Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plots
2.2. Data Collecting
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Byers, R.E. Control and management of vertebrate pests in deciduous orchards of the eastern United States. Hortic. Rev. 1984, 6, 253–285. [Google Scholar]
- Sullivan, T.P.; Hogue, E.J. Influence of orchard floor management on vole and pocket gopher populations and damage in apple orchards. J. Am. Soc. Hortic. Sci. 1987, 112, 972–977. [Google Scholar]
- Jacob, J.; Tkadlec, E. Rodent outbreaks in Europe: Dynamics and damage. In Rodent Outbreaks: Ecology and Impacts; Singleton, G.R., Belman, S.R., Brown, P.R., Hardy, B., Eds.; IRRI: Los Banos, Philippines, 2010; pp. 207–223. [Google Scholar]
- Jacob, J.; Manson, P.; Barfknecht, R.; Fredricks, T. Common vole (Microtus arvalis) ecology and management: Implications for risk assessment of plant protection products. Pest Manag. Sci. 2014, 70, 869–878. [Google Scholar] [CrossRef]
- Delattre, P.; Giraudous, P.; Baundry, J.; Quéré, J.P.; Fichet, E. Effect of landscape structure on Common Vole (Microtus arvalis) distribution and abundance at several space scales. Landsc. Ecol. 1996, 5, 279–288. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Granatstein, D.M. Influence of living mulches on vole populations and feeding damage to apple trees. Crop Prot. 2018, 108, 78–86. [Google Scholar] [CrossRef]
- Walther, B.; Fülling, O.; Malevez, J.; Pelz, H.J. How expensive is vole damage? In Proceedings of the Ecofruit—13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, Germany, 18 February–20 February 2008; pp. 330–334. [Google Scholar]
- Wiman, M.R.; Kirby, E.M.; Granatstein, D.M.; Sullivan, T.P. Cover crops influence meadow vole presence in organic orchards. Horttechnology 2009, 19, 558–562. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, J.; Šipoš, J.; Čepelka, L.; Heroldová, M. The impact of Microtus arvalis and Lepus europaeus on apple trees by trunk bark gnawing. Plant Prot. Sci. 2019, 55, 142–147. [Google Scholar] [CrossRef] [Green Version]
- Madison, D.M.; FitzGerald, R.W.; McShea, W.J. Dynamics of social nesting in overwintering meadow voles (Microtus pennsylvanicus): Possible consequences for population cycling. Behav. Ecol. Sociobiol. 1984, 15, 9–17. [Google Scholar] [CrossRef]
- Hansson, L. Consumption of bark and seeds by voles in relation to habitat and landscape structure. Scand. J. For. Res. 2002, 17, 28–34. [Google Scholar] [CrossRef]
- Suchomel, J.; Heroldová, M.; Šipoš, J.; Čepelka, L.; Dokulilová, M.; Purchart, L. Bark gnawing of forest trees by voles during the growing season. Eur. J. For. Res. 2021, 140, 1431–1440. [Google Scholar] [CrossRef]
- Merwin, I.A.; Ray, J.A.; Curtis, P.D. Orchard groundcover management systems affect meadow vole populations and damage to apple trees. HortScience 1999, 34, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Miñarro, M.; Montiel, C.; Dapena, E. Vole pests in apple orchards: Use of presence signs to estimate the abundance of Arvicola terrestris cantabriae and Microtus lusitanicus. J. Pest Sci. 2012, 85, 477–488. [Google Scholar] [CrossRef]
- Bertolino, S.; Asteggiano, L.; Saladini, M.A.; Giordani, L.; Vittone, G.; Alma, A. Environmental factors and agronomic practices associated with Savi’s pine vole abundance in Italian apple orchards. J. Pest Sci. 2015, 88, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Miñarro, M.; Somoano, A.; Ventura, J. Intra-annual continuous reproduction of the apple pest Microtus lusitanicus: Implications for management. Crop Prot. 2017, 96, 164–172. [Google Scholar] [CrossRef]
- Somoano, A.; Ventura, J.; Miñarro, M. Continuous breeding of fossorial water voles in northwestern Spain: Potential impact on apple orchards. Folia Zool. 2017, 66, 37–49. [Google Scholar] [CrossRef]
- Tkadlec, E.; Stenseth, N.C. A new geographical gradient in vole population dynamics. Proc. R. Soc. B Biol. Sci. 2001, 268, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Lambin, X.; Bretagnolle, V.; Yoccoz, N.G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern? J. Anim. Ecol. 2006, 75, 340–349. [Google Scholar] [CrossRef]
- Šipoš, J.; Suchomel, J.; Purchart, L.; Kindlmann, P. Main determinants of rodent population fluctuations in managed Central European temperate lowland forests. Mammal Res. 2017, 62, 283–295. [Google Scholar] [CrossRef]
- Jacob, J.; Imholt, C.; Caminero-Saldana, C.; Couval, G.; Giraudoux, P.; Herrero-Cofreces, S.; Horváth, G.; Luque-Larena, J.J.; Tkadlec, E.; Wymenga, E. Europe-wide outbreaks of common voles in 2019. J. Pest Sci. 2020, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Central Institute for Supervising and Testing in Agriculture. Available online: http://eagri.cz/public/web/ukzuz/portal/skodlive-organismy/rostlinolekarsky-portal-responzivni.html (accessed on 15 October 2021).
- R Core Development Team 2020. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 12 September 2021).
- Možný, M.; Trnka, M.; Vlach, V.; Vizina, A.; Potopová, V.; Zahradnicek, P.; Stepanek, P.; Hajkova, L.; Staponites, L.; Zalud, Z. Past (1971–2018) and future (2021–2100) pan evaporation rates in the Czech Republic. J. Hydrol. 2020, 590, 125390. [Google Scholar] [CrossRef]
- Čermák, P.; Mikita, T.; Trnka, M.; Štěpánek, P.; Jurečka, F.; Kusbach, A.; Šebesta, J. Changes in climate characteristics of forest altitudinal zones within the Czech Republic and their possible consequences for forest species composition. Balt. For. 2018, 24, 234–248. [Google Scholar]
- Zeppel, M.J.B.; Wilks, J.V.; Lewis, J.D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 2014, 11, 3083–3093. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.; Turnbull, M.H.; Pharis, R.P.; Sarfati, M.S. Mast seeding, predator satiation, and temperature cues in Chionochloa (Poaceae). Popul. Ecol. 2008, 50, 343–355. [Google Scholar] [CrossRef]
- White, T.C.R. The role of food, weather and climate in limiting the abundance of animals. Biol. Rev. 2008, 83, 227–248. [Google Scholar] [CrossRef]
- Korpimäki, E.; Norrdahl, K.; Huitu, O.; Klemola, T. Predator–induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 2005, 272, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Čepelka, L.; Šipoš, J.; Suchomel, J.; Heroldová, M. Can we detect response differences among dominant rodent species to climate and acorn crop in a Central European forest environment? Eur. J. For. Res. 2020, 139, 539–548. [Google Scholar] [CrossRef]
- Tobin, M.E.; Richmond, M.E. Vole Management in Fruit Orchards; Biological Report 5; U.S. Fish and Wildlife Service: Bailey’s Crossroads, VA, USA, 1993; pp. 1–24. [Google Scholar]
- Holišová, V. Diet of the water vole (Arvicola terrestis) in Southern Moravian agricultural landscape. Folia Zool. 1965, 14, 209–218. [Google Scholar]
- Giraudoux, P.; Pradier, B.; Delattre, P.; Deblay, S.; Salvi, D.; Defaut, R. Estimation of water vole abundance by using surface indices. Acta Theriol. 1995, 40, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Giraudoux, P.; Delattre, P.; Habert, M.; Quéré, J.P.; Deblay, S.; Defaut, R.; Duhamel, R.; Moissenet, M.F.; Salvi, D.; Truchetet, D. Population dynamics of fossorial water vole (Arvicola terrestris scherman): A land use and landscape perspective. Agric. Ecosyst. Environ. 1997, 66, 47–60. [Google Scholar] [CrossRef]
- Weber, J.M.; Aubry, S.; Ferrary, N.; Fischer, C.; Lachat Feller, N.; Meia, J.S.; Meyer, S. Population changes of different predators during a water vole cycle in a central European mountainous habitats. Ecography 2002, 25, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Saucy, F. Density dependence in time series of the fossorial form of the water vole, Arvicola terrestris. Oikos 1994, 71, 381–392. [Google Scholar] [CrossRef]
- Delattre, P.; Clarac, R.; Melis, J.P.; Pleydell, D.R.J.; Giraudoux, P. How moles contribute to colonization success of water voles in grassland: Implications for control. J. Appl. Ecol. 2006, 43, 353–359. [Google Scholar] [CrossRef]
- Godfrey, M.E.R. Cultural practices affecting montane voles in Washington apple orchards. In Control of Mammal Pests; Richards, C.G.J., Ku, T.Y., Eds.; Taylor and Francis: New York, NY, USA, 1987; pp. 127–138. [Google Scholar]
- Balčiauskas, L.; Balčiauskienė, L.; Stirkė, V. Mow the Grass at the Mouse’s Peril: Diversity of Small Mammals in Commercial Fruit Farms. Animals 2019, 9, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stirkė, V.; Balčiauskas, L.; Balčiauskienė, L. Common Vole as a Focal Small Mammal Species in Orchards of the Northern Zone. Diversity 2021, 13, 134. [Google Scholar] [CrossRef]
- Zejda, J.; Zapletal, M.; Pikula, J.; Obdržálková, D.; Heroldová, M.; Hubálek, Z. Rodents in Agriculture and Forestry; Agrospoj: Prague, Czech Republic, 2002; p. 284. (In Czech) [Google Scholar]
- Ryland, K.; Kemp, B. Using field signs to identify water voles—Are we getting it wrong? Pract. Bull. Inst. Ecol. Environ. Manag. 2009, 63, 23–25. [Google Scholar]
- Heroldová, M.; Šipoš, J.; Suchomel, J.; Zejda, J. Influence of crop type on common vole abundance in Central European agroecosystems. Agric. Ecosyst. Environ. 2021, 315, 107443. [Google Scholar] [CrossRef]
Locality | Year | Species of Tree | n Trees | Age (Year) | Basal Diameter (cm) | Apple Variety | Rootstock |
---|---|---|---|---|---|---|---|
Brno (A) | 2019 | Malus domestica | 901 | 6 | 2.6 to 12 (mean 6.53; SD 1.09) | Sampion | P14 |
Holovousy (B) | 2020 | Malus domestica | 593 | 5 | 1.9 to 6 (mean 3.63; SD 0.93) | Gala | M106 |
Hostěnice (C) | 2019 | Fagus sylvatica | 500 | 7 to 10 | 1.2 to 8.5 (mean 2.88; SD 0.82) | ||
Tree Trunk Damage | |||||||
Locality | n/% | Girdled/% | Vertical Length of Damage (cm) | Horizontal Extent % of Damage | |||
A | 218/24 | 131/15 | 1 to 51 (mean 14.88; SD 8.71) | 3 to 100 (mean 76.5; SD 31.41) | |||
B | 91/15 | 48/8.1 | 2 to 24 (mean 9.27; SD 4.03) | 20 to 100 (mean 64.89; SD 25.67) | |||
C | 63/13 | 6/1.2 | 1 to 90 (mean 14.46; SD 17.68) | 1 to 100 (mean 30.44; SD 26.71) | |||
Tree Root Damage | |||||||
L. | Depth (cm) | Horizontal Extent % of Damage | Management | Harmful Rodent | |||
A | 51 rootstock and base | Present/absent data | ecological | Microtus arvalis | |||
B | 11 to 42 (mean 30.73; SD 6.28) | 50 to 100 (mean 94.76; SD 18.42) | conventional | Arvicola amphibius | |||
C | not measured | not measured | conventional | M. arvalis, M. agrestis | |||
C. glareolus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchomel, J.; Šipoš, J.; Ouředníčková, J.; Skalský, M.; Heroldová, M. Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages? Agronomy 2022, 12, 251. https://doi.org/10.3390/agronomy12020251
Suchomel J, Šipoš J, Ouředníčková J, Skalský M, Heroldová M. Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages? Agronomy. 2022; 12(2):251. https://doi.org/10.3390/agronomy12020251
Chicago/Turabian StyleSuchomel, Josef, Jan Šipoš, Jana Ouředníčková, Michal Skalský, and Marta Heroldová. 2022. "Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages?" Agronomy 12, no. 2: 251. https://doi.org/10.3390/agronomy12020251
APA StyleSuchomel, J., Šipoš, J., Ouředníčková, J., Skalský, M., & Heroldová, M. (2022). Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages? Agronomy, 12(2), 251. https://doi.org/10.3390/agronomy12020251