition distribution characteristics under different flight parameters. Smart Agric. 2020, 2, 124–136. (In Chinese) [Google Scholar]
- Xu, T.Y.; Yu, F.H.; Cao, Y.L.; Du, W.; Ma, M.Y. Vertical distribution of spray droplet deposition of plant protection multi rotor UAV for japonica rice. Trans. Chin. Soc. Agric. Mach. 2017, 48, 101–107. (In Chinese) [Google Scholar]
- Wang, G.B.; Lan, Y.B.; Yuan, H.Z.; Qi, H.X.; Chen, P.C.; Ouyang, F.; Han, Y.X. Comparison of Spray Deposition, Control Efficacy on Wheat Aphids and Working Efficiency in the Wheat Field of the Unmanned Aerial Vehicle with Boom Sprayer and Two Conventional Knapsack Sprayers. Appl. Sci. 2019, 9, 218. [Google Scholar] [CrossRef] [Green Version]
- Ebert, T.A.; Taylor, R.A.J.; Downer, R.A.; Hall, F.R. Deposit structure and efficacy of pesticide application. 1: Interactions between deposit size, toxicant concentration and deposit number. Pestic. Sci. 1999, 55, 783–792. [Google Scholar] [CrossRef]
Test Time | Growth Period | Plant Mean Height (cm) | Mean Wind Speed (m/s) | Mean Temperature (℃) | Mean Relative Humidity (%) |
---|---|---|---|---|---|
20–22 April 2020 | Flowering Stage | 65.6 | 1.6 | 17.3 | 63.6 |
Items | Parameter |
---|---|
Size of UAV/mm | 1262 × 1250 × 490 |
Type of nozzle | Centrifugal nozzle |
Numbers of nozzles | 4 |
Rated capacity/L | 10 |
FS/(m/s) | 3–6 |
FH/m | 1.5–2.5 |
No. | FS/(m/s) | FH/m | SW Measured/m | SW Set/m | Dosage/(L/ha) |
---|---|---|---|---|---|
A1 | 3 | 1.5 | 2.96 | 3 | 12 |
A2 | 3 | 2 | 2.81 | 2.8 | |
A3 | 3 | 2.5 | 2.7 | 2.7 | |
B1 | 4 | 1.5 | 2.43 | 2.5 | |
B2 | 4 | 2 | 2.31 | 2.3 | |
B3 | 4 | 2.5 | 2.2 | 2.2 | |
C1 | 5 | 1.5 | 2.13 | 2.1 | |
C2 | 5 | 2 | 2.09 | 2.1 | |
C3 | 5 | 2.5 | 1.98 | 2.0 | |
D1 | 6 | 1.5 | 2.01 | 2.0 | |
D2 | 6 | 2 | 1.88 | 1.9 | |
D3 | 6 | 2.5 | 1.79 | 1.8 |
Time | 7:00–7:30 | 9:00–9:30 | 11:00–11:30 | 13:00–13:30 | 15:00–15:30 | 17:00–17:30 |
---|---|---|---|---|---|---|
Upper | 1.21% | 0.81% | 0.68% | 0.51% | 0.42% | 0.46% |
Middle | 8.18% | 7.05% | 5.11% | 3.19% | 3.23% | 3.11% |
Lower | 90.61% | 92.04% | 94.21% | 96.3% | 96.35% | 96.43% |
Temperature | 13.5 ℃ | 15.2 ℃ | 21.5 ℃ | 23.6 ℃ | 19.5 ℃ | 18.3 ℃ |
Spraying Date | Treatment | Droplet Coverage Density/ (Droplets/cm2) | CV of Droplet Coverage Density/(%) | ||
---|---|---|---|---|---|
Upper | Lower | Upper | Lower | ||
22 April 2020 | A1 | 42.04 ± 3.00a | 28.53 ± 2.52a | 17.07 ± 2.00f | 21.00 ± 1.21g |
A2 | 37.87 ± 2.01ab | 24.25 ± 1.88bc | 21.20 ± 1.90f | 32.30 ± 3.15f | |
A3 | 28.49 ± 2.50de | 18.50 ± 2.50def | 38.37 ± 4.15cde | 43.63 ± 3.85de | |
B1 | 36.49 ± 3.50ab | 26.13 ± 2.01ab | 21.97 ± 2.36f | 37.33 ± 2.08ef | |
B2 | 30.09 ± 1.01cd | 21.03 ± 2.00cde | 36.30 ± 4.85de | 42.30 ± 2.96de | |
B3 | 27.37 ± 4.50def | 17.86 ± 1.79ef | 44.97 ± 6.40bc | 54.17 ± 8.50bc | |
C1 | 34.40 ± 1.40bc | 21.53 ± 1.50cd | 33.30 ± 2.85e | 43.73 ± 3.45de | |
C2 | 24.53 ± 2.50efg | 15.65 ± 2.51fg | 42.60 ± 4.15cd | 49.90 ± 3.25cd | |
C3 | 20.65 ± 2.51gh | 9.65 ± 1.52hi | 49.83 ± 3.26ab | 56.53 ± 5.55bc | |
D1 | 26.07 ± 1.01def | 16.01 ± 2.00fg | 38.47 ± 1.52cde | 49.27 ± 5.90cd | |
D2 | 23.57 ± 3.50fg | 12.57 ± 1.91gh | 45.27 ± 4.15bc | 58.37 ± 5.10b | |
D3 | 16.33 ± 1.53h | 8.43 ± 1.51i | 54.17 ± 5.05a | 67.23 ± 4.80a |
Factor | Droplet Coverage Density Upper | Droplet Coverage Density Lower | ||
---|---|---|---|---|
Value of Sig. | Significance | Value of SIG. | Significance | |
FH | 5.93 × 10−4 | * | 4.6 × 10−5 | * |
FS | 6.34 × 10−4 | * | 3.64 × 10−5 | * |
Factor | CV Upper | CV Lower | ||
---|---|---|---|---|
Value of Sig. | Significance | Value of Sig. | Significance | |
FH | 2.88 × 10−4 | * | 1.02 × 10−4 | * |
FS | 6.32 × 10−4 | * | 4.56 × 10−5 | * |
Treatment | FS/ (m/s) | FH/ m | SW/ m | Routes | Flight Time/ s | Operation Efficiency/ (ha/min) |
---|---|---|---|---|---|---|
A1 | 3 | 1.5 | 3 | 6 | 130 | 0.042 |
A2 | 3 | 2 | 2.8 | 6 | ||
A3 | 3 | 2.5 | 2.7 | 6 | ||
B1 | 4 | 1.5 | 2.5 | 7 | 124 | 0.044 |
B2 | 4 | 2 | 2.3 | 8 | 142 | 0.038 |
B3 | 4 | 2.5 | 2.2 | 8 | ||
C1 | 5 | 1.5 | 2.1 | 9 | 151 | 0.036 |
C2 | 5 | 2 | 2.1 | 9 | ||
C3 | 5 | 2.5 | 2.0 | 9 | ||
D1 | 6 | 1.5 | 2.0 | 9 | 144 | 0.038 |
D2 | 6 | 2 | 1.9 | 9 | ||
D3 | 6 | 2.5 | 1.8 | 9 |
Field | FS/(m/s) | FH/m | Na/(No./100 Plants) | Nb(No./100 Plants) | Control Effect(%) | ||||
---|---|---|---|---|---|---|---|---|---|
1 Day | 3 Days | 7 Days | 1 Day | 3 Days | 7 Days | ||||
1 | 3 m/s | 1.5 m | 1624 | 403 | 175 | 170 | 75.6 | 89.5 | 90.8 |
2 | 1763 | 525 | 276 | 134 | 71.1 | 86.9 | 93.3 | ||
3 | 4 m/s | 1.5 m | 1526 | 525 | 275 | 325 | 66.2 | 82.4 | 81.3 |
4 | 1417 | 603 | 317 | 287 | 58.2 | 78.2 | 82.2 | ||
5 | CK | 1438 | 1464 | 1475 | 1505 | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Zhang, S.; Xue, X.; Jiao, Y. Comparison of Droplet Distribution and Control Effect of Wheat Aphids under Different Operation Parameters of the Crop Protection UAV in the Wheat Flowering Stage. Agronomy 2022, 12, 3175. https://doi.org/10.3390/agronomy12123175
Sun T, Zhang S, Xue X, Jiao Y. Comparison of Droplet Distribution and Control Effect of Wheat Aphids under Different Operation Parameters of the Crop Protection UAV in the Wheat Flowering Stage. Agronomy. 2022; 12(12):3175. https://doi.org/10.3390/agronomy12123175
Chicago/Turabian StyleSun, Tao, Songchao Zhang, Xinyu Xue, and Yuxuan Jiao. 2022. "Comparison of Droplet Distribution and Control Effect of Wheat Aphids under Different Operation Parameters of the Crop Protection UAV in the Wheat Flowering Stage" Agronomy 12, no. 12: 3175. https://doi.org/10.3390/agronomy12123175